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ABSTRACT

This paper presents a novel statistical method that can classify given
audio events into known classes or recognize them as an unknown
class. We propose a nested infinite Gaussian mixture model (iGMM)
to represent varied audio events in real environment. One of the main
problems of conventional classification methods is that we need to
specify a fixed number of classes in advance. Therefore, all audio
events are forced to be classified into known classes. To solve the
problem, the proposed method formulates a infinite Gaussian mix-
ture model (iGMM) in which the number of classes are allowed to
increase without bound. Another problem is that the complexity of
each audio event is different. Then, the nested iGMM using nonpara-
metric Bayesian approach is applied to adjust the needed dimension
of each audio model. Experimental results show the effectiveness
for these two problems to represent the given audio events.

1. INTRODUCTION

Environment recognition is a fundamental research topic for devel-
oping autonomous robots that are supposed to work in the real world.
Although a lot of effort has been devoted to improving visual func-
tions of those robots, auditory functions have gained relatively less
attention of researchers. Auditory information plays an important
role especially in an initial stage of environment recognition.

This paper aims to develop an auditory function for identifying
what kinds of audio events happen around the mobile robot. Many
promising methods have been proposed for special purposes such as
automatic speech recognition (ASR) [1], speaker diarization [2], and
music transcription [3]. A key feature of our study, on the other hand,
is to classify a wide range of environmental sounds in the real world,
not limited to speech and music. As a similar purpose, some studies
on specific audio event recognition are proposed [4–6]. These can
identify human voice, animal sounds, or noise from audio streams.
This means that all events are forced to be classified into predefined
classes, even if those events have significantly different characteris-
tics.

To overcome this limitation, we propose a nested infinite Gaus-
sian mixture model (iGMM) for identifying known and unknown
audio events. Conventionally, a fixed number of GMMs correspond-
ing to known classes are trained by using acoustic features extracted
from labeled audio data. The trained model are then used for clas-
sifying given audio events into those classes [7]. On the other hand,
the proposed method can train an infinite mixture of iGMMs. The
number of iGMMs (i.e., the number of classes) is automatically in-
creased according to the complexity of semi-labeled audio data if
necessary. The method also adjust the number of Gaussians required
for representing acoustic features of each class. It has a solid mathe-
matical foundation [8] and provides a principled way to distinguish
whether given audio events are considered to be known or unknown
without using an ad-hoc thresholding procedure.

2. AUDIO EVENT IDENTIFICATION

This section explains a Bayesian approach to audio event identifica-
tion in case that the number of event classes, K, is determined in
advance. Suppose we have a series of acoustic feature vectors that
are partially given class labels. We aim to infer the classes of unla-
beled feature vectors in a semi-supervised manner.

2.1. Problem Specification

Audio event is defined as a label that people would use to describe a
recognizable event in a region of the sound [9]. We assume that input
audio signals (mixed sounds) are spatially separated into individual
audio sources by using a microphone array on a mobile robot before
audio event identification.

First, we extract following 33 dimensional acoustic feature from
the input audio signal: Mel-frequency cepstral coefficients (12 dims.),
their delta components (12 dims.), logarithmic energy (1 dim.), its
delta component (1 dim.), the zero-crossing rate of the signal, and
the flux, centroid, variance, entropy, skewness, and kurtosis of the
spectrum (7 dims.) for each frame. Let N be the total number of
frames. Let X = {xn}Nn=1 be a set of feature vectors (observed
data) and C = {cn}Nn=1 be a set of the corresponding class labels
(cn ∈ {1, · · · ,K}). Here, X is assumed semi-labeled data, i.e., a
part of C is given as observed data in advance and the other part is
unobserved.

Our goal is to infer the unobserved part of C by using X and the
observed part of C. This is a standard framework of semi-supervised
learning. We focus on classifying each frame (feature vector) into
one of K classes. Such frame-based identification would be useful
for detecting the durations of audio events to be noticed and tracking
moving audio events in an audio stream.

2.2. Maximum Likelihood Approach

We here explain a maximum-likelihood approach to audio event iden-
tification. A common way to represent a distribution of feature vec-
tors of each class is to use a Gaussian mixture model (GMM). Let
M be the complexity of the GMM, i.e., the number of Gaussians.
We formulate K GMMs {Mk}Kk=1 that correspond to individual
classes. In the case of supervised learning, K GMMs are first trained
by using completely-labeled feature vectors. Those models are then
used for classifying a feature vector x into one of K class, c, such
that c = argmaxkMk(x), where Mk(x) is the likelihood of x with
respect to the class k. More specifically, Mk is given by

Mk(x) =

M∑
m=1

τkmN (x | µkm,Λ−1
km), (1)

where τkm, µkm, and Λkm are the mixing ratio, mean vector, and
precision matrix of the m-th Gaussian in the k-th GMM. Those pa-
rameters can be estimated from the observed class labels in C and



the corresponding feature vectors in X by using the expectation-
maximization (EM) algorithm [10].

