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Abstract— We propose a novel audio-visual simultaneous
and localization (SLAM) framework that exploits human pose
and acoustic speech of human sound sources to allow a robot
equipped with a microphone array and a monocular camera
to track, map, and interact with human partners in an indoor
environment. Since human interaction is characterized by fea-
tures perceived in not only the visual modality, but the acoustic
modality as well, SLAM systems must utilize information from
both modalities. Using a state-of-the-art beamforming tech-
nique, we obtain sound components correspondent to speech
and noise; and estimate the Direction-of-Arrival (DoA) es-
timates of active sound sources as useful representations of
observed features in the acoustic modality. Through estimated
human pose by a monocular camera, we obtain the relative po-
sitions of humans as representation of observed features in the
visual modality. Using these techniques, we attempt to elimi-
nate restrictions imposed by intermittent speech, noisy periods,
reverberant periods, triangulation of sound-source range, and
limited visual field-of-views; and subsequently perform early
fusion on these representations. We develop a system that al-
lows for complimentary action between audio-visual sensor
modalities in the simultaneous mapping of multiple human
sound sources and the localization of observer position.

I. INTRODUCTION

Human interaction is inherently characterized by features
dominant in the acoustic and visual modalities. The synergistic
use of audio and visual information allows systems in human-
robot interaction to exploit spatial information determined
from speech and movement for human tracking.

Simultaneous Localization and Mapping (SLAM) has been
actively investigated to enable mobile robots to localize them-
selves in an environment while they concurrently map land-
marks of interest from the surrounding area. SLAM provides
benefit in the creation of live maps populated by landmarks
of interest, and also allows robots to gain representations of
self-location in the environment they move within. In the
classical context of human localization algorithms, the visual
modality is often used as the most dominant modality for
estimating target positions. However, humans speak, listen,
and move when they communicate and interact with objects.
As such, the acoustic modality also plays an important role
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in localizing humans from acoustic and visual data provided
during interactions.

Visual and acoustic features have a complementary rela-
tionship in the SLAM problem. Classical SLAM algorithms
reliant on the visual modality provide robust information of
the physical environment and can be decomposed into para-
metric, feature-based representations that directly lead into
estimation of Cartesian target positions. Such Visual SLAM
however, is limited by narrow sensor field-of-views (FoV),
feature occlusions, and optical degradations, especially in
the case of monocular vision. On the other hand, Acoustic
SLAM is traditionally implemented by sole use of acoustic
signal. Acoustic SLAM inherently possesses a full sensor
FoV, and provides the important ability to localize targets
based off speech interaction; however, it requires inference of
Cartesian target positions from acquired audio features and
introduces new susceptibility to environmental reverberance
and noise. Features present in the acoustic modality can be
used to supplement Visual SLAM’s disadvantages in narrow
FoV and optical degradations, whereas visual-based features
compensate for Acoustic SLAM’s undetermined estimation
of Cartesian target positions and acoustic degradation.

In this paper, we propose the Audio-Visual SLAM (AV-
SLAM) framework that exploits features extracted from both
the acoustic and the visual modalities for human-robot inter-
action in indoor environments. We built this approach upon
the existing theoretical bases laid out by the Acoustic SLAM
(aSLAM) [1] and the multitarget tracking methods of Random
Finite Sets (RFSs) [2]-[4]. The RFSs allow the AV-SLAM to
map and track multiple intermittent targets distinguished by
sound sources or human targets captured in the acoustic and
visual FoVs, respectively. We also propose a robust feature
acquisition pipeline performed prior to AV-SLAM. The full
proposed framework consists of the following components:

1) Audio feature extraction by the deep neural network
(DNN) based spectral mask estimation [5] followed by
the GSVD-MUSIC [6] for a noise-resilient estimation
of the direction of arrival (DoA) of sound sources.

2) Visual feature extraction by estimating the relative
Cartesian target positions given the keypoints provided
by the OpenPose [7], [8], which is a state-of-the-art
human pose estimator, using monocular vision.

