Independent Low-Rank Tensor Analysis for Audio Source Separation

Kazuyoshi Yoshii^{1,2} Koichi Kitamura¹ Yoshiaki Bando^{1,3} Eita Nakamura¹ Tatsuya Kawahara¹

¹Graduate School of Informatics, Kyoto University

²Advanced Integrated Project (AIP), RIKEN

³National Institute of Advanced Industrial Science and Technology (AIST)

Background

- Single-channel source separation is a fundamental task for
 - Automatic music transcription (e.g., piano, guitar, drums)
 - Singing voice separation
- Common approach: Fourier transform + phase discarding
 - STFT has commonly been used
 - Sound characteristics clearly appear in the magnitude spectrograms
 - Low-rankness and sparseness are useful clues for decomposition

Nonnegative matrix factorization (NMF) has been one of the most popular approaches to audio source separation

Basic Assumption

- Additivity of time-domain signals
 Additivity of complex spectra
 - The additivity holds in ANY linearly transformed space (e.g., DFT & DCT)

Time-domain $z_1 + z_2 = s$ **DFT** matrix $\mathbf{D} \in \mathbb{C}^{F \times F}$ (unitary matrix s.t. $DD^{H} = I_{F}$) Frequency domain $\mathbf{D}z_1 + \mathbf{D}z_2 = \mathbf{D}s$ Mag. **Phase**

Related Work

- Low-rank decomposition based on additivity of complex spectra
 - Complex NMF [Kameoka+ 2009] High Resolution NMF [Badeau+ 2011]
 - Additivity- and consistency-aware methods have been proposed

Phase and magnitude cannot be determined in a bin-wise manner

→ The <u>full</u> covariance structure over the whole spectrogram should be considered

	Frequency covariance	Time covariance
Positive semidefinite tensor factorization (PSDTF) [Yoshii+ 2013]	✓	
		✓
Correlated tensor factorization (CTF) [Yoshii+ 2017, 2018]	~	~

Correlated Tensor Factorization (CTF)

- The ultimate low-rank decomposition method based on the full covariance matrix over the whole complex spectrogram
 - Decomposed into frequency and time covariance matrices ($\mathbb{C}^{F \times F} \& \mathbb{C}^{T \times T}$)
 - Interpreted as ML estimation of a composite Gaussian process
 - Equivalent decomposition exists in any linearly transformed space
 - Not limited to time-time domain (a series of windowed signals)

	Number of parameters	Time complexity	
NMF (all bins are independent)	$\mathcal{O}(K(F+T))$	$\mathcal{O}(KFT)$	
CTF (All bins are correlated with each other)	$\mathcal{O}(K(F^2+T^2))$	$\mathcal{O}(KF^3T^3)$	

Independent Low-Rank Tensor Analysis (ILRTA)

- ILRTA is a constrained version of CTF
 - Jointly diagonalizable covariance matrices
 - Limited number of parameters
 - Regularization effect
 - Multi-way space transforms
 - Linear transforms of frequency and time axes
 - All bins are independent in the transformed space
 - Fast computation
 - CTF in the FT space
 - = NMF in the transformed space

 $\mathcal{O}(KF^3T^3) \to \mathcal{O}(KFT)$

Contribution

- Unified theory of covariance-based low-rank decomposition
 - Multi-way covariance modeling (frequency, time, and channel axes)
 - Diagonal matrices: independence in the original space
 - Jointly diagonalizable matrices: independence in the transformed space

Agenda

- Existing work: correlated tensor factorization (CTF)
 - Formulation
 - NMF (diagonal covariance)
 - PSDTF (full freq. <u>OR</u> time covariance)
 - CTF (full freq. <u>AND</u> time covariance)
- Proposed method: independent low-rank tensor analysis (ILRTA)
 - Formulation
 - ILRTA (jointly diagonalizable freq. and time covariance)
 - Estimation
 - Joint transform learning and low-rank decomposition
 - Source separation based on Winer filtering

Agenda

- Existing work: correlated tensor factorization (CTF)
 - Formulation
 - NMF (diagonal covariance)
 - PSDTF (full freq. <u>OR</u> time covariance)
 - CTF (full freq. <u>AND</u> time covariance)
- Proposed method: independent low-rank tensor analysis (ILRTA)
 - Formulation
 - ILRTA (jointly diagonalizable freq. and time covariance)
 - Estimation
 - Joint transform learning and low-rank decomposition
 - Source separation based on Winer filtering

[Févotte 2009]

Each <u>nonnegative vector</u> is approximated as a weighted sum of <u>nonnegative vectors</u>