Instead of performing the training and prediction steps indepen-
dently as described above, we propose to train K GMMs at the same
time of estimating the unobserved class labels in a semi-supervised
manner. To do this, we formulate a nested GMM that is a weighted
mixture of K GMMs. This enables us to take into account how likely
each class is to occur. The nested GMM is given by

M(x) =

K∑
k=1

πkMk(x), (2)

where πk is a mixing ratio of the k-th GMM. The parameters π, τ ,
µ, Λ can be estimated from incomplete data that includes missing
values (unobserved class labels) by using the EM algorithm as in the
case of supervised learning. Note that a feature vector x is classified
into one of K class, c, such that c = argmaxkπkMk(x).

2.3. Bayesian Approach

We explain Bayesian treatment of the nested GMM for audio event
identification. The Bayesian approach is more robust to over-fitting
than the maximum-likelihood approach. Since the nested GMM is a
kind of mixture models, each observed vector xn is assumed to be
drawn from one of KM Gaussians. Let Z = {zn}Nn=1 be latent
variables that indicate class labels, where zn is a KM -dimensional
vector such that znkm = 1 when xn is generated from the m-
th Gaussian of the k-th GMM and it is otherwise zero (znk′m′ =
0 if k′ ̸= k,m′ ̸= m). If cn is given as observed training data, one
of M elements {zncnm}Mm=1 must be one.

The joint distribution of the nested GMM is defined as follows:

p(X,Z,π, τ ,µ,Λ)

= p(X|Z,µ,Λ)p(Z|π, τ )p(π)p(τ )p(µ,Λ), (3)

where the first two terms are likelihood functions of X and Z and
the other three terms are prior distributions of the parameters. The
likelihood terms are formulated as follows:

p(X|Z,µ,Λ) =
∏
nkm

N (xn|µkm,Λ−1
km)znkm (4)

p(Z|π, τ ) =
∏
nkm

(πkτkm)znkm . (5)

We now introduce conjugate prior distributions as follows:

p(π) = Dir(π|αν) ∝
∏
k

π
ανk−1
k (6)

p(τ ) =
∏
k

Dir(τk|βυ) ∝
∏
km

τβυm−1
km (7)

p(µ,Λ) =
∏
km

N (µkm|m0, (b0Λkm)−1)W(Λkm|W0, c0), (8)

where Dir indicates the Dirichlet distribution and NW indicates the
Gaussian-Wishart distribution. As for the hyper-parameters, α and β
are called concentration parameters, ν and υ sum to unity, m0 and
b0 are the mean vector and the precision-matrix scale of a Gaussian
distribution, W0 and c0 are the scale matrix and degree of freedom
of the Wishart distribution. In this paper, the hyper-parameters are
set to define noninformative prior distributions.

2.4. Variational Bayesian Inference

The goal of Bayesian inference is to calculate a posterior distribution
over the latent variables and parameters p(Z,π, τ ,µ,Λ|X) from
the observed data X . Since the posterior distribution cannot be cal-
culated analytically, we instead approximate it by using an iterative
method called the variational Bayes (VB). The computational cost
of the VB algorithm is similar to that of the EM algorithm, which is
usually used for the maximum-likelihood estimation of the GMM. If
we assume that the latent variables are independent from the param-
eters, the posterior distribution could be factorized as follows:

q(Z,π, τ ,µ,Λ) = q(Z)q(π, τ ,µ,Λ), (9)

where q(Z,π, τ ,µ,Λ) is called a variational posterior distribution.
Note that q(Z,π, τ ,µ,Λ) is essentially different from the true pos-
terior distribution p(Z,π, τ ,µ,Λ|X) because of the independence
assumption. Nonetheless, we aim to make q(Z,π, τ ,µ,Λ) as close
to p(Z,π, τ ,µ,Λ|X) as possible such that the Kullback-Leibler
(KL) divergence is minimized. Each factor of q(Z,π, τ ,µ,Λ) can
be iteratively optimized as follows:

q(Z) ∝ exp(Eq(π,τ ,µ,Λ)[log p(X,Z,π, τ ,µ,Λ)]) (10)
q(π, τ ,µ,Λ) ∝ exp(Eq(Z)[log p(X,Z,π, τ ,µ,Λ)]) (11)

As a result, it turns out that q(Z) can be further factorized as follows:

q(Z) =
∏
n

q(zn) (12)

This means that an KM -dimensional posterior discrete distribution
p(zn|X) can be approximated by q(zn) =

∏
km z

γnkm
nkm , where

{γnkm}Kk=1
M
m=1 is a set of KM variational parameters. An unla-

beled vector xn is thus classified into one of K classes, cn, such
that cn = argmaxk

∑
m γnkm.