3) Acoustic-visual modality reliability measures based on
an approximated Signal-to-Noise Ratio (SNR) and hu-
man confidence values.

4) Early fusion by a multi-stream standard-product weight-
ing approach to the acoustic and visual features.
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Fig. 1: Overview of the proposed AV-SLAM system.

II. PROPOSED FRAMEWORK

The AV-SLAM framework is summarized in Fig. 1. Perti-
nent components of the framework are explained as follows.

In this paper, we represent all spatial quantities in respect
to the coordinate frame of Fig. 2. The AV-SLAM targets are
assumed to be of human nature and assumed to emit human
speech. Given the observed DoAs wy, the observed position
1), relative to the observer (robot), and the observer control
report y;, we want to locate and track the observer r; and
the sources S;. The state space model is shown in Fig. 3.

Inputs to Feature Acquisition consist of observations

from the different modalities:

o Acoustic: M-channel input audio source signal, Y,

e Visual: I x J x 3 matrix of monocular RGB-video, I;.

Inputs to the AV-SLAM are characterized by three input

variables correspondent to the observed states shown in Fig. 3.
The Acoustic and Visual observations are derived from inci-
dent observed variables in the Feature Acquisition processing
step. And in standard practice of SLAM algorithms, the con-
trol report, y(t), is acquired by various odometry sensors in
the robot platform [9].

o Acoustic input: wy e, is the time-varying DoA esti-
mation vector of, m* = 1,..., M}, estimations in the
spherical coordinate system, defined in Eq. (7).

o Visual input: 1, ,,v, is the time-varying relative target

position (RTP) estimation vector of, m¥ =1,..., M},
estimations in the cylindrical coordinate system, defined
in Eq. (11).

« Control input: y(¢) £ [ys.,, Yt |7, where, y; .., and, y; -,
are the control speed and control orientation respectively.
In this formulation, the source motion is assumed to
be constrained to the X-Y Plane of Fig. 2, i.e. control
speed is in the direction of control orientation.

Outputs of the AV-SLAM framework are given by:

o Observer positional state: Denoted with vector: r,
(T4, Ye, 2, 7e) 7> where, (z¢, 3¢, z¢) , denote Cartesian po-
sition, and, -, denotes observer orientation.

« Relative Target Positional States: Denoted with: s, ,, £
[@tn, Yin, 2e.n], where, n = 1,..., N;, is the number
of estimated sources.

Inputs and outputs to the AV-SLAM framework are repre-
sented at each time point, t.

L

Fig. 2: Coordinate frame.
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Fig. 3: State space model.
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Targets in the environment are expected to be intermittent in
presence due to discontinuous speech in the acoustic modality
and unseen targets in the visual modality. As such, the number
of targets [V; is time-varying and unknown [1], [3]. Akin to
aSLAM, the number of sources and the corresponding states
are modelled by a RFS:

N,—1
S: = [ U P(stl,n)] U B, (1a)
n=1

{st,;n}

0 otherwise,

if source n was active,

P(si—1n) = (1b)

where B, is a point process that models newborn sources.

ITI. PROPOSED METHOD
A. Feature Acquisition

The DoAs, w; and the relative target positions, 1), extracted
from the acoustic and the visual modalities, respectively, and
modeled as follows.



1) Acoustic Modality: The DoA estimates are obtained by
the Generalized Singular Value Decomposition based Multiple
Signal Classification (GSVD-MUSIC) [6], [10]. We assume
that pre-recorded, microphone-array-specific room transfer
functions (RTFs) are available for a number of DoAs (¢, 6).
To estimate the required power spectral density (PSD) of
unwanted signals, we employ a deep neural network based
spectral mask estimation [5]. This approach works on the
time-frequency domain. We extract the short-time Fourier
transform (STFT) representation Y., - € CM*L where w is
the angular frequency and 7 is the time frame index, from
the audio input Y. Since the audio sampling frequency is
much higher than the AV-SLAM time step frequency, we
obtain multiple frames T of STFT coefficients for each ¢.

