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The active audition method presented here improves
source separation performance by moving multiple
mobile robots to optimal positions. One advantage
of using multiple mobile robots that each has a mi-
crophone array is that each robot can work indepen-
dently or as part of a big reconfigurable array. To de-
termine optimal layout of the robots, we must be able
to predict source separation performance from source
position information because actual source signals are
unknown and actual separation performance cannot
be calculated. Our method thus simulates delay-and-
sum beamforming from a possible layout to calcu-
late gain theoretically, i.e., the expected ratio of a tar-
get sound source to other sound sources in the cor-
responding separated signal. Robots are moved into
the layout with the highest average gain over target
sources. Experimental results showed that our method
improved the harmonic mean of signal-to-distortion
ratios (SDRs) by 5.5 dB in simulation and by 3.5 dB
in a real environment.

Keywords: cooperative source separation, multiple mo-
bile robots

1. Introduction

Computational auditory scene analysis based on infor-
mation obtained using mobile robots equipped with mi-
crophones has been studied actively in recent years [1].
Robots recognize what an individual says in a noisy envi-
ronment such as a crowded event site by microphone array
processing such as sound source localization or separa-
tion. Since a robot equipped with a microphone array can
estimate the direction of sound sources, two-dimensional
(2D) positions of sound sources can be estimated at one
time by using multiple robots and triangulation [2, 3].
Moreover, multiple robots can conduct cooperative source
separation by regarding multiple robots as a single micro-
phone array [4].

Source separation performance is related to the posi-
tional relationship between robots and sound sources [5].
For example, the performance is degraded when there are
multiple sound sources in the same direction. This prob-
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Fig. 1. Optimizing the layout of multiple mobile robots for
cooperative source separation that regards multiple mobile
robots equipped with microphone arrays as one big micro-
phone array.

lem can be solved by moving the robots to better posi-
tions.  If a robot cannot perform speech recognition
correctly due to the bad positional relationship between
the robot and sound sources or many noise sources, the
robot can achieve this by giving some instructions to other
robots near itself to move to better positions and cooper-
ating with them. A major problem the robots face is
determining the optimal robot layout to maximize separa-
tion performance. Actual source separation performance
cannot be calculated because the true source signals are
unknown. It is thus necessary to predict the source sep-
aration performance before actually moving the robots.
Another problem in cooperative source separation is that
the synchronization between each robot and the positions
of each sound source and robot are necessary. Although
these are difficult to estimate without a special device such
as a GPS, several studies have explored the feasibility of
estimating them simultaneously without a special device
by using a SLAM framework [6, 7].

We propose active audition that optimizes the positions
of multiple robots by simulating delay-and-sum beam-
forming (DSBF) from a possible layout under the con-
dition that positions of sound sources are already known
(Fig. 1). When DSBF is used to separate sources, gain,
which is the expected ratio of a target sound source and
the other sound sources in the corresponding separated
signal, is calculated from the positions of sound sources
and robots. Although in the conventional method [4]
robots are moved to the positions that are optimal for
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separating all sound sources, in many cases, robots need
to focus on particular sound sources. The proposed
method enables robots to focus on only the target sound
sources, which are selected by a user or robots, by us-
ing a cost function calculated from the gains of only the
target sources. Since it is often difficult to find the lay-
out with the highest gain via local search, we use a ge-
netic algorithm (GA) to avoid getting stuck at a local op-
timum. In an experimental evaluation of the source sepa-
ration performance, we tested not only the DSBF but also
geometrically constrained independent component anal-
ysis (GICA) and geometrically constrained high-order
decorrelation-based source separation (GHDSS) [8].

2. Related Work

This section introduces several studies on active audi-
tion and source separation.

2.1. Active Audition

Active audition is a technique that aims to improve the
performance of auditory scene analysis (analysis of sur-
rounding sound objects) by effectively using the move-
ment of a robot equipped with microphones. Several stud-
ies have tried estimating the directions of sound sources
by turning the head of a humanoid robot. Nakadai
et al. [9], for example, developed a humanoid robot that
has two microphones and tracks sound source directions
by integrating audio, visual, and motor control. Berglund
and Sitte [10] developed a robot with two microphones
that learns how to orient itself toward a sound source via
reinforcement learning. Kim et al. [11] proposed reducing
errors in sound source localization by accounting for the
results of voice activity detection (VAD) and face track-
ing.

