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Background
• Single-channel source separation is a fundamental task for
▪ Automatic music transcription (e.g., piano, guitar, drums)
▪ Singing voice separation

• Common approach: Fourier transform + phase discarding 
▪ STFT has commonly been used
▪ Sound characteristics clearly appear in the magnitude spectrograms
▪ Low-rankness and sparseness are useful clues for decomposition

Nonnegative matrix 
factorization (NMF) has 
been one of the most 

popular approaches to 
audio source separation
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Basic Assumption
• Additivity of time-domain signals ⇔ Additivity of complex spectra
▪ The additivity holds in ANY linearly transformed space (e.g., DFT & DCT)
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𝐃𝐃𝑧𝑧1 + 𝐃𝐃𝑧𝑧2 = 𝐃𝐃𝑠𝑠

𝑧𝑧1 + 𝑧𝑧2 = 𝑠𝑠Time-domain

Frequency domain

+ =

+ =

Mag.

Phase

DFT matrix 𝐃𝐃 ∈ ℂ𝐹𝐹×𝐹𝐹

(unitary matrix s.t. 𝐃𝐃𝐃𝐃H = 𝐈𝐈𝐹𝐹)



Related Work
• Low-rank decomposition based on additivity of complex spectra
▪ Complex NMF [Kameoka+ 2009]・High Resolution NMF [Badeau+ 2011]

▪ Additivity- and consistency-aware methods have been proposed

Phase 𝜃𝜃Magnitude 𝑟𝑟
𝑥𝑥𝑓𝑓𝑓𝑓 = 𝑟𝑟𝑓𝑓𝑓𝑓(cos 𝜃𝜃𝑓𝑓𝑓𝑓 + 𝑖𝑖 sin𝜃𝜃𝑓𝑓𝑓𝑓) Phase and magnitude cannot be 

determined in a bin-wise manner
→ The full covariance structure 

over the whole spectrogram
should be considered

Frequency covariance Time covariance
Positive semidefinite tensor 

factorization (PSDTF) [Yoshii+ 2013]

✔

✔

Correlated tensor factorization
(CTF) [Yoshii+ 2017, 2018]

✔ ✔
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Correlated Tensor Factorization (CTF)
• The ultimate low-rank decomposition method based on 

the full covariance matrix over the whole complex spectrogram
▪ Decomposed into frequency and time covariance matrices (ℂ𝐹𝐹×𝐹𝐹 & ℂ𝑇𝑇×𝑇𝑇)

▪ Interpreted as ML estimation of a composite Gaussian process
▪ Equivalent decomposition exists in any linearly transformed space
▪ Not limited to time-time domain (a series of windowed signals)
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Number of 
parameters

Time
complexity

NMF
(all bins are 

independent)
𝒪𝒪(𝐾𝐾(𝐹𝐹 + 𝑇𝑇)) 𝒪𝒪(𝐾𝐾𝐾𝐾𝐾𝐾)

CTF
(All bins are correlated 

with each other)
𝒪𝒪(𝐾𝐾(𝐹𝐹2 + 𝑇𝑇2)) 𝒪𝒪(𝐾𝐾𝐹𝐹3𝑇𝑇3)

𝑇𝑇

𝐹𝐹



Independent Low-Rank Tensor Analysis (ILRTA)
• ILRTA is a constrained version of CTF
▪ Jointly diagonalizable covariance matrices
▪ Limited number of parameters
▪ Regularization effect

▪ Multi-way space transforms
▪ Linear transforms of 

frequency and time axes
▪ All bins are independent

in the transformed space
▪ Fast computation
▪ CTF in the FT space

＝ NMF in the transformed space
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𝑇𝑇

𝐹𝐹
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𝑇𝑇

𝐹𝐹
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𝐹𝐹
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𝐹𝐹

𝐡̃𝐡1
𝐡̃𝐡2
𝐡̃𝐡3

�𝐰𝐰1 �𝐰𝐰2 �𝐰𝐰3
All bins are 

independent

All bins are 
correlated

𝒪𝒪(𝐾𝐾𝐹𝐹3𝑇𝑇3) → 𝒪𝒪(𝐾𝐾𝐾𝐾𝐾𝐾)



Contribution
• Unified theory of covariance-based low-rank decomposition
▪ Multi-way covariance modeling (frequency, time, and channel axes) 
▪ Diagonal matrices: independence in the original space
▪ Jointly diagonalizable matrices: independence in the transformed space 
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NMF [Fevotte 2009] PSDTF [Yoshii+ 2013]