Given Y, ;, the noise PSD ®N ¢ CM*M is computed as

T
BN => MY, Y, Y, 2)
T=1

where ME’T is the noise mask estimate and -* is the conjugate
transposition. The MUSIC spectrogram is then computed as

1 o ay , p8uw,.0
Peo = — . 3)
¢ Wy —wi+1 w;)l afd’(b’gEﬁEﬁ*aw@,g

where w; and w,, denote the lower and the upper bounds, re-
spectively, a,, 49 € CM*! is a room transfer function (RTF)
and EN € CM*M gre the left-singular vectors obtained by ap-
plying GSVD on ®Y. Finally, we pick a set of DoA estimates
(@t me, O ma] for m € {1,..., M{*}, used to populate a
full DoA estimate expressed by:

Wime = [pt,mnagﬁt,mn,at,ma]—rv 4

where, p; .o is an initialized range hypothesis discussed later,
and M?? is the pre-specified number of DoA estimates that
maximize pg g.

Following the aSLAM [1], we model the DoA estimates
using a RFS:

Ny

Q= [ U DQ(stm)] UK}, ®)
n=1

where K{? is a Poisson point process modeling the false DoA

estimates [4] and DQ(SM) represents the detection process:

(6)

D(s1.) {ws.ma} if source n is detected,
Stn) = ’ . .
" 1] if source n is not detected.

The relation between the DoA estimate and the target posi-
tional state s; ,, is expressed as

Wy o = J (g(stm) + et,mn) . 7

where ¢(-) is the Cartesian-to-spherical transformation,
e me ~ N (ngl,Rng) represents the estimation error,
and J(-) wraps a DoA estimate so that ¢rme € [0,27) and
9t7mn S [O,ﬂ'].

2) Visual Modality: The relative target positions (RTPs)
are estimated through the combined use of the OpenPose [7],
[8] and the target projection plane model [11].
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Fig. 5: Person confidence gui.

We use OpenPose for its availability and applicability to-
wards real-time, multi-target, pose estimation in monocular
image frames. From our input image, we receive 25 keypoints
based on the COCO dataset, extended for BODY+FOOT es-
timation [7], [12], denoted by matrix IC; ,,». To introduce
resilience towards partial body occlusions, we apply the de-
cision tree shown in Fig. 4 to group keypoints together into
part confidence and head orientation measures, denoted by
matrix Py ,,». Individual keypoint confidences are merged
by a weighted average scheme, with heuristically defined
weights unique to desired parts and merged keypoints.

From P, ,,,w, we take two potential target planes for use
in the target projection plane model: nose2neck or neck2hip,
to enforce that visual estimates are obtained even in event
of partial occlusion. The neck2hip target plane is applied
in the event that the Head and Upper Body confidences are
high. Otherwise, we default to the use of the noseZneck target
plane; so that estimates are still obtained in event of poor
confidence values. With known prior knowledge of physical
target plane length L, pixel target plane length l?, initialized
recording distance dy, and human height hg, the RTPs are
then estimated using the projection plane model as in [11].
The RTP estimates are expressed as

Q;bt,m‘l’ = [dt,m‘l’a ht,m‘l’ ’ Ut,m‘I’}Tv (8)

where, d; v, Iy v, and v; v, are the target depth, height,
and yaw, respectively, relative to the observer.

Similarly for the DoA estimates, we model the RTP esti-



mates using a RFS:
Ny
v, = [ U D‘I’(st,n)] UK/, ©)
n=1

where K,¥ is a Poisson point process modeling the false RTP
estimates and DY (s, ,,) represents the detection process:

DY (St,n) _ {{wt,m‘l’ }

0 if no source is seen in FoV.
(10)
The relation between RTP estimate and the target positional
state s ,, is expressed as

wt,m‘l’ = h(st,n) + €L mY, (11)

where h(-) is the Cartesian-to-cylindrical transformation,
ermv ~ N(OP*1,RY ) represents the estimation er-
ror, m¥ € {1,..., MY} with M,¥ is the number of RTP
estimates at time point ¢. The RTP estimate values are con-
strained to be in the visual FoV, defined as a function of the

horizontal and the vertical camera angle-of-views.

if source n is seen in FoV,

B. Modality Reliability Measures

AV-SLAM dynamically extracts measures of reliability for
each modality to account for environmental changes that
degrade DoA or RTP estimations.