Active audition has often been used with a single mov-
ing robot to estimate the position of a sound source. Reid
and Milios [12], for example, developed a robot that esti-
mates the 3D position of a sound source by moving two
microphones. Sasaki et al. [13] developed a mobile robot
that has a microphone array and estimates the positions of
multiple sound sources. Since the robot can move around
sound sources, the positions of these sources are deter-
mined from source direction estimated from different ob-
servation positions in a way of triangulation. Yoshida and
Nakadai [14] integrated the audio, visual, and active mo-
tion functions of a robot to estimate how active motion
affects VAD.

If multiple robots are used, the positions of sound
sources can be obtained quickly without moving any
robots. Martinson et al. [2] optimized multiple robot lay-
out to improve the performance of sound source localiza-
tion in 2D space. Individual robots were equipped with a
single microphone and the optimal layout was determined
so that robots were distant from both other robots and ob-
stacles and close to sound sources.
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2.2. Sound Source Separation

DSBF is basic microphone-array-based source separa-
tion [13, 15]. Sasaki et al. [15] attempted to optimize a 32-
channel microphone array layout to improve the source
separation performance of DSBF. The optimal layout was
determined to have high directivity to all directions.

Independent component analysis (ICA), another widely
used source separation technique, discovers statistically
independent source signals from given mixed signals [16,
17]. Time-domain ICA separates convolutionally mixed
signals, but its computational costs are high. This is low-
ered by using graphical processing units (GPUs) to cal-
culate in parallel [18]. Frequency-domain ICA, however,
conducts standard ICA at individual frequency bands and
is more efficient. Since frequency-domain ICA has prob-
lems of frequency-band permutation and scaling, many
studies have explored ways to solve these problems [19—
21].

3. Proposed Method

The method we propose here optimizes multiple mo-
bile robot layout for cooperative source separation. In-
dividual robots have standard microphone arrays, and
multi-channel audio signals are recorded by regarding
a set of the robots’ distributed microphone arrays as a
big microphone array. This extracts audio signals from
a particular direction by using geometric-constrained in-
dependent component analysis (GICA) and geometric-
constrained high-order decorrelation-based source sepa-
ration (GHDSS). Since the source separation performance
of these methods is high and their computational costs
low, these methods are suitable for robot audition requir-
ing real-time processing.

To optimize the robot layout, we designed an objec-
tive function to be maximized with respect to a layout.
We then predicted source separation performance theoret-
ically by simulating DSBF without actually moving any
robots. Specifically, the ratio of a source signal in the cor-
responding separated signal (separation performance) is
determined by specifying a mixing process that represents
the propagation of source signals to microphones and a
filtering process that represents the extraction of source
signals from observed signals. We use DSBF instead of
GICA or GHDSS for two reasons. One is that predict-
ing the source separation performance is difficult when
GICA or GHDSS is used, and the other is that separation
performances of these methods are correlated with that of
DSBFE. Since it is often difficult to find the layout with the
highest gain via local search, we use a genetic algorithm
that tends to avoid local optima.

3.1. Problem Specification

Our goal is to find a multiple robot layout enabling the
high-quality separation of all target sound sources in a test
environment. Let M be the total number of microphones
on robots (the number of channels of the big microphone
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array), N the number of sound sources, N’ the number of
target sound sources, and R the number of robots. We
assume that sound sources and robots are on a 2D plane.
The optimization problem is defined as follows:

o Input: x(¢) =[x (t),...,xu(t)]" € RM
M-channel audio signals recorded by using an M-
channel big reconfigurable microphone array, where
t is the index of the sample.

« Output:

() y(1) = 1 (1), ()] € RY
N’ separated signals corresponding to sound sources.

(2)A* = [a},...,a}) € RR3
Optimized 2D positions and directions of multiple
mobile robots.

« Assumptions:
All microphones are synchronized and the correct
positions of sound sources B = [by,...,by] € RV*?
are already estimated by using triangulation [13].