ILRTA (ours)

Time
covariance

Frequency
covariance

Channel
covariance

NMF [Fevotte 2009]

CTF
[Yoshii 2018] 

Time
covariance

Frequency
covariance

Channel
covariance

MNMF
[Sawada+ 2013]

In progress In progress

Independence maximization
based on space transforms

Full covariance modelsConstrained covariance models

ILRMA [Kitamura+ 2016]
FastFCA [Ito+ 2018]

Transform Learning 
NMF (TL-NMF) 

[Fagot+ 2018]

New! PSDTF
[Yoshii+ 2013]

ILRTA CTF IPSDTA
[Ikeshita 2018] 



Agenda
• Existing work: correlated tensor factorization (CTF)
▪ Formulation
▪ NMF (diagonal covariance)
▪ PSDTF (full freq. OR time covariance)
▪ CTF (full freq. AND time covariance)

• Proposed method: independent low-rank tensor analysis (ILRTA)
▪ Formulation
▪ ILRTA (jointly diagonalizable freq. and time covariance)

▪ Estimation
▪ Joint transform learning and low-rank decomposition
▪ Source separation based on Winer filtering
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Nonnegative Matrix Factorization (NMF)
• Each nonnegative vector is approximated as a weighted sum of 

nonnegative vectors

Nonnegative vectors

Bases
Nonnegative vectors

…… … …… �𝐱𝐱𝑡𝑡 = diag(𝐬𝐬𝑡𝑡𝐬𝐬𝑡𝑡H)

𝐲𝐲𝑡𝑡 = �
𝑘𝑘=1

𝐾𝐾

ℎ𝑘𝑘𝑘𝑘𝐰𝐰𝑘𝑘

Minimize 𝒟𝒟IS(𝐱𝐱𝑡𝑡|𝐲𝐲𝑡𝑡)𝐡𝐡1

𝐡𝐡2

𝐡𝐡3

[Févotte 2009]

𝐰𝐰1 𝐰𝐰2 𝐰𝐰3

Calculate power spectra 𝑡𝑡

𝑓𝑓

𝑓𝑓

𝑓𝑓

𝑡𝑡

Activations

Nonnegative vectors
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Positive Semidefinite Tensor Factorization (PSDTF)
• Each PSD matrix is approximated as a weighed sum of PSD matrices
▪ Covariance matrices must be PSD matrices

PSD matrices

Bases
PSD matrices

…… … …… 𝐗𝐗𝑡𝑡 = 𝐬𝐬𝑡𝑡𝐬𝐬𝑡𝑡H

𝐘𝐘𝑡𝑡 = �
𝑘𝑘=1

𝐾𝐾

ℎ𝑘𝑘𝑘𝑘𝐖𝐖𝑘𝑘

Minimize 𝒟𝒟LD(𝐗𝐗𝑡𝑡|𝐘𝐘𝑡𝑡)𝐡𝐡1

𝐡𝐡2

𝐡𝐡3

𝐖𝐖1 𝐖𝐖2 𝐖𝐖3

Calculate covariance matrices 𝑡𝑡

𝑓𝑓

𝑓𝑓

𝑡𝑡

[Yoshii+ 2013]

𝑓𝑓

𝑓𝑓

𝑓𝑓

Activations

Nonnegative vectors
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Bases

Activations

NMF vs PSDTF
• PSDTF is a mathematically-natural multivariate extension of NMF
▪ Nonnegative vectors → Positive semidefinite matrices
▪ NMF = PSDTF with diagonal covariance matrices (bin-wise independence)

PSD matrix

…… … ……

𝐡𝐡1
𝐡𝐡2

𝐡𝐡3

𝐖𝐖1 𝐖𝐖2 𝐖𝐖3

𝑡𝑡

𝑓𝑓

𝐰𝐰1 𝐰𝐰2 𝐰𝐰3

Nonnegative vector �𝐱𝐱𝑡𝑡 ≈ �
𝑘𝑘=1

𝐾𝐾

ℎ𝑘𝑘𝑘𝑘𝐰𝐰𝑘𝑘

𝐗𝐗𝑡𝑡 ≈ �
𝑘𝑘=1

𝐾𝐾

ℎ𝑘𝑘𝑘𝑘𝐖𝐖𝑘𝑘
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Limitation of PSDTF
• Either of frequency or time covariance matrices can be considered
▪ The frequency and time axes can be exchanged 
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𝑡𝑡