1) Acoustic Modality - Approximated SNR: We select a
single microphone channel 35 € C that is most closely
oriented to the estimated DoA w; <. The reliability measure

based on an approximated SNR is then computed as

“ T
NRypon = 5 Zrt Moot
approx,t — T N lead |2’
w=w; Z’r:l w,7|yw,f|

where ME)T and ME)T are the speech and noise masks esti-
mated as in Section III-A.1.

2) Visual Modality - Generalized Human Confidence:
Successive weighted arithmetic means are performed in Fig.
4, in which, IC;, denotes the pixel values of the it" human
pose keypoint, b; € [0, 1], provides its associated weight, and,
1, is the cardinality of the keypoint set.

Sy Kibs
b
Zilzl bi
From the derived person confidence measures, P;, m?¥, we
obtain a measure for generalized human confidence by max-
imum person confidence across RTP estimations at each
timepoint. The maximum, as opposed to the mean of person
confidences, are taken to account for situations in which hu-
man targets are occluded or located at the edge of visual FoV.
If the mean of confidences are taken, then targets of poor
confidence can incorrectly degrade otherwise positive visual
conditions, as made evident by another possible target of high
confidence at the same timepoint. The visual feature acquisi-
tion system is more prone to spurious measurements from
targets of poor person confidence; high person confidence is

12)

C'parl = (13)

indicative of a properly-functioning modality.

HCy = max (P v ). (14)

3) Reliability Mapping: The reliability measures of both
modalities are then mapped as « < map(SNRgpprox,:) and
B < map(HC}) so that o, 8 € [0,1] where 1 represents the
highest reliability, and vice versa. We heuristically define the
mapping function to be a simple linear function.

C. AV-SLAM Theoretical Foundations

The AV-SLAM posterior probability density function (PDF)
is expressed as

p(re, Selyr:e, Quit, Pit)
= P(I‘t|y1:t, Q.4 ‘I’lzt) P(St\rm Q.4 ‘Illzt)7

where p(r¢|yi.¢, Q1.+, P1.¢) is the observer posterior PDF
and p(S¢|rs, 1., P1.¢) is the multi-source posterior PDF.
The multi-source posterior pdf can be propagated with
Bayes’ theorem, under the assumption of conditional inde-
pendence between audio observations, £2;, and visual obser-
vations, W, conditioned on observer pose, r;, and source
states, S;:
P(Selre, R, Piit)
_ p(Q|re, S¢) p(Pelre, S¢) p(Selre, Rip—1, Y1)
fp(ﬂth‘t, St) p(Welrs, Se) p(Selre, Q1:i—1, Piip—1) ds;
(16)
1) Posterior SLAM PHD: For simplicity in expression, the
SLAM PDF uses, Xt £ (rt,St) , and, Zt £ (ytyﬂtvq’t)’
to represent the joint states and observations, respectively.
The posterior SLAM PDF can then be written through Bayes’
theorem as:
(K| Zo) = P(Z4|Xe)p(Xe|Zy:p—1) 7
S P(Ze|Xo)p(Xe|Zy:e—1)dXe
It is important to note that we assume the class-conditional
independence of audio and visual HMM streams inherent

to AV-SLAM as per results reported in human perception
studies [13], [14].

p(ﬂl:tv ‘I’l:t\Xt) :p(ﬂlzt|Xt)p(‘Il1:t|Xt)a

5)

a7

(18)

Application of the probability chain rule, and class-conditional
independence of the audio and visual streams yields the
following posterior SLAM PDF,

p(Xt|Z1:¢)
p(l‘t Iym) p(Qtlrt) p(‘I’t |I't)

= S¢lr 79 iy Wiit).
fp(rt‘y1:t>p(Qt‘rt)p(‘I’t‘rt) dr; p( t| R “)