3.2. Mixing Process

We explain the relationship between observed signals
x(t) and source signals s(¢) = [s1(¢),...,sn(f)], where
sn(t) is the signal of the n-th sound source. Assume
that neither reverberation nor noise exists and that sound
propagation is represented as the following linear time-
invariant system:

x(w)=H(o)s(®), . . . . . . . . ... (D

where x(@) = [X;(®),...,Xu(®)]" € CM is the spatial
spectrum of observed signals at frequency @, s(®) =
[S1(®),...,Sy(®)]" € CV is that of source signals at fre-
quency @, and H (@) € CY¥*V is a mixing matrix. X,, (o)
is the Fourier transform of observed signal x,(¢) and
Sn() is that of source signal s,(¢). The relationship be-
tween X, (@) and S,(®) is given by
Yo
Xm(w) = Z

y Sp(@)e /P L (2)
n=1""nm

where d,,, is the distance between the n-th sound source
and the m-th microphone, and 7, is the delay time of
m-th observed signal x,,(¢) from the n-th source signal
sn(t), 1., xpu(t) = sp(t — Tym). 1/dyy indicates the am-
plitude decay (the amplitude of a propagated signal is in-
versely proportional to propagation distance). Note that
T,m 18 calculated in advance based on the positional re-
lationship between the sound source and robot as 7, =
dum/c, where c is the speed of sound. Comparing Eqgs. (1)
and (2), we get

hmn(a)):d—e_j“”"m. N )

3.3. Filtering Process

We will now explain how separated signals y(¢) are ob-
tained from observed signals x(¢). As in the mixing pro-
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Fig. 2. Overview of delay-and-sum beamforming (DSBF).

cess, we assume that the filtering process is represented as
a linear system as follows:

yo)=W)x(w),. . ... .. .... &

where W (@) € CN*M s a separation matrix, and y(®) =
[Y1(®),...,Yn(®)]T € CV is the spatial spectrum of sep-
arated signals at frequency @. Egs. (1) and (4) in-
dicate that if W(w) = H(w)™!, separated signals are
equal to true source signals, i.e., y(®0) = H(0) 'x(0) =
H(0)'H(0)s(®) = s(®). Null beamforming is a
source separation method that uses the inverse of the mix-
ing matrix as the separation matrix. Since the actual mix-
ing matrix is not available in practice, the mixing matrix
is prepared in advance, for example, by recording a time-
stretched pulse (TSP) signal in an anechoic chamber. The
performance of null beamforming, however, largely dete-
riorates when the actual and prepared mixing matrices dif-
fer due to reverberation or source localization error, etc.,
and is hardly ever used.

DSBF is a standard source separation method that uses
only time differences of arrivals (TDOAs) of a source sig-
nal at microphones (Fig. 2). Separated signal y,(¢) cor-
responding to the n-th source is obtained by time-shifting
each observed signal x,,(f) by the corresponding TDOA
T,m and then summing up all shifted signals. The shifting
operation aligns phases of target source signals included
in recorded signals and cancels out phases of other sound
sources. This emphasizes the target sound source and sup-
presses other sounds. The equivalent frequency-domain
representation of DSBF is given by

M
1 ,
Yo(0) = Zd Xn(@)e/m o (5)
m=1 nm

where 1/d,, is a weighting coefficient. We emphasized
the observed signal recorded by a microphone closer to
the target sound source.

The source separation performance of DSBF is de-
graded when actual TDOAs differ from expected TDOAs
due to reverberation, diffraction, or estimation error of the
sound source direction. To solve this problem, adaptive
beamforming methods have been developed, e.g., GICA
and GHDSS. These methods use both TDOAs and the
properties of source signals.

GICA, based on frequency-domain ICA, estimates the
separation matrix online so that the independence of sepa-
rated source signals becomes high. Permutation and scal-
ing problems are solved by using geometrical restrictions.

85



Sekiguchi, K. et al.