3. NONPARAMETRIC BAYESIAN APPROACH

This section explains our approach to audio event identification. There
are two main problems of the conventional approach described in
Section 2. The first problem is that all time frames are forced to be
classified into predefined K classes even if they have distinct acous-
tic features. A naive solution would be to use a thresholding process
for adding a new class if the acoustic features are significantly dif-
ferent from those of known classes. However, it is difficult to de-
termine a threshold in a principled manner. The second problem is
that the number of Gaussians is fixed as M regardless of the acoustic
characteristics of each class. For example, monotonous sounds like
ventilation-fan noise can be described with just a few Gaussians, but
human voices require more Gaussians because they consist of many
phonemes. These problems are caused by lack of flexibility of the
nested GMM consisting of KM Gaussians.

To solve these problems, we propose a nonparametric Bayesian
model called an infinite nested GMM that consists of infinitely many
GMMs (K → ∞) each of which consists of infinitely many Gaus-
sians (M → ∞). The term “nonparametric” means that the number
of parameters of the model is neither fixed nor limited and the model
considers infinite complexity. If we have an infinite amount of ob-
served data (N → ∞), an infinite number of Gaussians would be
required because the data shows infinite variety. In reality, however,
we have only a finite amount of observed data. Therefore, the nec-
essary parameters are a finite part of the infinitely many parameters.
In other words, the effective complexity of the model is automati-
cally adjusted according to observed data. This enables us to avoid
determining K and M in advance.



3.1. Model Formulation

The infinite nested GMM is defined by taking the infinite limit of
Eq. (2) as both K and M diverge to infinity as follows:

M(x) =

∞∑
k=1

πk

∞∑
m=1

τkmN (x|µkm,Λ−1
km). (13)

A technical problem here is how to design prior distributions over
infinite-dimensional vectors π and τk.

First, let M goes to infinity, i.e., consider an infinite-dimensional
Dirichlet distribution for each class k in Eq. (7). This prior can gen-
erate an infinite-dimensional vector of mixing weights τk. Most en-
tries of τk take extremely small values because all entries must sum
to unity. On the other hand, infinitely many Gaussians are stochasti-
cally drawn from the Gaussian-Wishart distribution.

This stochastic process is called the Dirichlet process (DP) [8].
Let DP(β,G0) be a DP with a concentration parameter β and a base
measure G0. In this study G0 is a continuous distribution (Gaussian-
Wishart distribution) over Gaussians (µ and Λ). A discrete distribu-
tion G over Gaussians can be drawn as G ∼ DP(α,G0), where G0

is an expectation of G and β controls the inverse variance around
G0. More specifically, we can write G as follows:

G =
∞∑

m=1

τkmδµkm,Λkm , (14)

where δ is the Dirac delta function. Therefore, the parameters of G
form an infinite GMM of class k.

One of popular ways to implement the DP is known as the stick-
breaking construction [11]. The set of mixing weights τk can be
explicitly represented as follows:

τkm = υkm

m−1∏
m′=1

(1− υkm′), υkm ∼ Beta(1, β). (15)

If we let K approach infinity, the same idea can be used as follows:

πk = λk

k−1∏
k′=1

(1− λk′), λk ∼ Beta(1, α). (16)

We then discuss how to determine the concentration parameters
α and β. These unknown parameters control the numbers of classes
and Gaussians required for representing the observed data. We there-
fore put noninformative gamma priors with a shape parameter d0 and
a rate parameter e0 on α and β as follows:

p(α) = Gamma(α|d0, e0), p(β) = Gamma(β|d0, e0). (17)

3.2. Variational Bayesian Inference

We aim to calculate a posterior distribution over all unknown vari-
ables p(Z,λ,υ,µ,Λ, α, β|X). Since this is analytically intractable
as in Section 2.4, the VB algorithm is used by introducing the fol-
lowing variational posterior distribution:

q(Z,λ,υ,µ,Λ, α, β) = q(Z)q(λ,υ,µ,Λ)q(α, β). (18)

The updating formulas of the VB algorithm are as follows:

q(Z) ∝ exp(Eq(λ,υ,µ,Λ,α,β)[log p(X,Z,λ,υ,µ,Λ, α, β)]),

q(λ,υ,µ,Λ) ∝ exp(Eq(z,α,β)[log p(X,Z,λ,υ,µ,Λ, α, β)]),

q(α, β) ∝ exp(Eq(z,λ,υ,µ,Λ)[log p(X,Z,λ,υ,µ,Λ, α, β)]).