(19)
And through PHD approximation, the posterior PDF is repre-
sented as,
A(re, Stlyi, Quee, i)
_ L(Sx|ry) LOPe[re) p(re]ynie, Que, Waie)
- fﬁ(ﬂth't)E(‘I’t\rt)p(rdyl:t,ﬂl:t,‘I’l:t)drt
A(st|rs, Qu.t, Pi),

(20)



With estimation evidence given by,

M pm

e~ Nt.e=Niji—a H L(O|ry).

mam=1

L(M|r) £ (2D
For simplicity in notation, the acoustic and visual modalities
will be denoted by set, M € {Q, ¥}, with their corre-
sponding, representative modality estimations given by, O €
{wi,me> Yi,my }» for the remainder of this paper.

2) Multi-Source Posterior PHD: In contrast to the previous
work by Evers and Naylor 2018, [1], we now present the
multi-source posterior PHD to be additionally dependent
on the RFS of visual estimates up until the current time
point. To do this, we express the multi-source posterior PHD,
A(st|re, Q1.¢, P1.4), as the sum of the birth PHD, and a new
term denoted the full existent PHD, A, (s¢|rs, 216, P1.t).

)‘(St|rtaﬂl:ta ‘I’lzt)
= ppAb(Se|re, Qe ¥y) + Ae(Stre)
+ (1 — pa)A(selre, Quie—1, ®r:e—1),

Applying conditional independence between audio and
visual modalities for newborn targets yields,

)\(Sf,|1‘t, Q4 ‘I’lzt)

(22)

= p?)\b<st|rt; Q) +pz\7P)\b(St|I‘t, W) + Ae(st|ry)
+ (1 — pa)A(selre, Qu:e—1, Trie—1). (23)
Py =y + 1y (24a)
P = Pipy - (24b)

Where pg, ps, are the time-independent full-detection, and
full-birth probabilities. pf}, p;lp, and, p?, pl‘)I’, are the detec-
tion and birth probabilities of each respective modality, and
Ae(st|ry), is the newly-introduced full existent PHD. The
full-existent PHD is representative of all presently detected
components in both modalities, and is found as a function of
the conditionally independent acoustic and visual detection
PHDs, by the standard product algorithm for multi-stream
fusion presented in [15].

A (se|r) Ay (selre)
JO&(selre)Ag (selre))

Where, «, and, 3, are the acoustic and visual stream
weights.

/\e(st|rt) =

(25)

D. AV-SLAM Target Mapping

The inclusion of the visual modality and its associated
observations allows for the introduction of additional source
estimate components in the Gaussian Mixture Model (GMM)
realization of AV-SLAM. The newborn, existent, (and by
derivative) detected, and missing PHD terms which comprise
the multi-source posterior PHD shown in Eq. (22), are realized
as GMMs, indicative of different steps in the GM-PHD and
Extended Kalman Filter equations [16], [17].

1) Realized Birth PHD - Newborn Detections: In area
without overlap of acoustic and visual FoVs, source states,
St,n» Temain undetermined due to a lack of source-observer
range values, ry o, provided in DoA estimations. In the
previous work by acoustic-SLAM, the algorithm offers a so-
lution to this underdetermined problem by means of temporal
triangulation [1]. However, RTP estimates provided in the vi-
sual modality provide full source-observer range hypotheses,
but can only be born and detected in the camera FoV. The
source-observer range still remains unknown in the acoustic
FoV. In AV-SLAM, we use the visual modality’s RTP range
estimates to help the convergence of range hypothesis.

The birth PHD can be modelled as a GMM of acoustic
and video modalities. The audio model deals with the unde-
termined system by introducing components representative
of, Jp, range hypotheses, whereas the video model is used
to only account for errors in RTP estimation.