The following two cost functions are used to estimate the
separation matrix W

JICA(W)=/p(y)log%dy N ()

JecW)=|WH-I|> . . . ... ... (]

where p(y) = p(y1,...,yn) is the joint distribution of all
separated signals. Jica (W), the KL-divergence between
p(y) and p(y1,...,yn), becomes small when p(y) is close
to [Tk p(yk). It follows that Jica (W) is a measure of the
independence of separated signals. Jgc(W), the geomet-
ric restriction, becomes small when W is close to the in-
verse of mixing matrix H 1 In practice, H is unknown,
however, so it is calculated by using the impulse response
recorded beforehand or simulated from the positions of
microphones. We want to conduct real-time source sep-
aration, so W is updated sequentially using the update
equation given by

Wi =W, —adica—Blges - - - - - - . (8

where o and 8 are step-size parameters, and Jic, =
Vw.Jica and Jgeo = Vw.Jge.

GHDSS is similar to GICA but differs in that it uses a
high-order correlation instead of an independency as the
cost function. Its cost function is defined as follows:

Jupss(W) = |[EEg]|I>, . . . . . . . . .9
Ey = ¢(y)y" —diaglo(y)y"], . . . (10)
¢(yi) = tanh(n|y;)e/®0), . . ... (1D

where E|| denotes the expectation operator, and E is a
high-order correlation matrix, and 7 is a scaling parame-
ter.

The set of distributed microphone arrays is regarded as
a single microphone array, meaning that all observed sig-
nals recorded by robots are used for cooperative source
separation. Comparing Egs. (4) and (5), we get

1

ej OTpm .

™ . (12)

Wam (@) =

3.4. Objective Function

We define an objective function to be maximized
for layout optimization as the harmonic mean of gains
of target sound sources obtained by DSBF. Let A =
[ai,...,ag] € RR*3 be a set of positions and directions of
R robots. Objective function f(A) is defined as follows:

N/
vy
where D is a set of target sound sources and g, (A) is the
gain of the n-th sound source signal. Summation of gains
w.r.t. target sound sources means that the source separa-
tion performance of non-target sound sources is not con-
sidered. One reason that the harmonic mean is used in-
stead of the standard average is that we want to find a
layout that enables high-quality source separation so that

. (13)
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Y(w) = W(w)H(w)s(w) = Q(w)s(w) —]
—x(@) = H)s(®) — y(w) = W(w)x(w)

i | i | i |

Mixing

1
1
H
1
-
-1 =
e | ]
[ .

| -

Source signals S(w) Recorded signals x(w)  Separated signals y(w)

Fig. 3. Relationship between source and separated signals.

O Target source 16

y[m]

0 =32 1 0 1 2 3
x[m] x[m]

Fig. 4. Examples of the objective function at each position
in a room. Circles and triangles indicate positions of target
sound and noise sound. Positions with high function values
are good ones.

gains are balanced over all target sound sources: if one
of the gains of target source signals is low, the objective
function value is decreased significantly.

Using Egs. (1) and (4), the relationship between sepa-
rated signals y(7) and source signals s(7) is represented in
the frequency domain as follows:

y(0) = Q(w)s(w), . - (14)

where Q(®) € CV*V is a gain matrix obtained by Q(®) =
W (w)H (w) (as shown in Fig. 3). If Q(®) =1 is achieved,
separated signals are equal to the true source signals. In
practice, Q(w) has off-diagonal elements that represent
crosstalk between source signals. The gain of the n-th
source signal at frequency ® is therefore as follows:

_ G (®)
SO o)
k#n

where ¢;;(®) is an element of the i-th row and j-th column
of Q(®) and represent the weight of the j-th source signal
in the i-th separated signal. We average gains over all
frequency bands and define g,(A) as follows:

N Yo G (0)
gn(A) = ZZan((O)’

k#n ®©

. (15)

. (16)

When DSBF is used for source separation, gu(®) is
obtained by using Egs. (3) and (12) as follows:

M

gk (@) = exp(Jo(Tyn — Tim)) |- (A7)

m=1 dnmdkm

Frequency bins from 1 Hz to 8000 Hz (L bins) are taken
into account as the range of w. Fig. 4 shows values of
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the objective function in a room 6 m square when a single
robot with an 8-channel microphone array is used to sep-
arate sound sources. In the left figure, all sound sources
are target, and in the right figure, two sound sources on the
right are target. The function takes small values in some
cases. If multiple sound sources are in the same direction,
meaning that the robot and sound sources are in a line,
TDOAs at microphones are close to each other and noise
sound sources are poorly suppressed. If the robot is too
close to some of the sources, such sources may be sepa-
rated accurately but the separation performance of other
sources is degraded significantly. The objective function
then takes a small value because it is defined as the har-
monic mean of gains over all target sources.