Positive Semidefinite Tensor Factorization (PSDTF)

• Each PSD matrix is approximated as a weighed sum of PSD matrices

Covariance matrices must be PSD matrices

[Yoshii+ 2013]

NMF vs PSDTF

- PSDTF is a mathematically-natural multivariate extension of NMF
 - Nonnegative vectors → Positive semidefinite matrices
 - NMF = PSDTF with diagonal covariance matrices (bin-wise independence)

Limitation of PSDTF

- <u>Either</u> of frequency or time covariance matrices can be considered
 - The frequency and time axes can be exchanged

	Frequency covariance	Time covariance
PSDTF-F	✓	
PSDTF-T		~

In practice, PSDTF-F is easier to use (the matrix size *F* is fixed)

Correlated Tensor Factorization (CTF) [Yoshii+ 2017,2018]

The ultimate extension of NMF modeling the full covariance structure

Formulation of LD-CTF

- A variant of CTF using the log-det divergence as a cost function
 - A covariance matrix over the TF bins is decomposed as the sum of the Kronecker products of frequency cov. matrices and time cov. matrices

$$\mathcal{D}_{LD}(\mathbf{X}|\mathbf{Y}) = -\log|\mathbf{X}\mathbf{Y}^{-1}| + \operatorname{tr}(\mathbf{X}\mathbf{Y}^{-1}) - FT$$

15

Agenda

- Existing work: correlated tensor factorization (CTF)
 - Formulation
 - NMF (diagonal covariance)
 - PSDTF (full freq. <u>OR</u> time covariance)
 - CTF (full freq. <u>AND</u> time covariance)
- Proposed method: independent low-rank tensor analysis (ILRTA)
 - Formulation
 - ILRTA (jointly diagonalizable freq. and time covariance)
 - Estimation
 - Joint transform learning and low-rank decomposition
 - Source separation based on Winer filtering

Independent Low-Rank Tensor Analysis (ILRTA)

- Covariance matrices W, H are assumed to be jointly diagonalizable
 - Freq. covariance matrices: $\mathbf{W}_k = \mathbf{P}^{-1}[\widetilde{\mathbf{w}}_k]\mathbf{P}^{-H} \in \mathbb{C}^{F \times F}$
 - Time covariance matrices: $\mathbf{H}_k = \mathbf{Q}^{-1}[\tilde{\mathbf{h}}_k]\mathbf{Q}^{-H} \in \mathbb{C}^{T \times T}$
 - $\widetilde{\mathbf{w}}_k \in \mathbb{R}_+^F$ and $\widetilde{\mathbf{h}}_k \in \mathbb{R}_+^T$ are nonnegative vectors
 - If $P \in \mathbb{C}^{F \times F}$ and $Q \in \mathbb{C}^{T \times T}$ are identity matrices, ILRTA reduces to NMF

Probabilistic Model of ILRTA

Multivariate complex Gaussian likelihood

Diagonal matrix

FT-dim vector
$$\mathbf{s} \sim \mathcal{N}_c \left(\mathbf{0}, \sum_{k=1}^K \mathbf{F} \times \mathbf{F} \atop \mathbf{W}_k \otimes \mathbf{H}_k \right)$$
 $\mathbf{s} \in \mathbb{C}^{FT}$ is a long vector serializing all the bins of the complex spectrogram $\mathbf{v} = \mathcal{N}_c \left(\mathbf{0}, \sum_{k=1}^K (\mathbf{P}^{-1} [\widetilde{\mathbf{W}}_k] \mathbf{P}^{-H}) \otimes (\mathbf{Q}^{-1} [\widetilde{\mathbf{h}}_k] \mathbf{Q}^{-H}) \right)$

$$= \mathcal{N}_c \left(\mathbf{0}, (\mathbf{P} \otimes \mathbf{Q})^{-1} \left(\sum_{k=1}^K [\widetilde{\mathbf{W}}_k] \otimes [\widetilde{\mathbf{h}}_k] \right) (\mathbf{P} \otimes \mathbf{Q})^{-H} \right)$$

$$(\mathbf{P} \otimes \mathbf{Q}) \mathbf{s} = \mathcal{N}_c \left(\mathbf{0}, \sum_{k=1}^K [\widetilde{\mathbf{W}}_k] \otimes [\widetilde{\mathbf{h}}_k] \right)$$
 $\mathbf{We} \ \mathbf{c} \in \mathbb{C}^{FT}$ focus of the complex spectrogram $\mathbf{v} = \mathbf{v} = \mathbf{v}$

We can ignore phase, i.e., focus on power spectrogram, in the space transformed by P & Q

