Infinite Positive Semidefinite Tensor Factorization for Source Separation of Mixture Signals

Kazuyoshi Yoshii 1)

Ryota Tomioka²⁾

- 1) National Institute of Advanced Industrial Science and Technology (AIST)
- Daichi Mochihashi³⁾ Masataka Goto¹⁾
- ²⁾ The University of Tokyo ³⁾ The Institute of Statistical Mathematics (ISM)

Conventional: Nonnegative Matrix Factorization (NMF)

Each nonnegative vector is approximated by a convex combination of nonnegative vectors

are always nonnegative

$$oldsymbol{x}_n pprox \sum_{k=1}^K oldsymbol{w}_k h_{kn} \stackrel{ ext{def}}{=} oldsymbol{y}_n$$
 Vector-wise factorization

Observed matrix (nonnegative vectors) $oldsymbol{X} = [oldsymbol{x}_1, \cdots, oldsymbol{x}_N] \in \mathbb{R}^{M imes N}$ Basis matrix (nonnegative vectors) $oldsymbol{W} = [oldsymbol{w}_1, \cdots, oldsymbol{w}_K] \in \mathbb{R}^{M imes K}$

Activation matrix (nonnegative vectors)
$$m{H} = [m{h}_1, \cdots, m{h}_K]^T \in \mathbb{R}^{K \times N}$$

Reconstruction error (Bregman divergence) $\phi(\boldsymbol{x})$: Strictly convex function $\mathcal{D}_{\phi}(\boldsymbol{x}_n|\boldsymbol{y}_n) = \phi(\boldsymbol{x}_n) - \phi(\boldsymbol{y}_n) - \phi'(\boldsymbol{y}_n)^T(\boldsymbol{x}_n - \boldsymbol{y}_n)$

Kullback-Leibler (KL) divergence $\phi(\mathbf{x}) = \sum_{m} (x_m \log x_m - x_m)$ $\mathcal{D}_{\mathrm{KL}}(\boldsymbol{x}_n|\boldsymbol{y}_n) = \sum_{m} \left(x_{mn} \log x_{mn} y_{mn}^{-1} - x_{mn} + y_{mn} \right)$

Itakura-Saito (IS) divergence $\phi(x) = -\sum_{m} \log x_m$ IS-NMF is theoretically $\mathcal{D}_{\mathrm{IS}}(\boldsymbol{x}_n|\boldsymbol{y}_n) = \sum_m \left(-\log x_{mn}y_{mn}^{-1} + x_{mn}y_{mn}^{-1} - 1\right)$ justified for factorizing the power spectrogram

Given X, NMF tries to estimate W and Hsuch that $\mathcal{C}(m{X}|m{Y}) = \sum \mathcal{D}_{\phi}(m{x}_n|m{y}_n)$ is minimized Maximum-likelihood estimation

Multipticative update rules can be derived for efficient learning

 X_{730}

Proposed: Positive Semidefinite Tensor Factorization (PSDTF)

Each positive semidefinite matrix is approximated by a convex combination of positive semidefinite matrices

activations $oldsymbol{h}_2$ Frequency bins are **NOT** independent in reality

Matrix-wise factorization

Observed tensor (PSD matrices) $oldsymbol{X} = [oldsymbol{X}_1, \cdots, oldsymbol{X}_N] \in \mathbb{R}^{M imes M imes N}$ Basis tensor (PSD matrices) $oldsymbol{V} = [oldsymbol{V}_1, \cdots, oldsymbol{V}_K] \in \mathbb{R}^{M imes M imes K}$ Activation matrix (nonnegative vectors) $oldsymbol{H} = [oldsymbol{h}_1, \cdots, oldsymbol{h}_K]^T \in \mathbb{R}^{K imes N}$

Reconstruction error (Bregman matrix divergence) $\mathcal{D}_{\phi}(\boldsymbol{X}_{n}|\boldsymbol{Y}_{n}) = \phi(\boldsymbol{X}_{n}) - \phi(\boldsymbol{Y}_{n}) - \operatorname{tr}(\nabla\phi(\boldsymbol{Y}_{n})^{T}(\boldsymbol{X}_{n} - \boldsymbol{Y}_{n}))$ von Neumann (vN) divergence $\phi(\boldsymbol{X}) = \operatorname{tr}(\boldsymbol{X} \log \boldsymbol{X} - \boldsymbol{X})$ $\mathcal{D}_{\scriptscriptstyle \mathrm{vN}}(oldsymbol{X}_n|oldsymbol{Y}_n) = \operatorname{tr}\left(oldsymbol{X}_n\logoldsymbol{X}_noldsymbol{Y}_n^{-1} - oldsymbol{X}_n + oldsymbol{Y}_n ight)$

Log-determinant (LD) divergence $\phi(\boldsymbol{X}) = -\log |\boldsymbol{X}|$ $\mathcal{D}_{\text{LD}}(\boldsymbol{X}_n|\boldsymbol{Y}_n) = -\log|\boldsymbol{X}_n\boldsymbol{Y}_n^{-1}| + \operatorname{tr}(\boldsymbol{X}_n\boldsymbol{Y}_n^{-1}) - M$