In practice, we set K and M to sufficiently large numbers and grad-
ually remove unnecessary classes and Gaussians whose weights are

Fig. 1. Cosine similarity between nine kinds of sounds.

sufficiently small (πk ≈ 0 and τkm ≈ 0) at each iteration.

4. EVALUATION

This section reports our experiments that were conducted for evalu-
ating the accuracy of audio event identification.

4.1. Experimental Conditions

The audio signals used for evaluation consisted of nine classes (seven
percussions, hand claps, and human voice). The cosine similarity of
acoustic features was shown in Fig. 1. The hand bell in the top row
is similar to the shaker and tambourine. The human voice is the least
similar to the other classes. The audio signals were recorded for 13
minutes each using a robot-embedded microphone array [12] with
16 bit, 16 kHz sampling. The first 10 minutes of each signal was
used for training the nested iGMM, and class labels were estimated
for the remaining 3 minutes.

To evaluate the performance, we conducted the experiments un-
der the following three different conditions:

C1 The time frames contained in the 10 minutes of each audio sig-
nal were (partially) given class labels. We masked class labels
at 0%, 30%, 50%, or 70% of those frames. The nested iGMM
was trained in a semi-supervised manner.

C2 This is the same as C1 except that one of the nine audio signals
was not given class labels at all.

C3 This is the same as C2 except that one of the nine audio signals
itself was not used for training the nested iGMM.

In C1, we measured the frame-level accuracy of identification in the
case that all nine classes were known in the training phase. For com-
parison, we trained conventional finite GMMs corresponding to the
nine classes by using the Hidden Markov Model toolkit (HTK) [13].
The number of mixture is set to 12. In C2 and C3, the estimated
labels were judged as correct if the time frames of an unlabeled
audio signal were identified as belonging to a new class. For all
conditions, the proposed model has infinite number of GMMs (i.e.,
K,M → ∞), and only activated GMMs are used for actual compu-
tation.

4.2. Experimental Results

Fig. 2 shows the experimental results of C1 and C2. The proposed
method performed better than the conventional method using HTK.
One of main reasons is that the proposed method can automatically
select an effective number of Gaussians in a principled manner. The
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Fig. 2. Identification performances in C1 and C2.

a) Bell labels were masked b) Woodblock labels were masked

Fig. 3. Posterior distributions in C2.

results of C1 showed a higher accuracy of identification regardless of
the masking level. In fact, the accuracy of known-class identification
was kept around 98% even if we masked 70% of correct labels. As to
C2, on the other hand, the accuracy of unknown-class identification
was 73.5% in the 100%-labeled case and 65% in the 70%-masked
case. We consider these results to be promising.

Fig. 3 shows average posterior distributions over K classes in
the 100%-labeled case of C2. Fig. 3 a) shows the results in the case
that the hand bell labels were not included in the training data. The
three rows (Bell 0, 1, and 2) indicate that the bell was identified as
a new class and the other rows were classified correctly. Fig. 3 b)
shows the results in the case that the woodblock labels were not in-
cluded in the training data. The three rows (Woodblock 0, 1, and 2)
indicate that the woodblock was identified as a new class or some-
times wrongly classified into the mokugyo class because of the sim-
ilar characteristics. The result indicates that it can generate more
than one class when training data includes multiple unique unlabeled
data. Note that such new-class identification was achieved without
using any ad-hoc thresholding method.

Fig. 4 shows the results of C3. The input data is judged as cor-
rect when it is classified to never activated class in training process.
The accuracies of unknown-class identification vary with class, and
were better for characteristic classes, such as human voice. As in
C2, the bell resulted in a better performance than did items from
other classes, and the mokugyo and woodblock resulted in the worst
performances.

5. CONCLUSION

This paper proposed a nonparametric Bayesian model for identifying
known and unknown classes of audio events in a principled manner.
Our model can adaptively change the needed dimension of the GMM
for each class and increase the number of classes to recognize new
audio signals. The experimental results showed that the proposed

Fig. 4. Identification performances in C3.

method can learn unknown classes, and its performance was better
than that of the conventional fixed-dimensional model.

Such frame-based identification is applicable for segmented or
moving signals, but its recognition performance is limited. Future
work is needed so that time-temporal information can be used.
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