𝑓𝑓

𝑡𝑡

𝑡𝑡

𝑓𝑓

𝑓𝑓𝐗𝐗𝑡𝑡 = 𝐬𝐬𝑡𝑡𝒔𝒔𝑡𝑡H

𝐗𝐗𝑓𝑓 = 𝐬𝐬𝑓𝑓𝐬𝐬𝑓𝑓H

𝐬𝐬𝑓𝑓

𝐬𝐬𝑡𝑡

Frequency
covariance

Time
covariance

PSDTF-F ✔

PSDTF-T ✔

In practice, PSDTF-F is easier to use
(the matrix size 𝐹𝐹 is fixed)



𝐗𝐗 ∼ �
𝑘𝑘=1

𝐾𝐾

𝐖𝐖𝑘𝑘 ⊗𝐇𝐇𝑘𝑘

Correlated Tensor Factorization (CTF)
• The ultimate extension of NMF modeling the full covariance structure
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𝐇𝐇1 𝐇𝐇2 𝐇𝐇3

𝐖𝐖1 𝐖𝐖2 𝐖𝐖3

𝐡𝐡1 𝐡𝐡2 𝐡𝐡3

𝐰𝐰1 𝐰𝐰2 𝐰𝐰3

𝑡𝑡

𝑡𝑡

𝑓𝑓

𝑓𝑓 𝑡𝑡

𝑓𝑓

𝐹𝐹𝑇𝑇 × 𝐹𝐹𝑇𝑇 𝐹𝐹 × 𝐹𝐹 𝑇𝑇 × 𝑇𝑇

𝐬𝐬 ∈ ℂ𝐹𝐹𝐹𝐹

Obtained by serializing
all the TF bins of the 

complex spectrogram

where 𝐗𝐗 = 𝐬𝐬𝐬𝐬H

(big PSD matrix)

[Yoshii+ 2017,2018]



Formulation of LD-CTF
• A variant of CTF using the log-det divergence as a cost function
▪ A covariance matrix over the TF bins is decomposed as the sum of the 

Kronecker products of frequency cov. matrices and time cov. matrices

𝐗𝐗 ≈ 𝐘𝐘 = �
𝑘𝑘=1

𝐾𝐾

𝐖𝐖𝑘𝑘 ⊗𝐇𝐇𝑘𝑘

𝒟𝒟LD 𝐗𝐗 𝐘𝐘 = − log 𝐗𝐗𝐘𝐘−1 + tr 𝐗𝐗𝐘𝐘−1 − 𝐹𝐹𝐹𝐹

𝐗𝐗 = 𝐬𝐬𝐬𝐬H 𝐘𝐘

𝐖𝐖1 𝐖𝐖2 𝐖𝐖3

𝐇𝐇1 𝐇𝐇2 𝐇𝐇3

Reconstruction 𝐘𝐘 (PSD matrix)Observation 𝐗𝐗 (PSD matrix)
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𝐹𝐹 × 𝐹𝐹 𝑇𝑇 × 𝑇𝑇𝐹𝐹𝑇𝑇 × 𝐹𝐹𝑇𝑇



Agenda
• Existing work: correlated tensor factorization (CTF)
▪ Formulation
▪ NMF (diagonal covariance)
▪ PSDTF (full freq. OR time covariance)
▪ CTF (full freq. AND time covariance)

• Proposed method: independent low-rank tensor analysis (ILRTA)
▪ Formulation
▪ ILRTA (jointly diagonalizable freq. and time covariance)

▪ Estimation
▪ Joint transform learning and low-rank decomposition
▪ Source separation based on Winer filtering
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Independent Low-Rank Tensor Analysis (ILRTA)
• Covariance matrices 𝐖𝐖,𝐇𝐇 are assumed to be jointly diagonalizable  
▪ Freq. covariance matrices: 𝐖𝐖𝑘𝑘 = 𝐏𝐏−1 �𝐰𝐰𝑘𝑘 𝐏𝐏−H ∈ ℂ𝐹𝐹×𝐹𝐹

