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Background

 Single-channel source separation is a fundamental task for
= Automatic music transcription (e.g., piano, guitar, drums)
= Singing voice separation
« Common approach: Fourier transform + phase discarding
= STFT has commonly been used
= Sound characteristics clearly appear in the magnitude spectrograms
= Low-rankness and sparseness are useful clues for decomposition
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Basic Assumption

 Additivity of time-domain signals < Additivity of complex spectra
= The additivity holds in ANY linearly transformed space (e.g., DFT & DCT)
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Related Work

« Low-rank decomposition based on additivity of complex spectra
Complex NMF [Kameoka+ 2009] * High Resolution NMF [Badeau+ 2011]

Additivity- and consistency-aware methods have been proposed
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Correlated Tensor Factorization (CTF)

« The ultimate low-rank decomposition method based on
the full covariance matrix over the whole complex spectrogram

Decomposed into frequency and time covariance matrices (CF*F & ¢T*T)
= Interpreted as ML estimation of a composite Gaussian process
Equivalent decomposition exists in any linearly transformed space

= Not limited to time-time domain (a series of windowed signals)
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Independent Low-Rank Tensor Analysis (ILRTA)
( Q )

« ILRTA is a constrained version of CTF .
Jointly diagonalizable covariance matrices

- Limited number of parameters | All bins are
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= Regqularization effect i S Ps T

Multi-way space transforms
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Contribution

« Unified theory of covariance-based low-rank decomposition
= Multi-way covariance modeling (frequency, time, and channel axes)

= Diagonal matrices: independence in the original space

= Jointly diagonalizable matrices: independence in the transformed space
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Agenda

« Existing work: correlated tensor factorization (CTF)
Formulation
= NMF (diagonal covariance)
= PSDTF (full freq. OR time covariance)
= CTF (full freg. AND time covariance)

« Proposed method: independent low-rank tensor analysis (ILRTA)
Formulation
= ILRTA (jointly diagonalizable freq. and time covariance)
Estimation
= Joint transform learning and low-rank decomposition
= Source separation based on Winer filtering
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Nonnegative Matrix Factorization (NMF) ..oz 2009

« Each nonnegative vector is approximated as a weighted sum of

nonnegative vectors
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Positive Semidefinite Tensor Factorization (PSDTF)

« Each PSD matrix is approximated as a weighed sum of PSD matrices

) i ) Yoshii+ 2013
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NMF vs PSDTF

« PSDTF is a mathematically-natural multivariate extension of NMF
= Nonnegative vectors — Positive semidefinite matrices

-  NMF = PSDTF with diagonal covariance matrices (bin-wise independence)

Bases f
%ative vector]
w; W, W;
Wy Wy W3
) h
PSD matrix 1
h,

Activations h;
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Limitation of PSDTF

- Either of frequency or time covariance matrices can be considered
= The frequency and time axes can be exchanged

Frequency Time f Sr f
covariance | covariance .
t
PSDTF-F v "
PSDTE-T v \ =l O
t

T

In practice, PSDTF-F is easier to use
(the matrix size F is fixed)
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Correlated Tensor Factorization (CTF) ;... 20172018

« The ultimate extension of NMF modeling the full covariance structure
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Formulation of LD-CTF

 Avariant of CTF using the log-det divergence as a cost function

= A covariance matrix over the TF bins is decomposed as the sum of the
Kronecker products of frequency cov. matrices and time cov. matrices

Observation X (PSD matrix) Reconstruction Y (PSD matrix) W; W, W;
K H, H, H;
FT X FT F X F T XT
XY= Wk ® Hk
k=1

D p(X|Y) = —log|XY™ 1| + tr(XY™1) — FT
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Agenda

« Existing work: correlated tensor factorization (CTF)
Formulation
- NMF (diagonal covariance)
= PSDTF (full freq. OR time covariance)
= CTF (full freq. AND time covariance)
« Proposed method: independent low-rank tensor analysis (ILRTA)
Formulation
= ILRTA (jointly diagonalizable freq. and time covariance)
Estimation
= Joint transform learning and low-rank decomposition