The representative Gaussians of the visual RTP estimates
are given as,

_1(12;15,1%‘1’) ~ (wt mY Rt m‘I’)

Where ,N¢, is a regular, and wrapped normal distribution
applied to the cylindrical coordinates of the RTP estimate,
1, mv. Regular normal distributions are applied to the depth,
d¢ v, and height, hy v, whereas a wrapped normal dis-
tribution is applied to the yaw estimate. v, ,,, of the RTP
estimates. h~1(-), is the cylindrical-to-Cartesian transforma-
tion, 1/3t7m\p, is the Gaussian of the RTP estimates, and R; ,,v,
is the associated covariance matrix, assumed known a priori.

Conversely, the acoustic modality incorporates .J, range
hypotheses, 7‘§ ,)n, set along each DoA detection, w; ,, for all

Q= 1,.. M as per acoustic-SLAM [1].

(26)

n’lt,mw =h

P 27)

Q ™~ U(Tminy Tmaz>7

Where, 7,,,in, and 7,42, are the minimum, and maximum
of source-observer range hypotheses respectively.

Errors in newborn DoA estimations are then born by J,
hypotheses of, w (j ) me as modelled by a wrapped Gaussian
distribution around a unit sphere, which allows for the ini-
tla}IVZ)atIOH of source states observed by the acoustic modality,

J

my oo

o) o~ N (W e, RE ), (28a)

my) o = L7 (70 ()] DI (280)

Through Egs. (26), and (28b) the birth PHD can be mod-
elled as a GMM formed by the superposition of GMs of
individual sensor modalities,

M2 g,
Q
St|rt7ﬂt Z ZwbthN St|mbtmna2b )7
mS=1j=1
(29a)
MY

)\b(st|rtal1’t) = Z wb,t,m‘I’N(St|mb,t,m‘I’72b‘I’)a (29b)

m¥Y=1



|M|

Ap(selre, Qe W0) = wp e p M (selre, My). (30)
M
Where, wy ¢, f, are the birth GMM weights across modali-

ties, wy¢ f = ﬁ, wéjt) .a» are the birth GMM weights for
1

acoustic modality, é f)mg = W7

birth GMM weights for visual modahty, Wyt m? = le

2) Missed and Detected PHDs - Current Predicted and De-
tected Targets: We propose the use of a modified GM-PHD
filter [16] for use towards two measurement spaces, represen-
tative of the acoustic and visual modalities. In this method,
the class-conditional independence between acoustic and vi-
sual measurement modalities is exploited. Each modality runs
through an independent update of the GM-PHD Filter in or-
der to account for observed states in each modality. Gaussian
mixture weights are then used to fuse the independent up-
dates as determined through the standard weighting scheme
in Eq. (29).

For implementation of the GM-PHD filter, the source dy-
namics are defined in familiar formation to [1],

and, wy, ¢ v, are the

S?,n £ [x?,m ygm Z?,n]T7 (31a)
Stp =8t 1+ MmNy ~N(0341,Q),  (3lb)
St,n = I‘(Fyt)sta,n + [xt,ra Yt,rs Zt,’r']Ta (31C)
cosye  —siny:  Oaxa
L(y) £ |siny,  +cosy (31d)
O1x2 0

Where, s, is the absolute source position represented in
the AV-SLAM coordinate frame in Fig. 2, and, I'(-), is the
relative-to-absolute coordinate transform.

The GM-PHD Filter is performed for each modality, after
first transforming the previous target PHD to be expressed
relative to the current robot position, r;.

Jf 1

)\(St—1|1‘t,91:t—1,‘1’1:t 1 Zwtm./\/ |m§])1,2§])1),
j=1

(32a)

) = C(y)T(y-1) (m{) —reo1) +1,,  (32b)

29 =TT (1) BV [T (1)) ") T (320)

The realized predicted PHD, A(s¢|ry, Q1.4—1, ®1.4-1) is
synonymous to the missed PHD of Eq. (23) and is provided
by,

©) = ()

my,; =, (33)
EE\]t) 1= E 1+ Q, (34)
wil) = paw?, (35)
Jt—1 .
)\(St\l‘t,ﬂl:t—l,‘l’l:t 1 Zwt‘t 1 Sf|m§|jt)_172£ft) 1)~

(36)

Where, p,, is the survival probability of all targets,
wq, ¢[¢—1, are the predicted GM weights, and, J;_1, is the
number of GM components in the multi-source posterior
GMM of the previous time point.

