A Biped Robot that Keeps Steps in Time with Musical Beats while Listening to Music with Its Own Ears

```
Kazuyoshi Yoshii†
              Kazuhiro Nakadai:
                 Toyotaka Torii ‡
                Yuji Hasegawa ‡
                Hiroshi Tsujino ‡
            Kazunori Komatani †
                Tetsuya Ogata †
              Hiroshi G. Okuno†
        †Kyoto University, Japan
‡Honda Research Institute, Japan
```

Music-synchronized ASIMO

Autonomously keep steps in time with musical beats

A Biped Robot that Keeps Steps in Time with Musical Beats while Listening to Music with Its Own Ears

Kazuyoshi Yoshii (Kyoto Univ.) Kazuhiro Nakadai (HRI-JP) et al.

© Honda Research Institute Japan

Backgrounds

- Entertainment music robots
 - Reaction to music (sounds)
 - Moving/Rolling
 - Lighting

- Humanoid robots
 - Conventional research directions
 - Walking/Running
 - Manipulation
- Human-robot interaction through music
 - Application for entertainment use
 - Importance of music appreciation
 - Hand-clapping/Foot-tapping

HRP-2

State-of-the-art music robots

- Physical functions
 - Trumpet player
 - Robot dancer

Programmed in advance

- Physical and Intelligent functions
 - Organ player
 - Read musical scores
 - Dance partner
 - Predict human's movements

No music-listening function

Music robots should listen to music by using their own ears

Our approach

- Development of an <u>intelligent</u> robot dancer with a music-listening function
 - Intelligent function
 - Understand musical audio signals
 - Detect/predict musical beats
 - Use robot's own ears (microphones)

- Physical function
 - Control dancing movements
 - Synchronize robot's steps with musical beats

Real-time integration of asynchronous functions

Architecture

- 1. Record audio signals
- 2. Detect beat times
- 3. Synchronize step times

Real-time beat tracking

Goal

- Predict next beat time
 - Detect previous beat times

Issues

- Ambiguity of beat-time interpretations
 - Selection of musically-appropriate interpretation
- Noisy environments
 - Recovery from inappropriate interpretation
- Approach [Goto2001]
 - Multi-agent architecture
 - Twelve agents with different interpretations
 - Evaluation of interpretation reliability
 - Focus on chord changes and drum-sound onsets

Beat prediction by each agent

- 1. Calculate onset reliability at each time
 - Onset reliability ∞ Power increase
- 2. Estimate beat interval
 - Auto-correlation of onset reliabilities
- 3. Predict next beat time
 - Cross-correlation of onset reliabilities

Time

 AC

Integration of multiple agents

- Interaction of paired agents
 - Half-beat-gaped beat-time interpretations

- Selection of most reliable interpretation
 - Musical-knowledge-based reliability evaluation
 - Coincidence of beat times with musical cues that are likely to occur at beat times
 - Chord changes
 - Drum-sound onsets

Feedback control

Adjustment of intervals and timing

Timing:
$$T_{step}(n+1)$$
 \longrightarrow $T_{beat}(n+1)$ Interval: $T_{step}(n+1) - T_{step}(n)$ \longrightarrow $T_{beat}(n+1) - T_{beat}(n)$

$$I(t+1) = I(t) + \beta_I(\text{IntervalError}) + \beta_T(\text{TimingError})$$
0.30
0.02

Pipeline-processing-like integration

- Prompt response to tempo changes
 - 1. Interval adjustment
 - 2. Timing adjustment

Experiment

Used data

- Excerpts of popular songs from RWC-MDB-P-2001
 - Concatenated excerpts: 60 [s] x 4 [excerpts]
 - Tempo changes (bpm: beats per minute)
 - $70 \rightarrow 90 \rightarrow 112 \rightarrow 81 [bpm]$

Biped robot Loud speaker

- Standard room
- Standard loud speaker
- Honda ASIMO
- Single microphone
 - Embedded in head
- Machine: Core2 2GHz

Conclusion

Goal

Development of an intelligent robot dancer

Approach

- Integration of intelligent and physical functions
 - Real-time beat tracking
 - Feedback step control

Results

 Achieved autonomous synchronization of robot's steps with predicted musical beats

Future work

- Introduce complex dancing movements
- Take into account musical moods
- Enhance human-robot interaction