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ABSTRACT

This paper presents an unsupervised method that trains neu-

ral source separation by using only multichannel mixture sig-

nals. Conventional neural separation methods require a lot of

supervised data to achieve excellent performance. Although

multichannel methods based on spatial information can work

without such training data, they are often sensitive to param-

eter initialization and degraded with the sources located close

to each other. The proposed method uses a cost function

based on a spatial model called a complex Gaussian mix-

ture model (cGMM). This model has the time-frequency (TF)

masks and direction of arrivals (DoAs) of sources as latent

variables and is used for training separation and localization

networks that respectively estimate these variables. This joint

training solves the frequency permutation ambiguity of the

spatial model in a unified deep Bayesian framework. In ad-

dition, the pre-trained network can be used not only for con-

ducting monaural separation but also for efficiently initializ-

ing a multichannel separation algorithm. Experimental results

with simulated speech mixtures showed that our method out-

performed a conventional initialization method.

Index Terms— Unsupervised source separation, complex

Gaussian mixture model, deep Bayesian learning

1. INTRODUCTION

Deep neural networks (DNNs) have demonstrated excellent

performance in source separation tasks, such as speech sep-

aration [1–3] and music separation [4, 5]. Permutation in-

variant training (PIT), for example, trains a DNN to output

time-frequency (TF) masks for corresponding sources. Such

a method requires a large number of clean source signals and

their mixtures for supervised training. It is, however, practi-

cally difficult to prepare such supervised data in several tasks.

Source separation for audio scene analysis, for example, has

to separate daily-life audio events, which are generally cap-

tured only in mixture recordings. This calls for an unsuper-

vised method that works without any supervised data.
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Fig. 1. Overview of cGMM-based unsupervised training.

Unsupervised source separation based on spatial infor-

mation observed in multichannel recordings has widely been

studied [6–9]. A standard approach is to estimate TF masks

from phase and power differences among microphones. A

complex Gaussian mixture model (cGMM) [9–11], for exam-

ple, represents such spatial characteristics as spatial covari-

ance matrices (SCMs) and estimates TF masks by clustering

TF bins. Since the cGMM is independently formulated at fre-

quency bins, it has permutation ambiguity that the indices of

sources are not aligned over frequency bins. This ambiguity

can be resolved by aligning estimated sources based on the

direction of arrival (DoA) of each source, and several meth-

ods have been proposed to jointly estimate the TF masks and

DoAs [9, 11]. The directional information also makes it pos-

sible to estimate the number of sources [9, 11], which many

methods require in advance [6–8]. The multichannel meth-

ods, however, are often sensitive to parameter initialization

and degraded when the sources are located close to each other.

Unsupervised training for neural source separation using

multichannel mixture signals has recently gained a lot of at-

tention [12–15]. One approach is to generate supervised data

by using multichannel separation methods [12–14]. This ap-

proach suffers from the estimation errors of the multichan-

nel methods mentioned above. To solve this problem, Drude

et al. [15] trained a separation network by directly optimiz-

ing the likelihood function of a cGMM. They reported that

the performance of a conventional multichannel method was

improved by initializing it with the network output. To solve

the frequency permutation ambiguity by using the correlation

of TF masks over frequency bins [16], the method requires

the number of latent sources in advance. It is thus difficult



to apply this method for recordings of daily-life audio events,

which include an unknown number of source signals.

To tackle this problem, we solve the frequency permuta-

tion ambiguity by jointly training separation and localization

networks instead of using the correlation of masks (Fig. 1).

The objective function is derived as an evidence lower bound

(ELBO) [17] of a cGMM that has TF masks and DoAs as la-

tent variables. Given the geometry of a microphone array, the

two networks are trained to respectively estimate the posterior

probabilities of the TF masks and DoAs. Since DoAs can be

used for counting the number of sources in a mixture record-

ing, our framework could be extended to deal with training

data including an unknown number of sources by utilizing a

non-parametric Bayesian model [9, 18].