= Source separation based on Winer filtering
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Independent Low-Rank Tensor Analysis (ILRTA)

« Covariance matrices W, H are assumed to be jointly diagonalizable
= Freq. covariance matrices: W, = P~ ![w, |P~H € CF*F
- Time covariance matrices: H, = Q '|h,|Q " € ¢™T
- W, € Rf and h, € RT are nonnegative vectors
= If P e CF*F and Q € C"™*T are identity matrices, ILRTA reduces to NMF

Observation X (PSD matrix) Reconstruction Y (PSD matrix) W; W, Wj;

X = ss" =

H, H, H;

K
FT X FT FXxF TXT

X~Y= ) W, ®H,
k=1

19



Probabilistic Model of ILRTA

K

« Multivariate complex Gaussian likelihood XY= W, ®H,
k=1

g ‘ K ExE TxT seCTisa |ong vector Observation X Reconstruction Y W, W, W,
-aim vector X X ST .
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Si= g (0’ z Wi ® Hk) of the complex X = ss" ~
k=1 spectrogram
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K h
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=1 Y =

Heere] T in the space transformed by P & Q
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Multi-way Space Transform

« Each axis of input data (matrix or tenor) is linearly transformed
= Find a better space satisfying independence and low-rankness

= Freq. axis is linearly transformed by P € C"** .
- Time axis is linearly transformed by Q € ¢"*"
Independence
V
k  Diagonal s ! . Ps
4 ~ A
(P ® Qs = N {0, ) [W,] & [b] )
—1 i=1Kronecker prod
— Linear transform N N\
Low-rankness v T v T
Transform of spectrogram | B SQT PSQ"
S s psSQ” Estimation of W, & h,, 4
Transform of vector ! -
s —s (P® Q)s IS-NMF for PSQ"
J




Linear Transform of Frequency Axis

« Low-rankness (time-invariance of bases) is improved
=  Amplitude fluctuation over time is reduced

= A new space is more suitable for NMF than the time-frequency space

= Alinear transform better than DFT exists (depending on data)

cf. Transform Learning NMF (TL-NMF) [Fagot+ 2018]
Unitary transform (DCT) can be learned from data

Frequency P Frequency S 27?7 PS
‘/%\:1
sl

Time
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Agenda

« Existing work: correlated tensor factorization (CTF)
Formulation
- NMF (diagonal covariance)
= PSDTF (full freq. OR time covariance)
= CTF (full freq. AND time covariance)

« Proposed method: independent low-rank tensor analysis (ILRTA)
Formulation
= ILRTA (jointly diagonalizable freq. and time covariance)
Estimation
= Joint transform learning and low-rank decomposition
= Source separation based on Winer filtering
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Parameter Estimation

r

- |terative optimization . Q Update time-axis
transformQ
- IS-NMF — VA for PS
= Execute in the transformed space T-channel signals are
- VA | separated into T sources
S . PS (Q: demixing filter)
= Execute for each axis
= Transform the space T Update W, and h,,
S, ~| = IS-NMF for PSQ”
§QT ( PSQT )
F
F-channel signals are 1
separated to F sources
(P: demixing filter)
L | TfB W, W, W3
Update freg.-axis transform P | h 1
- 3 Y,
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Parameter Estimation

« Minimization of log-det divergence

Define target and reconstruction in the transformed space ©

%re = Py (Sara:S™)py = ai' (STpfprSC)ar  Fre = Z Wit B
k=1
Iterate three steps

D p(X|Y) = —Tlog|PPH| — Flog|QQ"| + z z(xftyft + log 75.)