Multi-way Space Transform

- Each axis of input data (matrix or tenor) is linearly transformed
 - Find a better space satisfying independence and low-rankness
 - Freq. axis is linearly transformed by $P \in \mathbb{C}^{F \times F}$
 - Time axis is linearly transformed by $\mathbf{Q} \in \mathbb{C}^{T \times T}$

Independence

$$(\mathbf{P} \otimes \mathbf{Q})\mathbf{s} = \mathcal{N}_{c} \left(\mathbf{0}, \sum_{k=1}^{K} [\widetilde{\mathbf{w}}_{k}] \otimes [\widetilde{\mathbf{h}}_{k}] \right)$$
Linear transform

Transform of spectrogram

$$S \longrightarrow PSQ^T$$

Transform of vector

$$s \longrightarrow (P \otimes Q)s$$

Low-rankness

Estimation of $\widetilde{\mathbf{w}}_k \& \widetilde{\mathbf{h}}_k$

IS-NMF for PSQ^T

Linear Transform of Frequency Axis

- Low-rankness (time-invariance of bases) is improved
 - Amplitude fluctuation over time is reduced
 - A new space is more suitable for NMF than the time-frequency space
 - A linear transform better than DFT exists (depending on data)

cf. Transform Learning NMF (TL-NMF) [Fagot+ 2018] Unitary transform (DCT) can be learned from data

Agenda

- Existing work: correlated tensor factorization (CTF)
 - Formulation
 - NMF (diagonal covariance)
 - PSDTF (full freq. <u>OR</u> time covariance)
 - CTF (full freq. <u>AND</u> time covariance)
- Proposed method: independent low-rank tensor analysis (ILRTA)
 - Formulation
 - ILRTA (jointly diagonalizable freq. and time covariance)
 - Estimation
 - Joint transform learning and low-rank decomposition
 - Source separation based on Winer filtering

Parameter Estimation

- **Iterative optimization IS-NMF**
 - Execute in the transformed space
 - IVA
 - Execute for each axis
 - Transform the space

PS

Update time-axis transformQ \rightarrow IVA for PS

T-channel signals are separated into *T* sources (Q: demixing filter)

Update $\widetilde{\mathbf{w}}_k$ and $\widetilde{\mathbf{h}}_k$ \rightarrow IS-NMF for PSQ^T

F-channel signals are separated to *F* sources (P: demixing filter)

Parameter Estimation

- Minimization of log-det divergence
 - Define target and reconstruction in the transformed space

$$\tilde{\mathbf{x}}_{ft} = \mathbf{p}_f^{\mathrm{H}} (\mathbf{S} \mathbf{q}_t^{\mathrm{C}} \mathbf{q}_t^{\mathrm{T}} \mathbf{S}^{\mathrm{H}}) \mathbf{p}_f = \mathbf{q}_t^{\mathrm{H}} (\mathbf{S}^{\mathrm{T}} \mathbf{p}_f^{\mathrm{C}} \mathbf{p}_f^{\mathrm{T}} \mathbf{S}^{\mathrm{C}}) \mathbf{q}_t \quad \tilde{\mathbf{y}}_{ft} = \sum_{k=1}^{\infty} \tilde{\mathbf{w}}_{kf} \tilde{\mathbf{h}}_{kt}$$

Iterate three steps

$$\mathcal{D}_{LD}(\mathbf{X}|\mathbf{Y}) \stackrel{c}{=} -T\log|\mathbf{P}^{H}| - F\log|\mathbf{Q}^{H}| + \sum_{f=1}^{\infty} \sum_{t=1}^{\infty} (\tilde{x}_{ft}\tilde{y}_{ft}^{-1} + \log\tilde{y}_{ft})$$

Similar to the optimization algorithm of ILRMA based on IVA & IS-NMF

[D. Kitamura+ 2016]

Our contribution: Multi-way IVA + IS-NMF Update freq.-axis transform P: IVA for SQT

Update time-axis transform Q: IVA for PS

Update bases $\widetilde{\mathbf{w}}_k$ & $\widetilde{\mathbf{h}}_k$: IS-NMF for PSQ^T