▪ Time covariance matrices: 𝐇𝐇𝑘𝑘 = 𝐐𝐐−1 𝐡̃𝐡𝑘𝑘 𝐐𝐐−H ∈ ℂT×T

▪ �𝐰𝐰𝑘𝑘 ∈ ℝ+
𝐹𝐹 and 𝐡̃𝐡𝑘𝑘 ∈ ℝ+

𝑇𝑇 are nonnegative vectors
▪ If 𝐏𝐏 ∈ ℂ𝐹𝐹×𝐹𝐹 and 𝐐𝐐 ∈ ℂ𝑇𝑇×𝑇𝑇 are identity matrices, ILRTA reduces to NMF
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𝐗𝐗 ≈ 𝐘𝐘 = �
𝑘𝑘=1

𝐾𝐾

𝐖𝐖𝑘𝑘 ⊗𝐇𝐇𝑘𝑘

𝐗𝐗 = 𝐬𝐬𝐬𝐬H 𝐘𝐘

𝐖𝐖1 𝐖𝐖2 𝐖𝐖3

𝐇𝐇1 𝐇𝐇2 𝐇𝐇3

Reconstruction 𝐘𝐘 (PSD matrix)Observation 𝐗𝐗 (PSD matrix)

𝐹𝐹𝑇𝑇 × 𝐹𝐹𝑇𝑇 𝐹𝐹 × 𝐹𝐹 𝑇𝑇 × 𝑇𝑇



Probabilistic Model of ILRTA
• Multivariate complex Gaussian likelihood
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𝐬𝐬 ∼ 𝒩𝒩𝑐𝑐 𝟎𝟎, �
𝑘𝑘=1

𝐾𝐾

𝐖𝐖𝑘𝑘 ⊗𝐇𝐇𝑘𝑘

= 𝒩𝒩𝑐𝑐 𝟎𝟎, 𝐏𝐏⊗𝐐𝐐 −1 �
𝑘𝑘=1

𝐾𝐾

�𝐰𝐰𝑘𝑘 ⊗ 𝐡̃𝐡𝑘𝑘 𝐏𝐏⊗𝐐𝐐 −H

= 𝒩𝒩𝑐𝑐 𝟎𝟎, �
𝑘𝑘=1

𝐾𝐾

𝐏𝐏−1 �𝐰𝐰𝑘𝑘 𝐏𝐏−H ⊗ 𝐐𝐐−1 𝐡̃𝐡𝑘𝑘 𝐐𝐐−H

𝐗𝐗 = 𝐬𝐬𝐬𝐬H 𝐘𝐘

𝐖𝐖1 𝐖𝐖2 𝐖𝐖3

𝐇𝐇1

𝐇𝐇2

𝐇𝐇3

Reconstruction𝐘𝐘Observation 𝐗𝐗

𝐗𝐗 ≈ 𝐘𝐘 = �
𝑘𝑘=1

𝐾𝐾

𝐖𝐖𝑘𝑘 ⊗ 𝐇𝐇𝑘𝑘

𝐏𝐏⊗ 𝐐𝐐 𝐬𝐬 = 𝒩𝒩𝑐𝑐 𝟎𝟎, �
𝑘𝑘=1

𝐾𝐾

�𝐰𝐰𝑘𝑘 ⊗ 𝐡̃𝐡𝑘𝑘
We can ignore phase, i.e.,

focus on power spectrogram,
in the space transformed by 𝐏𝐏 & 𝐐𝐐Diagonal matrix

𝐬𝐬 ∈ ℂ𝐹𝐹𝐹𝐹 is a long vector
serializing all the bins
of the complex 
spectrogram

𝐹𝐹𝑇𝑇-dim vector 𝐹𝐹 × 𝐹𝐹 𝑇𝑇 × 𝑇𝑇



Multi-way Space Transform
• Each axis of input data (matrix or tenor) is linearly transformed
▪ Find a better space satisfying independence and low-rankness
▪ Freq. axis is linearly transformed by 𝐏𝐏 ∈ ℂ𝐹𝐹×𝐹𝐹

▪ Time axis is linearly transformed by 𝐐𝐐 ∈ ℂ𝑇𝑇×𝑇𝑇

𝐏𝐏⊗ 𝐐𝐐 𝐬𝐬 = 𝒩𝒩𝑐𝑐 𝟎𝟎, �
𝑘𝑘=1

𝐾𝐾

�𝐰𝐰𝑘𝑘 ⊗ 𝐡̃𝐡𝑘𝑘

Diagonal

Independence

Linear transform
Kronecker prod.