— L= _

~— )

Similar to the optimization algorithm | Update freqg.-axis transform P: IVA for SQ
of ILRMA based on IVA & IS-NMF — —— _
[D. Kitamura+ 2016] . .
! Update time-axis transform Q: IVA for PS
Our contribution: ~— —
Multi-way IVA + IS-NMF Update bases w;, & h,,: IS-NMF for PSQ"
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Source Separation

« Wiener filtering in the transformed space (computationally fast)
= Generation of mixture:z, + .-+ zx > s

(P ® Q)z = N(0,[Wy] ® [y |) = M.(0,Yy)
K

PR Qs =N(0,) (W ®[h] | = MOV

k=1
= Inference of sources:s —» z; + -+ + zk
PR QVzx | PR Qs = No(Yi Y 's, Y=Y, Y'Yy )
« Inverse transform to the original time-frequency space

2z, =(PQ® Q)P ® Q)zk
Z, = P~ 1(PZ,Q")Q "
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Problem

« Optimization of unconstrained transforms P and Q is difficult
Practical problem
= High-dimensional computation is numerically unstable
= P tends to be a singular (inverse transform P! cannot be calculated)
= Theoretical problem
« F < T — Qcannot be estimated
= lterative projection (IVA) and fixed point iteration (FastFCA) don’t work

Update direction: q; = (QV;) e, <[ V, is rank-deficit! ]
1

Updating norm: ; = (qEtht)_eq

where V; = (PS)H[yl:F,t](PS) € C™*T — rank(V,) = F
I'XF FXF FXT
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Evaluation

« We conducted a preliminary experiment using a toy sample
Separate a mixture of piano sounds synthesized MIDI (K=3: C4, E4, G4)
Compare ILRTA (estimate P & fix Q = 1), LD-PSDTF-F and IS-NMF
Use BSS Eval Toolbox (vincent+2006]

C E G C+E C+G E+G C+E+G

Z1+Z2+Z3:S




Results

ILRTA outperformed IS-NMF and LD-PSDTF-F

Freq.-axis transform P can be updated appropriately in 4 or 5 iterations

= The separation performance was increased monotonically

= After that, P becomes singular (cannot be inverted)

= Unitary constraint might help? [Fagot+ 2018]
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Unitary ILRTA

« Numerically stable, but little performance gain
Initialize by IS-NMF in the DCT domain and then update P and Q
Convergence-guaranteed, fast, and stable optimization
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Independent Low-Rank Tensor Analysis (ILRTA)

« |LRTA is a constrained version of CTF

= Jointly diagonalizable covariance matrices

Q

T

= Limited DOF of the model Allbins are
= Regularization effect correla:ed S _ps T

Multi-way space transforms

= Linear transforms of
frequency and time axes

= All bins are independent
in the transformed space

Fast computation
= CTFin the FT space

= NMF in the transformed space
O(KF3T3) > O(KFT)

. ) W, Wy W
Allbinsare —— 1
independent ):I h,
N h;

31



Conclusion and Future Direction

« Established unified theory of “nonnegative” low-rank decomposition
= CTF and ILRTA are ultimate general frameworks

= Future work includes stable and fast optimization and problem-specific
specialization (e.g., freq-dependent channel cov. matrices) of CTF and ILRTA

Jointly diagonalizable covariance models

ILRTA

Transform Learning

NMF (TL-NMF)
[Fagot+ 2018]

In progresy’

CTF

| New!

ILRTA (ours)

Channel |

Frequency covarianc
covariance

ILRMA [Kitamura+ 2
FastFCA [ito+ 2018

016]

Time
covariance

N
Tl

NMF [Fevotte 2009]

[Yoshii+ 2013]

Independence maximization
based on space transforms

Channel
Frequency | |covarianc

covariance

Unconstrained covariance models

PSDTF

In progresy’

MNMF

[Sawada+ 2013]

CTF
[Yoshii 2018]

Time
covariance

Tl

NMF [Fevotte 2009]

PSDTF [Yoshii+ 2013]
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