The main contribution of this paper is to resolve the fre-

quency permutation ambiguity with a unified deep Bayesian

framework during the unsupervised training. We show that

the separation network can be trained from random weights

by maximizing the ELBO without any additional solvers or

steps for the permutation problem. The trained network can

be used not only for conducting monaural source separation

but also for efficiently initializing a multichannel separation

algorithm. Experimental results also show that the proposed

method outperforms an existing initialization method.

2. RELATED WORK

This section overviews cGMM-based TF clustering and then

introduces unsupervised neural source separation.

2.1. Complex Gaussian mixture models

A popular approach to separating a multichannel mixture sig-

nal is to mask each TF bin [9–11,19,20]. This mask is conven-

tionally estimated by clustering hand-crafted features at each

TF bin [19, 20]. To directly conduct a clustering on a multi-

channel spectrogram, probabilistic mixture models for a mul-

tichannel observation have been studied [9–11]. The cGMM,

for example, represents the multichannel spectrogram as a

mixture of complex Gaussian distributions with SCMs and

power spectral densities of sources [10]. A complex angular

central Gaussian mixture model (cACGMM) [21] is defined

on a multichannel spectrogram normalized by power at each

TF bin. It has been proven that the expectation-maximization

(EM) algorithms for the cGMM and cACGMM are equiva-

lent [21]. Since these models are independently formulated at

frequency bins, they have the frequency permutation ambigu-

ity. To solve this problem, a cGMM-based method estimates

the TF mask and DoA of each source by using an inverse

Wishart mixture prior on the SCMs [11]. Wishart distribu-

tions of this mixture represent potential DoAs characterized

by using premeasured steering vectors. Another cGMM-like

spatial model inspired by latent Dirichlet allocation (LDA) [9]

jointly estimates the TF mask and the DoA of each source,

and the number of sources in a unified framework. This joint

estimation is conducted with a collapsed Gibbs sampling by

assuming a hierarchical Dirichlet process.

2.2. Unsupervised training of neural source separation

Unsupervised training of neural source separation has been

studied by using visual information [22, 23] or multichan-

nel recordings [12–14]. The audio-visual-based methods

use video recordings that capture the audio events and cor-

responding visual events, such as music signals and corre-

sponding performances [22, 23]. These methods are based

on the co-occurrence of the audio and visual events and train

a network so that the separated signals correlate to the vi-

sual events. Multichannel-audio-based methods, on the other

hand, can train a DNN to separate sound sources out of view

or behind obstacles. Tzinis et al. [14] trained a monaural

separation network by using source signals estimated by ap-

plying K-means clustering on interchannel phase differences

(IPDs) between two microphones. Almost simultaneously,

Drude et al. [12] proposed a similar approach that uses sig-

nals separated by the cACGMM [21]. They reported that the

cACGMM performance was improved by initializing it with

the pre-trained separation network. Seetharaman et al. [13]

designed a loss function weighted by a confidence measure

of the estimated references. Drude et al. [15] also proposed

a novel approach that directly trains a separation network

from the cACGMM likelihood. They applied the method to

noisy speech recordings and reported that the performance

of automatic speech recognition was superior to that of their

previous approach mentioned above.

3. DEEP BAYESIAN SOURCE SEPARATION

The proposed method trains separation and localization net-

works by using only multichannel mixture signals and re-

solves the frequency permutation ambiguity in a unified

framework. This training is based on the LDA model [9, 24],

which has TF masks and DoAs of sources as latent variables.

The objective function is derived as an ELBO of the spatial

model, which consists of an expectation of the likelihood

function and a Kullback-Leibler (KL) divergence between

the network outputs and their prior distributions. Since the

existing studies [9, 24] only show Bayesian inference for the

LDA model, we also describe an EM algorithm of the model

and initialize it with the pre-trained network.