Low-rankness

𝐏𝐏

𝐐𝐐

𝐏𝐏𝐒𝐒𝐐𝐐T𝐒𝐒𝐐𝐐T

𝐏𝐏𝐒𝐒𝐒𝐒

𝑇𝑇

𝐹𝐹

𝑇𝑇

𝐹𝐹

𝑇𝑇

𝐹𝐹

𝑇𝑇

𝐹𝐹

𝑇𝑇

𝑇𝑇

𝐹𝐹

𝐹𝐹

𝐏𝐏𝐒𝐒𝐐𝐐T𝐒𝐒

𝐏𝐏⊗ 𝐐𝐐 𝐬𝐬𝐬𝐬

Transform of spectrogram

Transform of vector

Estimation of �𝐰𝐰𝑘𝑘& 𝐡̃𝐡𝑘𝑘
↓

IS-NMF for 𝐏𝐏𝐒𝐒𝐐𝐐T
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Linear Transform of Frequency Axis
• Low-rankness (time-invariance of bases) is improved
▪ Amplitude fluctuation over time is reduced
▪ A new space is more suitable for NMF than the time-frequency space
▪ A linear transform better than DFT exists (depending on data)
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𝐏𝐏 𝐏𝐏𝐒𝐒𝐒𝐒

𝑇𝑇

𝐹𝐹

𝑇𝑇

𝐹𝐹

𝐹𝐹

𝐹𝐹

Time Time？？？

Frequency Frequency ？？？

cf.  Transform Learning NMF (TL-NMF) [Fagot+ 2018]
Unitary transform (DCT) can be learned from data



Agenda
• Existing work: correlated tensor factorization (CTF)
▪ Formulation
▪ NMF (diagonal covariance)
▪ PSDTF (full freq. OR time covariance)
▪ CTF (full freq. AND time covariance)

• Proposed method: independent low-rank tensor analysis (ILRTA)
▪ Formulation
▪ ILRTA (jointly diagonalizable freq. and time covariance)

▪ Estimation
▪ Joint transform learning and low-rank decomposition
▪ Source separation based on Winer filtering
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Parameter Estimation
• Iterative optimization
▪ IS-NMF
▪ Execute in the transformed space

▪ IVA
▪ Execute for each axis
▪ Transform the space
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𝐏𝐏

𝐐𝐐

𝐏𝐏𝐒𝐒𝐐𝐐T𝐒𝐒𝐐𝐐T

𝐏𝐏𝐒𝐒𝐒𝐒

𝑇𝑇

𝐹𝐹

𝑇𝑇

𝐹𝐹

𝑇𝑇

𝐹𝐹

𝑇𝑇

𝐹𝐹

𝑇𝑇

𝑇𝑇

𝐹𝐹

𝐹𝐹

𝐡̃𝐡1
𝐡̃𝐡2
𝐡̃𝐡3

�𝐰𝐰1 �𝐰𝐰2 �𝐰𝐰3

Update �𝐰𝐰𝑘𝑘 and 𝐡̃𝐡𝑘𝑘
→ IS-NMF for 𝐏𝐏𝐒𝐒𝐐𝐐T

Update time-axis 
transform𝐐𝐐

→ IVA for 𝐏𝐏𝐒𝐒

Update freq.-axis transform 𝐏𝐏
→ IVA for 𝐒𝐒𝐐𝐐T

𝑇𝑇-channel signals are 
separated into 𝑇𝑇 sources

(𝐐𝐐: demixing filter)

𝐹𝐹-channel signals are 
separated to 𝐹𝐹 sources

(𝐏𝐏: demixing filter)



Parameter Estimation
• Minimization of log-det divergence
▪ Define target and reconstruction in the transformed space

▪ Iterate three steps

25

𝒟𝒟LD 𝐗𝐗 𝐘𝐘 = −𝑇𝑇 log 𝐏𝐏𝐏𝐏H − 𝐹𝐹 log 𝐐𝐐𝐐𝐐H + �
𝑓𝑓=1

𝐹𝐹

�
𝑡𝑡=1

𝑇𝑇

�𝑥𝑥𝑓𝑓𝑓𝑓 �𝑦𝑦𝑓𝑓𝑓𝑓−1 + log �𝑦𝑦𝑓𝑓𝑓𝑓

�𝑥𝑥𝑓𝑓𝑓𝑓 = 𝐩𝐩𝑓𝑓H 𝐒𝐒𝐪𝐪𝑡𝑡C𝐪𝐪𝑡𝑡T𝐒𝐒H 𝐩𝐩𝑓𝑓 = 𝐪𝐪𝑡𝑡H 𝐒𝐒T𝐩𝐩𝑓𝑓C𝐩𝐩𝑓𝑓T𝐒𝐒C 𝐪𝐪𝑡𝑡 �𝑦𝑦𝑓𝑓𝑓𝑓 = �
𝑘𝑘=1