Source Separation

- Wiener filtering in the transformed space (computationally fast)
 - Generation of mixture: $z_1 + \cdots + z_K \rightarrow s$

$$(\mathbf{P} \otimes \mathbf{Q})\mathbf{z}_k = \mathcal{N}_{\mathcal{C}}(\mathbf{0}, [\widetilde{\mathbf{w}}_k] \otimes [\widetilde{\mathbf{h}}_k]) = \mathcal{N}_{\mathcal{C}}(\mathbf{0}, \mathbf{Y}_k)$$

$$(\mathbf{P} \otimes \mathbf{Q})\mathbf{s} = \mathcal{N}_{\mathcal{C}}\left(\mathbf{0}, \sum_{k=1}^{K} [\widetilde{\mathbf{w}}_{k}] \otimes [\widetilde{\mathbf{h}}_{k}]\right) = \mathcal{N}_{\mathcal{C}}(\mathbf{0}, \mathbf{Y})$$

• Inference of sources: $\mathbf{s} \to \mathbf{z}_1 + \cdots + \mathbf{z}_K$

$$(\mathbf{P} \otimes \mathbf{Q})\mathbf{z}_k \mid (\mathbf{P} \otimes \mathbf{Q})\mathbf{s} = \mathcal{N}_{\mathcal{C}}(\mathbf{Y}_k\mathbf{Y}^{-1}\mathbf{s}, \mathbf{Y} - \mathbf{Y}_k\mathbf{Y}^{-1}\mathbf{Y}_k)$$

Inverse transform to the original time-frequency space

$$\mathbf{z}_k = (\mathbf{P} \otimes \mathbf{Q})^{-1} (\mathbf{P} \otimes \mathbf{Q}) \mathbf{z}_k$$

$$\mathbf{Z}_{k} = \mathbf{P}^{-1} (\mathbf{P} \mathbf{Z}_{k} \mathbf{Q}^{T}) \mathbf{Q}^{-T}$$

26

Problem

- Optimization of unconstrained transforms P and Q is difficult
 - Practical problem
 - High-dimensional computation is numerically unstable
 - P tends to be a singular (inverse transform P^{-1} cannot be calculated)
 - Theoretical problem
 - $F < T \rightarrow \mathbf{Q}$ cannot be estimated
 - Iterative projection (IVA) and fixed point iteration (FastFCA) don't work

Update direction:
$$\mathbf{q}_t = (\mathbf{Q}\mathbf{V}_t)^{-1}\mathbf{e}_t$$
 \mathbf{V}_t is rank-deficit!

Updating norm: $\mathbf{q}_t = (\mathbf{q}_t^H\mathbf{V}_t\mathbf{q}_t)^{-\frac{1}{2}}\mathbf{q}_t$

where $\mathbf{V}_t = (\mathbf{P}\mathbf{S})^H[\widetilde{\mathbf{y}}_{1:F,t}](\mathbf{P}\mathbf{S}) \in \mathbb{C}^{T \times T} \rightarrow \mathrm{rank}(\mathbf{V}_t) = F$
 $T \times F \quad F \times F \quad F \times T$

27

Evaluation

- We conducted a preliminary experiment using a toy sample
 - Separate a mixture of piano sounds synthesized MIDI (K=3: C4, E4, G4)
 - Compare ILRTA (estimate P & fix $Q = I_T$), LD-PSDTF-F and IS-NMF
 - Use BSS Eval Toolbox [Vincent+ 2006]

Results

- ILRTA outperformed IS-NMF and LD-PSDTF-F
 - Freq.-axis transform P can be updated appropriately in 4 or 5 iterations
 - The separation performance was increased monotonically
 - After that, P becomes singular (cannot be inverted)
 - Unitary constraint might help? [Fagot+ 2018]

	SDR	SIR	SAR
Nonnegative matrix factorization (IS-NMF)	18.9	24.2	20.4
Positive semidefinite tensor factorization (LD-PSDTF-F)	22.8	28.5	24.2
Independent low-rank tensor analysis (ILRTA)	24.3	31.4	25.2

ILRTA is a constrained version, but it works better

Unitary ILRTA

- Numerically stable, but little performance gain
 - Initialize by IS-NMF in the DCT domain and then update P and Q
 - Convergence-guaranteed, fast, and stable optimization

Independent Low-Rank Tensor Analysis (ILRTA)

- ILRTA is a constrained version of CTF
 - Jointly diagonalizable covariance matrices
 - Limited DOF of the model
 - Regularization effect
 - Multi-way space transforms
 - Linear transforms of frequency and time axes
 - All bins are independent in the transformed space
 - Fast computation
 - CTF in the FT space
 - = NMF in the transformed space

 $\mathcal{O}(KF^3T^3) \to \mathcal{O}(KFT)$

Conclusion and Future Direction

- Established unified theory of "nonnegative" low-rank decomposition
 - CTF and ILRTA are ultimate general frameworks
 - Future work includes stable and fast optimization and problem-specific specialization (e.g., freq-dependent channel cov. matrices) of CTF and ILRTA