3.1. Probabilistic generative model

To jointly estimate the TF-masks and DoAs of latent sound

sources, an observed M -channel spectrogram xtf ∈ C
M is

represented as a sum of K source spectrograms stfk ∈ C:

xtf =
K∑

k=1

D∑
d=1

ztfkwkd (afdstfk) , (1)



where ztfk ∈ {0, 1} (
∑K

k=1 ztfk = 1) is a TF mask that in-

dicates which source is relevant at each TF bin, wkd ∈ {0, 1}
(
∑D

d=1 wkd = 1) is a DoA variable that assigns source k to a

DoA candidate d ∈ {1, . . . , D}, and afd ∈ C
M is a steering

vector for direction d. As in other cGMMs [9–11], the TF

mask ztfk is introduced by assuming a sparseness that each

TF bin has exclusively one relevant source. The potential di-

rections d are, in this paper, assumed as directions with an

angular interval of 5◦ on a horizontal plane (D = 72).

The TF masks and DoAs are estimated as their posterior

probabilities by putting prior distributions on them. Since the

activity of each source changes over time frames, a frame-

wise categorical distribution (denoted as Cat) is put on the

TF-masks ztfk as follows:

[ztf1, . . . , ztfK ]T | πt ∼ Cat (πt1, . . . , πtK) , (2)

where πtk ∈ R+ (
∑K

k=1 πtk = 1) is a model parameter to

be estimated. On the other hand, the following categorical

distribution is put on wkd as follows:

wk = [wk1, . . . , wkD]T ∼ Cat (φ1, . . . , φD) . (3)

where φd ∈ R+ (
∑D

d=1 φd = 1) is a model parameter.

Each source spectrogram stfk is assumed to follow a zero-

mean complex Gaussian distribution:

stfk ∼ NC (0, λtfk) , (4)

where NC

(
μ, σ2

)
is a complex Gaussian distribution with

mean μ and variance σ2, and λtfk ∈ R+ represents the power

spectral density of source k. Using (1) and (4), an observed

mixture signal xtf is found to follow a multivariate complex

Gaussian mixture distribution as follows:

xtf ∼
K∏

k=1

D∏
d=1

NC (0, λtfkHfd)
ztfkwkd , (5)

where Hfd = E[afda
H
fd] ∈ C

M×M is a SCM of direction

d. To estimate Hfd while constraining it to direction d, the

following complex inverse Wishart distribution is put on Hfd:

Hfd ∼ IWC (ν, (ν −M)Gfd) , (6)

where IWC(ν,G) ∝ |H|−(ν+M) exp[−tr(GH−1)] repre-

sents the complex inverse Wishart distribution, ν > M is a

hyperparameter, Gfd = bfdb
H
fd + εI ∈ C

M×M is a template

SCM for direction d. The bfd is a template steering vector for

direction d and prepared in advance, and εI (ε > 0) is added

to make Gfd positive definite.

3.2. Variational inference framework
Both the proposed unsupervised training and multichan-

nel separation are based on a variational inference that

estimates the posterior distribution p(Z,W|X,Θ), where

Θ = {H,λ,π,φ} represents the parameters obtained by

point estimation. Since it is difficult to analytically calculate

the true posterior distribution p(Z,W|X,Θ), we approxi-

mate it with the following variational posterior distribution:

p(Z,W|X,Θ) ≈ q(Z)q(W). (7)

The variational inference is conducted by maximizing the fol-

lowing lower bound of the log marginal likelihood p(X|Θ):

L = Eq [log p(X | λ,H,Z,W)]

−KL [q(Z)|p(Z|π)]−KL [q(W)|p(W|φ)] . (8)

The lower bound L is called an ELBO, and its maximization

corresponds to the minimization of KL divergence between

the variational and true posterior distributions. This frame-

work iteratively and alternately updates the variational poste-

riors q and parameters Θ until convergence.

The SCM H is updated with maximum a posteriori

(MAP) estimation and the other parameters λ, π, and φ
are updated with maximum likelihood estimation. Since it

is also difficult to analytically calculate these variables, we

update them by using the ELBO (8) as follows:

Hfd ←
Gfd +

∑T,K
t,k=1 ẑtfkŵkd

1
λtfk

xtfx
H
tf

ν +
∑T,K

t,k=1 ẑtfkŵkd +M
, (9)

λtfk ← 1

M

D∑
d=1

ŵkdx
H
tfH

−1
fd xtf , (10)

πtk ← 1

F

F∑
f=1

ẑtfk, φd ← 1

K

K∑
k=1

ŵkd, (11)

where ẑtfk is q(ztfk = 1) and ŵkd is q(wkd = 1).