𝐾𝐾

�𝑤𝑤𝑘𝑘𝑘𝑘 �ℎ𝑘𝑘𝑘𝑘

Update bases �𝐰𝐰𝑘𝑘 & 𝐡̃𝐡𝑘𝑘: IS-NMF for 𝐏𝐏𝐒𝐒𝐐𝐐T

Update time-axis transform 𝐐𝐐: IVA for 𝐏𝐏𝐒𝐒

Update freq.-axis transform 𝐏𝐏: IVA for 𝐒𝐒𝐐𝐐T

c

Similar to the optimization algorithm 
of ILRMA based on IVA & IS-NMF

[D. Kitamura+ 2016]

↓
Our contribution: 

Multi-way IVA + IS-NMF



Source Separation
• Wiener filtering in the transformed space (computationally fast)
▪ Generation of mixture: 𝐳𝐳1 + ⋯+ 𝒛𝒛K → 𝐬𝐬

▪ Inference of sources: 𝐬𝐬 → 𝐳𝐳1 + ⋯+ 𝒛𝒛K

• Inverse transform to the original time-frequency space
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𝐏𝐏⊗ 𝐐𝐐 𝐬𝐬 = 𝒩𝒩𝑐𝑐 𝟎𝟎,�
𝑘𝑘=1

𝐾𝐾

�𝐰𝐰𝑘𝑘 ⊗ 𝐡̃𝐡𝑘𝑘 = 𝒩𝒩𝑐𝑐 𝟎𝟎,𝐘𝐘

𝐏𝐏⊗ 𝐐𝐐 𝐳𝐳𝑘𝑘 = 𝒩𝒩𝑐𝑐 𝟎𝟎, �𝐰𝐰𝑘𝑘 ⊗ 𝐡̃𝐡𝑘𝑘 = 𝒩𝒩𝑐𝑐 𝟎𝟎,𝐘𝐘𝑘𝑘

𝐏𝐏⊗ 𝐐𝐐 𝐳𝐳𝑘𝑘 | 𝐏𝐏⊗𝐐𝐐 𝐬𝐬 = 𝒩𝒩𝑐𝑐 𝐘𝐘𝑘𝑘𝐘𝐘−1𝐬𝐬,𝐘𝐘 − 𝐘𝐘𝑘𝑘𝐘𝐘−1𝐘𝐘𝑘𝑘

𝐙𝐙k = 𝐏𝐏−1 𝐏𝐏𝐙𝐙k𝐐𝐐T 𝐐𝐐−T
𝐳𝐳𝑘𝑘 = 𝐏𝐏⊗ 𝐐𝐐 −1 𝐏𝐏⊗𝐐𝐐 𝐳𝐳𝑘𝑘



Problem
• Optimization of unconstrained transforms 𝐏𝐏 and 𝐐𝐐 is difficult
▪ Practical problem
▪ High-dimensional computation is numerically unstable
▪ 𝐏𝐏 tends to be a singular (inverse transform 𝐏𝐏−1 cannot be calculated)

▪ Theoretical problem
▪ 𝐹𝐹 < 𝑇𝑇 → 𝐐𝐐 cannot be estimated
▪ Iterative projection (IVA) and fixed point iteration (FastFCA) don’t work
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𝐕𝐕𝑡𝑡 = 𝐏𝐏𝐒𝐒 H �𝒚𝒚1:𝐹𝐹,𝑡𝑡 𝐏𝐏𝐒𝐒 ∈ ℂ𝑇𝑇×𝑇𝑇

𝐪𝐪𝑡𝑡 = 𝐐𝐐𝐕𝐕𝑡𝑡 −1𝐞𝐞𝑡𝑡

𝐪𝐪𝑡𝑡 = 𝐪𝐪𝑡𝑡H𝐕𝐕𝑡𝑡𝐪𝐪𝑡𝑡
−12𝐪𝐪𝑡𝑡

Update direction:

Updating norm:

where
𝑇𝑇 × 𝐹𝐹 𝐹𝐹 × 𝐹𝐹 𝐹𝐹 × 𝑇𝑇

𝐕𝐕𝑡𝑡 is rank-deficit!

