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Problem: The white-Gaussian assumption is violated if the observed signal is periodic
The estimated spectral envelope has unnecessary sharp peaks at harmonic partials

Infinite Kernel Linear Prediction for Joint Estimation

of Spectral Envelope and Fundamental Frequency

Kazuyoshi Yoshii

Masataka Goto (AIST, Japan)

Objective: Estimate the correct spectral envelope of an observed audio signal
Linear Prediction (LP): A probabilistic model that assumes the observed signal to follow an autoregressive (AR) process

All-pole filter (AR filter)
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If the source signal is white Gaussian noise € ~~ N (O, v )

the observed signal follows a Gaussian & ~ N/ (0, 72\ \I’_T)

The ML estimate of @ is given by solving a normal equation _X 'Xa=X"x

A spectral envelope estimated
for a periodic observed signal
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Approach: Jointly estimate a fundamental frequency and a spectral envelope

Infinite Kernel LP (IKLP): A probabilistic model that represents the periodicity of a source signal
by using a convex combination of infinitely many kernels
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Proposed: Nonparametric Bayesian Kernel Learning

A gamma process prior is put on infinitely many kernel weights

0 ~ GaP(«, Uniform)
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9 i tend to exponentially
| decay .v Truncate at a sufficiently large level
e 0; ~ Gammal(a/I, o)
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controlling the tail heaviness
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Conventional: Multiple Kernel LP (MKLP) [KameokaZ010]

The source signal is precisely modeled by using a Gaussian process (GP)

ij@ +1(t) =

Weighted sum of basis functions White noise

If we assume W ~ N(O, VwI) and 1) ~ N(O, Ve )

M observed points

o) w+1(t) = e=Dw+n
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Kernelize

e~N(O,v, 2P +v.I) wp €~N(0,v, K+ v.I)

Linear regression model GP regression model

The periodicity parameter of /< is unknown — Multiple Kernel Learning

r~NOT v, K+ DN T) K= 4K

Periodic compo. White noise A convex combination of many kernels
corresponding to different FOs

Includes a conventional LP as a special case
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© ~ N (0,97 (1,05 0K + v ) @) Likelihood by IKLP

We also put priors on other unknown variables as follows:
Uy ~ Gamma(a,, by )

Ve ~ Gamma(ae,b.) a ~ N(0,\I)

We derived a variational Bayesian (VB) algorithm for closed-form parameter optimization
This algorithm can be viewed as a new efficient solution of multiple kernel learning

Conclusion

We proposed a nonparametric Bayesian
model that represents the periodicity of a
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source signal by using infinitely many kernels

The joint estimation of a FO and a spectral
envelope was achieved in a principled way
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Future Work

We plan to extend the model such that it can
deal with not only infinitely many sources
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Estlmated FOs ( predommant kernels)
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but also have infinitely many filters
for timbre-based separation of music signals
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Detected pitched frames E[v,,]/E[vy + Vel
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— Extension of infinite composite
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autoregressive models [Yoshii2012]
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