3.3. Training based on amortized variational inference

By using N mixture signals x
(n)
tf , we train separation and lo-

calization networks that respectively estimate the TF mask

ztfk and DoA wkd (Fig. 1). The suffix (n) is hereinafter omit-

ted because the objective function is a sum of the local loss

value for each mixture signal x
(n)
tf . The separation network

(denoted by gtfk) takes as input a monaural log-magnitude

spectrogram and expects the posterior distribution of the TF

mask qg(ztfk = 1):

qg(ztfk = 1) = ẑtfk = gtfk(log |X|), (12)

where log |X| ∈ R
T×F denotes a monaural log-magnitude

spectrogram. We simply take the recording of the first mi-

crophone (m = 1) as the input. The localization network

(denoted by hkd), on the other hand, expects the probability

that direction d is selected for the k-th source qh(wkd = 1):

qh(wkd = 1) = ŵkd = hkd (ω) , (13)

where ω = {ωkd}K,D
k,d=1 ∈ R

K×D is an input feature that rep-

resents spatial characteristics. Since it is difficult for networks

to directly take complex numbers as input, we alternatively

use the following Gaussian-mixture log likelihood:

ωkd =
T∑

t=1

F∑
f=1

ẑtfk logNC (xtf ;0,Gfd) . (14)

The training of networks gtfk and hkd is conducted by

maximizing the ELBO L for each mixture signal in the train-

ing data. For numerical stability, we fix λtfk and Hfd to λ̃ =



1
TFM

∑T,F
t,f=1 x

H
tfxtf and Gfd, respectively. More specifi-

cally, the proposed training is conducted by iteratively exe-

cuting the following three steps:

1) predict TF masks ẑtfk and DoAs ŵkd with gtfk and hkd

for each mixture recording in a mini-batch,

2) update model parameters Θ = {π,φ} with (11), and

3) calculate L and update the network parameters by using a

stochastic gradient descent (SGD) method.

The ELBO L can be calculated as follows:

L = −
T,F,K,D∑
t,f,k,d=1

ẑtfkŵkd

(
log |Gfd|+ 1

λ̃
xH
tfG

−1
fd xtf

)

+

T,F,K∑
t,f,k=1

ẑtfk log
πtk

ẑtfk
+

K,D∑
k,d=1

ŵkd log
φd

ŵkd
+ const.. (15)

The loss value for a mini-batch is a sum of this local ELBO

normalized with 1
TF . Our method trains neural networks to

estimate posterior distributions for unseen observed data by

using a training data prepared in advance. This kind of train-

ing is called amortized variational inference [17, 25].

3.4. Multichannel separation based on an EM-algorithm

Although the trained network gtfk can be used to separate

sources from a monaural mixture signal, it can also improve

the performance of a multichannel EM algorithm by initializ-

ing TF masks with the network output. The EM algorithm for

the cGMM (EM-cGMM) alternately iterates the following E-

step and M-step. The E-step updates the TF masks ẑtfk and

DoAs ŵkd so that the ELBO L is maximized:

ẑtfk ← πtk

∏D
d=1 NC (xtf ;0, λtfkHfd)

ŵkd∑K
K=1 πtk

∏D
d=1 NC (xtf ;0, λtfkHfd)

ŵkd
, (16)

ŵkd ← φd

∏T,F
t,f=1 NC (xtf ;0, λtfkHfd)

ẑtfk∑D
d=1 φd

∏T,F
t,f=1 NC (xtf ;0, λtfkHfd)

ẑtfk
. (17)

The M-step, on the other hand, updates the parameters Θ by

using (9)–(11). Since the EM algorithm alternately updates

these variables until convergence, the careful initialization is

important to avoid falling into a local optimum.