When adaptive beamforming such as GICA or GHDSS
is used for source separation, however, it is difficult to
calculate gain, because these methods estimate separation
matrix W () that is as close as possible to the inverse
of mixing matrix H(®) (i.e., W(w)H(®) ~ I), and gain
theoretically becomes infinite in any layout. The source
separation performance of GICA or GHDSS and that of
DSBF have a correlation, however, and the optimal layout
calculated by using the gains of DSBF is also good for
source separation using GICA or GHDSS, as shown in
the experiments described in Section 4.2 and 4.3.

3.5. Layout Optimization

We use GA to optimize the multiple robot layout. This
is because using a grid search algorithm would increase
computational cost exponentially as the number of robots
increases, and if hill-climbing or gradient descent is used,
the result is sometimes a local optimum (Section 4.1.2).
The GA can avoid falling into a local optimum at lower
computational cost than the grid search algorithm. In the
GA context, candidate layouts are often called creatures.
There are two types of creation of next-generation crea-
tures: small modifications of the current generation with
a high probability (crossover) and drastic changes from
the current generation with a low probability (mutation).
After creating a certain number of creatures, the objective
function is calculated for each creature and creatures are
selected at a probability based on function values. This
process is repeated until a termination condition is met.

Here, crossover is achieved by randomly moving robots
to nearby positions and turning them in random direc-
tions. Mutation is achieved by choosing positions and di-
rections of robots randomly in a test environment. An
objective function is defined as the harmonic mean of
gains obtained by simulating delay-and-sum beamform-
ing from a possible layout. Creatures of a new generation
are chosen based on roulette-wheel selection and elitist
selection. In roulette-wheel selection, creatures are se-
lected with probabilities proportional to the values of the
objective function, and creatures with lower function val-
ues are selected with low probabilities. In elitist selection,
creatures with larger function values are selected from the
top of the ranking. When a fixed number of generations
is reached, the creature with the highest function value is
selected as the optimal creature (optimal robot layout).
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Fig. 5. 8-channel microphone array layout for each mobile
robot.

4. Experimental Evaluation

We conducted experiments to evaluate improvements
in source separation performance in simulated and real
rooms. In a simulated room, we conducted two kinds of
experiments. In one experiment, all sound sources were
regarded as target sources, and in the other, three of six
sources were regarded as target sources.

4.1. Optimization Method Evaluation

We conducted an experiment to compare the three op-
timization methods hill climbing, gradient descent, and
GA.

4.1.1. Experimental Conditions

In experiments, we assumed that in a room 6 m square,
there were four sound sources and two robots, each of
which had an 8-channel microphone array (M = 16, N =
4, and R =2). All sound sources were target sources. We
tested six patterns of sound source layout. Sound source
layouts were determined randomly so that the distance be-
tween each sound source pair exceeded 1 m.

We compared GA with hill-climbing and gradient de-
scent. In the GA configuration, the number of creatures
of each generation was 900 and the GA stopped when the
30th generation was reached. In the hill-climbing method,
updating was as follows: (1) move all robots from current
positions toward a certain direction out of the eight direc-
tions, including up and down, left and right, and slanted
directions, and select the direction of each robot from 0°,
45°,90°, and 135°, because the layout of the 8-ch micro-
phone array we used was symmetrical (Fig. 5), (2) cal-
culate the gain w.r.t. each robot layout ((8 x4) patterns)
and select the optimal robot layout, and (3) repeat steps
(1) and (2) until gain converges. In the gradient descent
method, we updated each parameter (the x-coordinate, the
y-coordinate, and the angle of each robot) one by one by
using numerical differentiation.

Optimization was implemented using Python and a
desktop computer with an Intel Core i17-4790 CPU
(4 cores, 3.4 GHz) and 8 GB of memory. Performance
measures were the processing time and average gain over
20 trials.
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Fig. 7. Average processing time for each method.

4.1.2. Experimental Results

Figure 6 shows average gains for each sound source
layout. In all cases, GA gains were higher than those of
the other two optimizations, and standard deviations of
GA gains were small. Gains of other methods were lower
than those of GA, and standard deviations of those gains
were large. This means that hill-climbing and gradient
descent often fall into local optima.