rank(𝐕𝐕𝑡𝑡) = 𝐹𝐹



Evaluation
• We conducted a preliminary experiment using a toy sample
▪ Separate a mixture of piano sounds synthesized MIDI (K=3: C4, E4, G4)
▪ Compare ILRTA (estimate 𝐏𝐏 & fix 𝐐𝐐 = 𝐈𝐈𝑇𝑇), LD-PSDTF-F and IS-NMF
▪ Use BSS Eval Toolbox [Vincent+ 2006]

C E G C+E C+G C+E+GE+G
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𝐳𝐳1 + 𝐳𝐳2 + 𝐳𝐳3 = 𝐬𝐬

𝐳𝐳1

𝐳𝐳2

𝐳𝐳3



Results
• ILRTA outperformed IS-NMF and LD-PSDTF-F
▪ Freq.-axis transform 𝐏𝐏 can be updated appropriately in 4 or 5 iterations
▪ The separation performance was increased monotonically
▪ After that, 𝐏𝐏 becomes singular (cannot be inverted)
▪ Unitary constraint might help? [Fagot+ 2018]

29

SDR SIR SAR
Nonnegative matrix 

factorization (IS-NMF) 18.9 24.2 20.4

Positive semidefinite tensor
factorization (LD-PSDTF-F) 22.8 28.5 24.2

Independent low-rank tensor 
analysis (ILRTA) 24.3 31.4 25.2

ILRTA is a constrained version, but it works better



Unitary ILRTA
• Numerically stable, but little performance gain
▪ Initialize by IS-NMF in the DCT domain and then update 𝐏𝐏 and 𝐐𝐐
▪ Convergence-guaranteed, fast, and stable optimization

𝐏𝐏

𝐐𝐐

𝐏𝐏𝐒𝐒𝐐𝐐T𝐒𝐒

𝐡̃𝐡1
𝐡̃𝐡2
𝐡̃𝐡3

�𝐰𝐰1 �𝐰𝐰2 �𝐰𝐰3



Independent Low-Rank Tensor Analysis (ILRTA)
• ILRTA is a constrained version of CTF
▪ Jointly diagonalizable covariance matrices
▪ Limited DOF of the model
▪ Regularization effect

▪ Multi-way space transforms
▪ Linear transforms of 

frequency and time axes
▪ All bins are independent

in the transformed space
▪ Fast computation
▪ CTF in the FT space

＝ NMF in the transformed space
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𝐏𝐏

𝐐𝐐

𝐏𝐏𝐒𝐒𝐐𝐐T𝐒𝐒𝐐𝐐T

𝐏𝐏𝐒𝐒𝐒𝐒

𝑇𝑇

𝐹𝐹

𝑇𝑇

𝐹𝐹

𝑇𝑇

𝐹𝐹

𝑇𝑇

𝐹𝐹

𝑇𝑇

𝑇𝑇

𝐹𝐹

𝐹𝐹

𝐡̃𝐡1
𝐡̃𝐡2
𝐡̃𝐡3

�𝐰𝐰1 �𝐰𝐰2 �𝐰𝐰3
All bins are 

independent

All bins are 
correlated

𝒪𝒪(𝐾𝐾𝐹𝐹3𝑇𝑇3) → 𝒪𝒪(𝐾𝐾𝐾𝐾𝐾𝐾)



Conclusion and Future Direction
• Established unified theory of “nonnegative” low-rank decomposition
▪ CTF and ILRTA are ultimate general frameworks
▪ Future work includes stable and fast optimization and problem-specific 

specialization (e.g., freq-dependent channel cov. matrices) of CTF and ILRTA
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NMF [Fevotte 2009] PSDTF [Yoshii+ 2013]

ILRTA (ours)

Time
covariance

Frequency
covariance

Channel
covariance

NMF [Fevotte 2009]

CTF
[Yoshii 2018] 

Time
covariance

Frequency
covariance

Channel
covariance

MNMF
[Sawada+ 2013]

In progress In progress

Independence maximization
based on space transforms

Unconstrained covariance modelsJointly diagonalizable covariance models

ILRMA [Kitamura+ 2016]
FastFCA [Ito+ 2018]

Transform Learning 
NMF (TL-NMF) 

[Fagot+ 2018]

New! PSDTF
[Yoshii+ 2013]

ILRTA CTF
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