After determination of the predicted GM in Eq. (36), the
Ji—1, components are updated by measurements from each
modality to provide GMs representative of detected PHDs.

SUM, = GUPSIR [GUP)T 4 RS o, (37a)

oo 2 o
ar(ss) 2 g(sy) — k[271',7r]T, k=-1,0,1.

s v =HISY HPT +RY, ., (37b)
HU) 2 %|St:m£{2_l'

KE, =50 [GET[STE (8a)

KO, =0 =TS 7L Gsh)

m{) = m{l) |+ KN (wp e — gr(mlf) ), (3%)

m{’) , =mff) |+ K (9, 0 — h(ml) ). (39b)

SO = @ -KINGPsP o @oa)

= = LKL HDEE o)

The representative updated target GMMSs, Aaq(st|rt), are
synonymous with the detected PHDs in (25), and are provided
by the following equation,

IWQt 1 Ji—1
alsilr) = D0 D0 D w AN (sdhmyd B0,
mo=1k=—1 j=1
(41a)
My ¢ Ji—1 )
w(stry) = Z Zw st|mtm\p,2§%\p). (41b)
m¥=1 j=1
k) _, (9)
Wime = Wpq
. ‘ ik
( N(wt m9|gk(mgy)t|t_1)7 ng)a) )
T, - ' ik
(@ ma o) + 3075 Nwymalg(m, 1), S
(422)
(J) )
Wy my = Wjp—1

N(":bt,m‘l’ ‘(m&lj)tlt 19 S(J)

( Ji—1 - mq’) (4) )
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Where the denominator in Eq. (42), are the models account-

ing for false measurements in the acoustic and visual modal-
ities, g(s;), is the Cartesian-to-spherical coordinate transfor-
mation, and, g(s;), is the Cartesian-to-cylindrical coordinate
transformation.
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Using the detected PHDs given in Eq. (41) for the acoustic
and visual modalities, we can express the source states as
a singular detection PHD by the realization of the standard
weighting algorithm in Eq. (25), for the updated GMMs.
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The resulting posterior target PHD at the current time point
is then expressed as the superposition of the birth GMM, (birth
PHD) in Eq. (30), the predicted GMM, (missed PHD) in Eq.
(36), and the updated GMM, (detected PHD) in Eq. (43). The
number of components in the realized posterior target GMM
of the current time point is then,

Jo = (ME, Jy + M) + (Jim1)
+ ((3Mt,QJt—1) + (Mt\p’ Jt—l))~ 44)
And the posterior target PHD is a GMM given by,
Jt
Asilre, @1, ) = > w N(simf”, £7). @45)

j=1
E. AV-SLAM Observer Localization

The proposed implementation of AV-SLAM observer local-
ization is performed through the use of the EKF [18], [19].
For evaluation, we assume the use of a oracle localizer to
provide representations of absolute observer position and ori-
entation in lieu of odometry sensors. Observer localization
is performed with similar foundations to our proposed target
mapping, i.e. the EKF diverges after the predlctlon step to ob-
tain two updated means and covariances, i, M, derived
from the estimated measurements from the measurement mod-
els of each modality. The resulting observer location Gaussian
is given by the familiar weighted combination scheme,

N()u’ta zt) = N(y’t 7252)QN(Ht ’2‘1/)
1V. EVALUATION

(46)

A. Environmental Setup

Real data was obtained in a well-lit room, with 2m anechoic
padded walls surrounding two-of-four sides of a 6x6, 0.5m
visual-grid. Robot motion path, and target positions were
planned ahead of data acquisition and placed in the visual-
grid accordingly. Measurements of ground-truth robot and

target positions during the experiment were derived from the
visual-grid.