Given $oldsymbol{X}$, PSDTF tries to estimate $oldsymbol{V}$ and $oldsymbol{H}$ such that $C(X|Y) = \sum D_{\phi}(X_n|Y_n)$ is minimized Maximum-likelihood estimation Nonparametric Bayesian modeling The observed tensor is allowed to consist of an unbounded number of bases

$$oldsymbol{X}_n pprox \sum_{k=1}^{K o \infty} oldsymbol{ heta}_k oldsymbol{V}_k h_{kn} \stackrel{ ext{def}}{=} oldsymbol{Y}_n$$

Global weight vector $\boldsymbol{\theta} = [\theta_1, \cdots, \theta_\infty]^T \in \mathbb{R}^\infty$ To learn an infinite-dimensional <u>sparse</u> vector,

we place a gamma process (GaP) prior on $oldsymbol{ heta}$

 $\theta \sim \text{GaP}(\alpha, \text{Uniform})$

Application to Single-Channel Audio Signal Separation

Factorize frame-level covariances within a single-channel signal

Time-domain decomposition of mixture signals based on LD-PSDTF and Wiener filtering

$$\hat{m{x}}_n = \sum_{k=1}^K \hat{m{x}}_{nk}^{\text{Latent}} = \sum_{k=1}^K \hat{m{w}}_{kn} \hat{h}_{kn}$$

-0.077

0.43

 $\hat{m{w}}_{kn}$: Local <u>basis</u> signal in the n-th frame \hat{h}_{kn} : Coefficient of the k-th basis signal

We assume that each basis signal is "stationary" $\hat{m{w}}_{kn} \sim \mathcal{N}(\mathbf{0}, \hat{m{V}}_k)$ $\hat{m{V}}_k$ defines signal characteristics (e.g., periodicity and/or whiteness) The reproducing property of the Gaussian gives

 $\hat{oldsymbol{x}}_n | \hat{oldsymbol{V}}, \hat{oldsymbol{H}} \sim \mathcal{N} \left(\mathbf{0}, \sum_{k=1}^K \hat{oldsymbol{V}}_k \hat{h}_{kn}^2
ight) egin{array}{c} oldsymbol{X}_n = \hat{oldsymbol{x}}_n \hat{oldsymbol{x}}_n^T \geq \mathbf{0} \\ oldsymbol{V}_k = \hat{oldsymbol{V}}_k \geq \mathbf{0} \\ h_{kn} = \hat{h}_{kn}^2 \geq 0 \end{array}$ $\log p(oldsymbol{X}_n | oldsymbol{Y}_n) \stackrel{c}{=} -rac{1}{2} \log |oldsymbol{Y}_n| - rac{1}{2} \mathrm{tr}(oldsymbol{X}_n oldsymbol{Y}_n^{-1})$

The maximization of the Gaussian log-likelihood is equivalent to the minimization of the LD divergence

Finally, we perform Wiener filtering as follows:

$$\mathbb{E}[\hat{\boldsymbol{x}}_{nk}|\hat{\boldsymbol{x}}_n,\boldsymbol{V},\boldsymbol{H}] = \boldsymbol{Y}_{nk}\boldsymbol{Y}_n^{-1}\hat{\boldsymbol{x}}_n \qquad \boldsymbol{Y}_{nk} = \boldsymbol{V}_k\boldsymbol{h}_{kn}$$

$$\mathbb{V}[\hat{\boldsymbol{x}}_{nk}|\hat{\boldsymbol{x}}_n,\boldsymbol{V},\boldsymbol{H}] = \boldsymbol{Y}_{nk}-\boldsymbol{Y}_{nk}\boldsymbol{Y}_n^{-1}\boldsymbol{Y}_{nk} \qquad \boldsymbol{Y}_n = \sum_{k}\boldsymbol{Y}_{nk}$$

Source separation results on piano data: IS-NMF: SDR 18.9dB, SIR 24.1dB, SAR 20.5dB LD-PSDTF: SDR 26.7dB, SIR 33.2dB, SAR 27.8dB

Application to Multi-Channel EEG Signal Analysis

Factorize trial-level covariances between multi-channel signals

Unsupervised learning of characteristic brain-activity patterns based on LD-PSDTF

 h_5

Task: predict a left or right hand movement (-1 or 1) for a given EEG

The accuracies were 73% (K=5) and 79% (K=10) when Fisher's LDA was used for discriminating an K-dim. feature vector of each trial.

Tensor data: a set of full-rank PSD matrices (inter-channel covariances) obtained from all trials

 X_3

There were 416 trials (N=416), in which 100 were used for evaluation.

For each trial, an EEG was recorded at 28 channels (M=28) for 500 ms and an inter-channel covariance was calculated from the EEG.

Future Work

Reduce the heavy computational cost Investigate vN-PSDTF

Well-known physiological processes called event-related desynchronization (ERD) were successfully discovered.

-0.12

Each value indicates the correlation between activations and ground-truth labels

-0.019

-0.43

(extension of KL-NMF)