Figure 7 shows processing time for individual meth-
ods. Gradient descent was 58 times faster than the GA,
ending before the first GA update ended, though its per-
formance was not good. When we must determine opti-
mal robot positions as fast as possible, we could use gradi-
ent descent. Although hill-climbing was only about twice
as fast as the GA, GA performance when hill-climbing
ended was higher than that of hill-climbing, so using the
GA with a smaller number of iterations is more effective
than using hill-climbing. In later experiments, we used
the GA as optimization.

In addition to the GA, an evolution strategy (ES) is of-
ten used to solve nonlinear optimization problems. In the
ES, robot positions are updated by adding Gaussian noise
N(0,62). The covariance parameter 62 changes based on
how often the position updates succeeds. Although sam-
pling such as Markov chain Monte Carlo (MCMC) can be
used [22] to solve a nonlinear optimization problem ef-
fectively, the optimization problem must be formulated as
a probabilistic problem. In the future we plan to compare
these methods to the GA.

4.2. Experiment in a Simulated Room

We conducted an experiment in a simulated room to
evaluate the effectiveness of the proposed method.
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4.2.1. Experimental Conditions

We arranged two types of experimental setup:

1. Type 1: Four sound sources and two robots were in
a room 6 m square. All sources were target sources
(M =16,N=4,and R =2).

2. Type 2: Six sound sources and three robots were in
a room 6 m square. Three of the sources were target
sources, and the other three were noise sources (M =
24,N=6,N'=3,and R = 3).

Each robot had an 8-channel microphone array (Fig. 5).
We tested six patterns of sound source layout for each ex-
perimental setup. Type 1 sound source layout were the
same as those of the experiment in Section 4.1. Type 2
sound source layout were determined randomly so that
the distance between each pair of sound sources exceeded
1 m. Source signals were selected randomly from JNAS
phonetically-balanced Japanese utterances [23]. The ob-
served signal of each microphone was synthesized by con-
voluting geometrically calculated impulse responses that
were calculated by ﬁe’jm"m, where d,,,, was the dis-
tance between the sound source n and microphone m.

Under type 1 experimental conditions, we compared
the proposed method that uses the GA for layout opti-
mization with a method that chooses the layout of robots
randomly. Under type 2 experimental conditions, we
compared the proposed method with the random method
and the conventional method that calculates the objective
function by regarding all sound sources including noise
sources as target sources. In the GA configuration, each
generation had 900 creatures and the GA stopped when
the 30th generation was reached. With all methods, we
used DSBF, GICA, or GHDSS for source separation. o
and 3 in Eq. (8) were both set to 0.5, and 1 in Eq. (11)
was set to 1. The initial value of separation matrix W in
GICA and GHDSS was the inverse of the mixing matrix
H~', which was calculated from geometrically calculated
impulse responses. The window size of the short-time
Fourier transform was 512 samples.

Separation performance was measured with the har-
monic mean of signal-to-distortion ratios (SDRs) for sep-
arated signals corresponding to the three sound sources.
The SDR is the ratio of a target signal to the other sounds
in a separated signal, and a higher SDR means better sep-
aration performance [24,25]. The SDR is calculated as
follows:

||Starget||2
+ €noise + eartif||2 ’

SDR = 10log; . (18)
||einterf

Where Searget is @ version of true source signal modified by
an allowed distortion, and €jpeerf, €noise, and eayif are inter-
ferences, noise and artifact error terms. Since proposed
and random methods involve randomness, we ran 20 tri-
als and calculated the average of the harmonic mean of
the corresponding SDRs.
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Fig. 9. Harmonic mean of SDRs for each source separation method in the type 2 experimental setup in a simulated room.

4.2.2. Experimental Results

Figure 8 shows experimental results obtained using the
type 1 experimental setup. It shows the harmonic mean of
SDRs for the six layouts of sound sources. In all cases,
SDRs obtained by the proposed method were better than
those obtained by the random method. The average SDR
improvement of DSBF was 6.1 dB, that of GICA was
5.4 dB, and that of GHDSS was 3.0 dB.