B. Mock-Up Robot

To conduct real-world experiments and data acquisition,
we created a mock-up robot to emulate the motion and data-
collection of a mobile blimp drone; intended to act as a
personal partner agent for human users [11], [20]. To satisfy
hardware requirements, we equipped our robot with a 2D, cir-
cular, 8-channel microphone array, i.e. the TAMAGO-03 man-
ufactured by System in Frontier Co., Ltd., and a monocular
wide-angle camera. The RTFs correspondent to TAMAGO-03
are readily obtained from the HARK database for 72 direc-
tions around the azimuth of the microphone array [21]. Robot
motion was emulated by the human-assisted movement of vi-
sual and audio acquisition hardware mounted on tripod and
dolly. The recording apparatus maintained a consistent height
as the tripod was pushed by a human experimenter seen in
Fig. 6. Control reports of the robot motion were interpolated
from observed robot position, and orientations based off the
visual-grid of the environmental set-up.

C. Feature Acquisition Tuning

1) Acoustic Modality: Acoustic signal is acquired at a
sampling rate of 16kHz. STFT coefficients are extracted using
a 512-point discrete Fourier transform (DFT) and a 400-point
(25 ms) Hanning window with a shift of 10 ms. To compute
the MUSIC spectrogram (3), we set w,, = 17 and w; = 91,
corresponding to 500 Hz and 2812.5 Hz, respectively, as in
the HARK software [21].

2) Visual Modality: Visual signal is acquired as wide-
angle RGB-video, of 640x480 net resolution and captured
at a rate of 30 frames-per-second. Distorted frames of the
recorded monocular video are calibrated through the use of
60 self-collected test patterns and the OpenCV Library [22].

D. AV-SLAM Parameters

For evaluation, we apply AV-SLAM formulation, but flatten
dimensions to the 2-D plane with X-Y axes, to consider the
lack of elevation RTFs. GMM components are run though
a pruning algorithm where they are merged, and extracted
after target mapping, based off equations in [23].

E. Experimental Results

As proof-of-concept to our work, we evaluate the AV-
SLAM framework on the experimental configuration shown
in Fig: 7. We evaluate target mapping components with an
oracle localizer at t = 0, and ¢ = 50, which correspond to Os,
and 1.5s respectively. At ¢ = 0, speech is not yet present in the
environment, and the newborn, and pruned GMM components
are scattered in the environment as a result. However, we see
a heavily weighted component at (x=2.4, y=0.48), as derived
from the single RTP estimate at ¢ = 0. Over the consecutive
time points to ¢ = 50, the stationary human sound source
remains in the visual FoV, and RTP estimates are born at each
point. Due to the consistent RTP estimates, and birthed DoA
estimates from ¢ = 0 onwards, we see a slow convergence
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Fig. 8: Experimental result. Yellow triangles indicate newborn and pruned
GMM components, with opacity indicative of individual weighting. The
green circles, red square, and blue square, are the robot position, estimated
target position, and ground-truth target position, respectively.

of GMM components in the ground-truth sound source local
area.

V. CONCLUSION

This paper presents a method for the robust acquisition
for acoustic and visual localization features for use towards
a multi-modality, audio-visual based SLAM algorithm. Clas-
sical methods in the study of SLAM often do not exploit
signal present in the acoustic environment for localization
of desired targets, and often are dependent upon features
obtained through various optical sensors. Existing methods
in acoustic-based SLAM rely upon temporally triangulated
source-observer ranges for the convergence of multi-target
source locations, and observer position. We first propose the
degradation-resilient feature acquisition framework for acous-
tic and visual modalities by joining existing techniques in
spectral mask estimation, multi-target source localization, hu-
man pose estimation, and projection plane models. We then
propose to use acquired features for modality-reliability esti-
mates, which in turn, allow the early fusion of acoustic and
visual environment features in a multi-stream, GM-PHD, and
EKF SLAM realization. In an environment of multiple human
targets, characterized by intermittent speech in audio-FoVs,
and intermittent presence inside visual-FoVs, we hope to see
our proposed framework provide the foundation for robot

perception, navigation, and interaction with acoustic-visual
environments and human targets.
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