The TF masks ẑtfk are initialized by using the output of

the separation network gtfk. Since the localization network

gtfk can potentially overfit to the spatial bias of the training

data, we initialize the DoA ŵkd by using the following for-

mula instead of the output of hkd:

ŵkd ∝ exp

⎛
⎝−

T∑
t=1

F∑
f=1

ẑtfkx
H
tfG

−1
fd xtf

⎞
⎠ . (18)

4. EXPERIMENTAL EVALUATION

We conducted an evaluation with speech mixture signals gen-

erated by using simulated room impulse responses (RIRs).

4.1. Dataset

The mixture signals used in this evaluation were generated

by convolving RIRs to source signals in the WSJ0-mix

dataset [1], which is widely used for neural speech sepa-

ration [1–3]. Each of the mixture signals in this dataset

included two utterances from two randomly selected speakers

in the WSJ0 corpus. The two speech signals were mixed

with a signal-to-noise ratio randomly chosen between −5
and +5 dB. The RIRs applied to the speech signals were

simulated by using the image method1 [26] with the room

configuration randomly changed at each mixture signal be-

tween 5 m×5 m×3 m and 10 m×10 m×4 m. We assumed a

4-channel microphone array with the diameter of 8 cm lo-

cated at the center of the room. The source locations of two

speech signals were randomly placed in the room. The rever-

beration time (RT60) was chosen at random between 0.2 and

0.4 s. The training and validation sets had 20,000 and 5,000

mixture signals, respectively. The test set had 3,000 mixture

signals whose speakers were separated from the training and

validation sets. We generated these signals with a sampling

rate of 8 kHz to reduce computational and memory costs.

4.2. Experimental Condition

The network architectures for the proposed method were ex-

perimentally determined as follows. The separation network

gtfk had three layers of bi-directional long short-term mem-

ory (BiLSTM), each with 600 units for each direction, and

one fully connected layer followed by a softmax activation.

To reduce the parameters of the localization network hkd, the

network hkd consisted of three layers of 1D-convolution with

the direction axis d as the convolution axis of each layer. The

filter size of the convolution layers and the number of the fil-

ters were respectively set to 1 and 2 (= K). The network

hkd outputs log ŵkd through a residual connection with the

network input.

The separation network gtfk and localization network hkd

were jointly optimized using the Adam optimizer [27]. The

learning rate of the optimizer was initialized to 1.0 × 10−3

and scaled down by 0.7 when the training loss value increased

compared to that of the last epoch. The spectrograms xtf

were obtained with the short-time Fourier transform (STFT)

with a window length of 512 samples and a shifting interval

of 128 samples. The hyperparameters ν and ε were set to M+
5.0 and 1.0 × 10−2, respectively. The template steering vec-

tors bfd were theoretically calculated under the planewave

assumption. Note that the bfd and the RIRs used for gen-

erating the mixture signals were much different because the

sound sources were randomly located on the room under re-

verberant conditions. We iterated the EM-cGMM 50 times.

The source signals were obtained by masking the observation

xtf with the estimated TF mask ẑtfk.

1https://github.com/ty274/rir-generator



Table 1. Averages and standard deviations of SDRs

Method Init.
# of mics. M SDR

train test [dB]

EM-cGMM gtfk 4 4 10.6 ± 4.2
EM-cGMM (19)–(20) – 4 9.7 ± 5.0

AVI-cGMM – 4 1 5.3 ± 4.5

AuxIVA+ – – 4 9.9 ± 4.4

AuxIVA – – 2 5.6 ± 4.0

PIT – 1 1 7.7 ± 4.5

DPCL – 1 1 6.9 ± 4.7

The proposed method was compared with an independent

vector analysis (AuxIVA) [8], and the supervised methods of

PIT and deep clustering (DPCL) [1]. AuxIVA was evaluated

with two channels in all the four channels because it assumes

that the number of microphones equals that of sources. To use

all the four microphones, we also evaluated an extension of

AuxIVA (AuxIVA+) that conducts AuxIVA with a 4-channel

input and clusters the separated signals into two sources [28].

