Infinite Kernel Linear Prediction for Joint Estimation of Spectral Envelope and Fundamental Frequency

Kazuyoshi Yoshii Masataka Goto (AIST, Japan)

Objective: Estimate the correct spectral envelope of an observed audio signal

Linear Prediction (LP): A probabilistic model that assumes the observed signal to follow an autoregressive (AR) process

If the source signal is white Gaussian noise $\boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{0}, \nu \boldsymbol{I})$ the observed signal follows a Gaussian $\boldsymbol{x} \sim \mathcal{N}(0, \nu \boldsymbol{\Psi}^{-1} \boldsymbol{\Psi}^{-T})$

Problem: The white-Gaussian assumption is violated if the observed signal is periodic

The estimated spectral envelope has unnecessary sharp peaks at harmonic partials

Approach: Jointly estimate a fundamental frequency and a spectral envelope

Infinite Kernel LP (IKLP): A probabilistic model that represents the periodicity of a source signal by using a convex combination of infinitely many kernels

Conventional: Multiple Kernel LP (MKLP) [Kameoka2010]

The source signal is precisely modeled by using a Gaussian process (GP)

$$\epsilon(t) = \sum_{j=1}^{J} w_j \phi_j(t) + \eta(t) = \boldsymbol{\phi}(t)^T \boldsymbol{w} + \eta(t) \implies \boldsymbol{\epsilon} = \boldsymbol{\Phi} \boldsymbol{w} + \boldsymbol{\eta}$$
 Weighted sum of basis functions White noise

If we assume $\boldsymbol{w} \sim \mathcal{N}(\boldsymbol{0}, \nu_w \boldsymbol{I})$ and $\boldsymbol{\eta} \sim \mathcal{N}(\boldsymbol{0}, \nu_e \boldsymbol{I})$

$$\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \nu_w \boldsymbol{\Phi} \boldsymbol{\Phi}^T + \nu_e \boldsymbol{I}) \overset{\text{Kernelize}}{\Longrightarrow} \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \nu_w \boldsymbol{K} + \nu_e \boldsymbol{I})$$
Linear regression model

GP regression model

The periodicity parameter of K is unknown \rightarrow Multiple Kernel Learning

$$m{x} \sim \mathcal{N}(\mathbf{0}, m{\Psi}^{-1}(m{\nu_w} m{K} + m{\nu_e} m{I}) m{\Psi}^{-T})$$
 $m{K} = \sum_{i=1}^I \theta_i m{K}_i$ A convex combination of many kernels corresponding to different FOs

Proposed: Nonparametric Bayesian Kernel Learning

A gamma process prior is put on infinitely many kernel weights

 $\theta \sim \text{GaP}(\alpha, \text{Uniform})$

Truncate at a sufficiently large level

 $\theta_i \sim \text{Gamma}(\alpha/I, \alpha)$

 α : concentration parameter controlling the tail heaviness

We also put priors on other unknown variables as follows:

$$\nu_w \sim \text{Gamma}(a_w, b_w) \quad \nu_e \sim \text{Gamma}(a_e, b_e) \quad \boldsymbol{a} \sim \mathcal{N}(\mathbf{0}, \lambda \boldsymbol{I})$$

We derived a variational Bayesian (VB) algorithm for closed-form parameter optimization This algorithm can be viewed as a new efficient solution of multiple kernel learning

Conclusion

We proposed a nonparametric Bayesian model that represents the periodicity of a source signal by using infinitely many kernels

The joint estimation of a FO and a spectral envelope was achieved in a principled way

Future Work

We plan to extend the model such that it can deal with not only infinitely many sources but also have infinitely many filters for timbre-based separation of music signals → Extension of infinite composite

autoregressive models [Yoshii2012]