Figure 9 shows experimental results obtained using the
type 2 setup. As with the type 1 setup, the SDRs obtained
by the proposed method were in all cases better than those
obtained by the random method. In both setups, SDRs of
GICA and GHDSS were significantly higher than those
of DSBF because the correct mixing matrix was used to
calculate J(;- in GICA and GHDSS. The average SDR im-
provement of DSBF was 9.2 dB, that of GICA 2.2 dB, and
that of GHDSS 3.9 dB. That of DSBF was higher than that
obtained in the type 1 setup. This means that the degree
of freedom of the robot layouts increased as the number
of robots increased, and layout optimization had a strong
impact on the source separation performance. Compar-
ing the proposed method with the conventional method
with regard to DSBF, the average SDR improvement was
5.4 dB.

Figures 10(a) and (b) show the harmonic mean of
SDRs of original observed signals (baseline) and that of
separated signals at optimal robot layouts. The SDRs
of observed signals were calculated by evaluating all of
the observed signals and selecting the best SDR for each
sound source. Comparing the observed signals with the
separated signals of DSBF, the differences were small,
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Fig. 10. Harmonic mean of SDRs of the original observed
signal and that of separated signals obtained by each source
separation method at optimal robot positions.

because when a robot was very close to a single sound
source, the SDR of the observed signal recorded by the
robot with respect to the sound source was very high.
When DSBF was used, the SDR of the sound source
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Fig. 11. Example of robot layout optimization for sound
source layout 2 (Type 2). Circles at left indicate positions
obtained by the proposed method and circles at right indicate
positions obtained by the random method.

would be worse than that of the observed signal because
the recorded signals of the other robots contain the signals
of noise sources and deteriorate separation performance.
When there was a sound source around which no robot
exists, however, the SDRs of all observed signals with re-
spect to the sound source would be much lower than the
separated signals obtained by using DSBF.

Figure 11(a) shows an example of the robot layout cal-
culated using the proposed method in the type 2 exper-
imental setup. The harmonic means of SDRs of DSBF,
GICA, and GHDSS were 7.3 dB, 16.3 dB, and 18.3 dB,
respectively. Fig. 11(b) shows an example of the robot
layout calculated using the conventional method in the
type 2 setup. The harmonic means of SDRs of DSBEF,
GICA, and GHDSS were 2.1 dB, 17.6 dB, 18.5 dB, re-
spectively. Comparing these two patterns, the source sep-
aration performance of DSBF was high when robots were
close to target sound sources and far away from the noise
sound. The source separation performance of GICA and
GHDSS, in contrast, were high when the robots could lis-
ten to all sound sources, including noise sounds. This is
because adaptive beamforming methods can cancel noise
by directing a null beam to them. Thus, to predict the
source separation performance of GICA or GHDSS by
using gain calculated by the DSBF may sometimes be
difficult, even though gain correlates with the source sep-
aration performance. We thus must develop a prediction
method that considers adaptive beamforming properties.

4.3. Experiment in a Real Room

We conducted an experiment using real recordings to
evaluate the actual effectiveness of the proposed method.

4.3.1. Experimental Conditions

Three sound sources and two robots, each of which had
an 8-channel microphone array (Fig. 5), were put in a
wide room with a reverberation time (RTgy) of 800 ms
(M =16,N =3, and R =2). We defined all sound sources
as target sound sources (N’ = 3). Source signals were
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the same as those used in the simulated experiment (Sec-
tion 4.2). Three layouts of sound sources were tested
(Fig. 12). Speakers were directed as shown in Fig. 12
because speakers actually have directivity. To adjust the
height of each microphone array to sound sources, the mi-
crophone array was attached to a pole (Fig. 13). The mi-
crophone array on each robot was synchronized by using
a multichannel A/D converter (RASP-24 manufactured by
Systems In Frontier Corp) with a quantization of 16 bits
and a sampling rate of 16 kHz (Fig. 5).