The dimension of the latent space for DPCL was set to 20.

The separation networks for PIT and DPCL had the same

condition as gtfk in the proposed method. We compared the

proposed neural initialization for EM-cGMM with the initial-

ization method proposed by Otsuka et al. [9, 24]. Given a

sufficient number of source classes K, this method splits di-

rections d = 1, . . . , D into K groups and initializes the TF

masks ẑtfk by using the directional information:

ŵkd ∝
{

1 (k − 1)DK ≤ d < kD
K

0 otherwise
, (19)

ẑtfk ∝ exp

(
−

D∑
d=1

ŵkdx
H
tfG

−1
fd xtf

)
. (20)

We set the number of source classes K = 6 for this method.

The separation performance was evaluated using the signal-

to-distortion ratio (SDR) [29].

4.3. Experimental Results

The average SDRs for the test set were summarized in Ta-

ble 1. The EM-cGMM initialized with gtfk outperformed that

with the conventional initialization ((19)–(20)). In addition, it

outperformed AuxIVA+, which uses the same number of mi-

crophones as the EM-cGMMs. Fig 2 shows the relationship

between the DoA differences and SDRs. The EM-cGMM

initialized with (19)–(20) significantly deteriorated when the

DoA difference was less than 60◦. The EM-cGMM initial-

ized with gtfk improved the SDRs in such a condition. The

monaural separation with gtfk (AVI-cGMM) achieved 5.3 dB

in the average SDR. When the mixture signals had speakers

of difference genders (m+f in Table 2), AVI-cGMM outper-

formed AuxIVA with 2-ch observations.

The initialization with gtfk occasionally decreased the

Fig. 2. Scatter plots for the DOA difference of two sources

and the corresponding SDR performance.

Table 2. SDRs [dB] averaged by the genders (m: male, f:

female) of the speakers in mixture signals.

Method Init. m+m f+f m+f

EM-cGMM gtfk 9.2 ± 4.9 10.2 ± 5.2 11.5 ± 3.1
EM-cGMM (19)–(20) 9.5 ± 4.6 10.1 ± 5.2 9.7 ± 5.1

AVI-cGMM – 2.0 ± 4.0 3.0 ± 4.4 7.9 ± 2.8

AuxIVA+ – 10.2 ± 4.4 9.3 ± 4.5 9.9 ± 4.4

AuxIVA – 5.7 ± 3.9 5.4 ± 4.1 5.7 ± 4.0

PIT – 4.9 ± 4.4 5.2 ± 4.8 10.1 ± 2.7

DPCL – 3.8 ± 4.6 4.0 ± 4.8 9.6 ± 2.8

performance regardless of the DoA differences, which is

shown as the SDR results around 0 dB in Fig. 2. This is

because gtfk (AVI-cGMM) deteriorated with the mixture sig-

nals of the same gender speakers (m+m and f+f in Table 2),

which are difficult to separate from spectral features. Since

the performances of PIT and DPCL were higher than that

of the AVI-cGMM, the gtfk has a potential to separate such

signals. Comparing AVI-cGMM with EM-cGMM initialized

with gtfk, AVI-cGMM could be further improved by mak-

ing it possible to estimate λtfk and Hfd during the training.

This extension will compensate with the mismatch between

the fixed parameters λ̃ and Gfd and the observation due to

reverberations and reflections.

5. CONCLUSION

We presented an unsupervised method that trains neural

source separation by using only multichannel mixture sig-

nals. The proposed method trains separation and localization

networks by using a cost function based on a cGMM that

has the TF masks and DoAs as latent variables. This joint

training enables us to resolve the frequency permutation am-

biguity without any additional solvers or steps. In addition,

the trained network can also be used for efficiently initializing

the cGMM-based multichannel EM algorithm. We experi-

mentally confirmed that the proposed initialization method

outperformed a conventional initialization method. To deal

with the training data having an unknown number of sources,

we plan to train a separation network while estimating the

number of sources with the directional information. We also

plan to improve the proposed training method with the joint

estimation of SCMs and power spectral densities.
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