We compared the proposed method with one that ran-
domly chooses two positions from six candidate robot
positions. These candidates were chosen randomly, as
shown in Fig. 14. An actual impulse response was
recorded for each microphone at the candidate positions
and at the positions calculated by using the proposed
method, and observed signals were synthesized by convo-
luting the recorded impulse responses of the correspond-
ing positions with the source signals. Note that these
synthesized signals are considered to be quite similar to
real recordings. We used DSBF, GICA, GHDSS, and
null beamforming as source separation and evaluated the
source separation performance as in the simulated exper-
iment (Section 4.2). The parameters of the separation
methods were the same as those used in the simulated ex-
periment.

4.3.2. Experimental Results

Figure 15 shows the experimental results obtained by
the random method and those obtained by the proposed
method. In all sound source layouts, the proposed method
achieved better SDRs. The average SDR improvement of
DSBF was 4.6 dB, that of GICA 6.3 dB, that of GHDSS
5.4 dB, and that of null beamforming 5.9 dB. The pro-
posed method scored particularly well in sound source
layout 2. This is because, taking advantage of using
two robots, the robot on the right mainly recorded the
right-side sound sources and the robot on the left mainly
recorded the left-side sound source. Therefore, the sep-
aration performance for all the sources was significantly
improved. Fig. 16 shows the harmonic mean of SDRs
of separated signals and that of original recorded sig-
nals (baseline) in optimal robot layouts. Since GICA and
GHDSS are adaptive beamforming methods, their per-
formances were better than DSBF and null beamform-
ing. The separation performance of null beamforming
was relatively high because in this experiment, we used
correct sound source positions. Since null beamforming
has sharp directivity, separation performance would dete-
riorate significantly if localization results had errors.

In this experiment, the harmonic means of SDRs ob-
tained using any of the separation methods were worse
for two reasons than those obtained when the methods
were used in the experiment in the simulated room. The
first reason is that in the simulation experiment, the im-
pulse response used for source separation was the same as
that used for synthesizing observed signals. In this experi-
ment, however, for source separation, we used the impulse
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ray positions. The second reason is the directivity of a

@

sound source. In the experiment in the simulated room, z 2
we assumed that sound sources had no directivity. Real 4 ::1
sound sources, however, have directivity, and time differ- {:}
ences of arrivals differed based on the directions of sound (2) K

sources.

This directivity problem could be solved by having -6 g
robots move to the front side of a sound source. This is -12 i I Avera ge
because reverberation and diffraction cause the TDOAs at
the sides and rear of a sound source to differ from the ex- Fig. 16. Harmonic mean of SDRs of the original observed
pected TDOAs. Another promising solution would be to signal and that of separated signals obtained by each source
estimate the directions of sound sources by audio-visual separation method in optimal robot positions.

integration and to use an objective function that takes di-
rectivity into account.
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5. Conclusion

This paper presented an active-audition method that op-
timizes the layout of multiple mobile robots for separat-
ing the target sound sources highly accurately. To take
advantage of using multiple mobile robots when separat-
ing recorded signals, we regarded them as one big micro-
phone array. The optimal layout is determined by the-
oretically predicting the source separation performance
(gain) based on DSBF from a possible layout. We con-
ducted three experiments: (1) an evaluation of the layout
optimization method (hill-climbing, gradient descent, or
genetic algorithm), (2) an evaluation of the source separa-
tion performance in simulations, and (3) an evaluation of
the source separation performance in a real environment.
In experiment (1), we confirmed the effectiveness of GA.
In experiments (2) and (3), we compared the method we
presented with one that chooses the positions of robots
randomly and found that it improved the average source
separation performance by 5.7 dB in simulation and by
5.6 dB in a real environment.

The proposed method estimates the optimal layout of
multiple robots even if each robot has a different micro-
phone array. If each robot has a different number of mi-
crophones, for example, the position of a robot having
fewer microphones has a small impact on the objective
function. If there are obstacles between microphones, it is
possible to calculate the objective function by modifying
the amplitudes and phases of impulse responses recorded
at an interval of 5° based on the positional relationship
between sound sources and robots.

We are now planning to develop a prediction method
that considers the properties of adaptive beamforming.
To deal with moving sound sources whose positions are
not given in advance, we plan to combine a method of
simultaneous localization and mapping (SLAM) with dy-
namic motion planning for multiple robots. Specifically,
a partially observable Markov decision process (POMDP)
would be useful for dynamically updating the robot paths
in real time so that the performance of source separation
and localization is maximized.
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