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This paper presents a real-time beat-tracking method
that integrates audio and visual information in a prob-
abilistic manner to enable a humanoid robot to dance
in synchronization with music and human dancers.
Most conventional music robots have focused on either
music audio signals or movements of human dancers
to detect and predict beat times in real time. Since a
robot needs to record music audio signals with its own
microphones, however, the signals are severely con-
taminated with loud environmental noise. To solve this
problem, we propose a state-space model that encodes
a pair of a tempo and a beat time in a state-space and
represents how acoustic and visual features are gener-
ated from a given state. The acoustic features consist
of tempo likelihoods and onset likelihoods obtained
from music audio signals and the visual features are
tempo likelihoods obtained from dance movements.
The current tempo and the next beat time are esti-
mated in an online manner from a history of observed
features by using a particle filter. Experimental re-
sults show that the proposed multi-modal method us-
ing a depth sensor (Kinect) to extract skeleton features
outperformed conventional mono-modal methods in
terms of beat-tracking accuracy in a noisy and rever-
berant environment.

Keywords: robot dancer, real-time beat tracking, state-
space model, audio-visual integration

1. Introduction

Intelligent entertainment robots that can adaptively in-
teract with humans have actively been developed in the
field of robotics. While one of the typical goals of robotics
is to develop task-oriented industrial robots that can ac-
curately perform routines, entertainment robots are as-
sumed be used by people in their daily lives. To recog-
nize dynamically-varying environments in real time, those
robots should have both visual and auditory sensors, as
humans do. The research topic of robot audition has thus
gained a lot of attention [1, 2] for the detection, localiza-
tion, separation, and recognition of various of sounds to

help in computer vision and speech recognition.
Some entertainment robots are designed to interact with

humans through music. Among them are a violin-playing
robot that can play the violin according to a predefined
sequence of movements [3], a cheerleader robot that can
balance on a ball [a], and a flute-playing robot that can
play the flute in synchronization with a melody played
by a human being [4]. In this paper we aim to develop a
music robot that can dance interactively with people using
both auditory and visual sensors (microphones and depth
sensors).

A robot dancer that performs synchronously with hu-
man dancers needs to adaptively and autonomously con-
trol its movements while recognizing both music and the
movements of the people in real time. Murata et al. [5],
for example, enabled a bipedal humanoid to step and sing
in synchronization with musical beats. Kosuge et al. [6]
devised a dancing robot that can predict the next step in-
tended by a dance partner and move according to his or
her movements. Nakaoka et al. [7] developed a humanoid
that can generate natural dance movements by using a
complicated human-like dynamic system.

The main technical challenge in synchronizing the
dance movements of a robot with musical beats is to
perform real-time beat tracking, i.e., estimate a musical
tempo and detect beat times (temporal positions in which
people are likely to clap their hands), in a noisy and re-
verberant environment. However, very few beat-tracking
methods assume that they are used in an online manner
and that music audio signals are contaminated. Murata
et al. [5], for example, proposed an online audio beat-
tracking method that can quickly follow tempo changes
and is robust to environmental noise, but this method often
fails for music that has many accented up-beats. Chu and
Tsai [8] proposed an offline visual beat-tracking method
that tries to detect tempos (periods) from dance move-
ments, but this method often fails for real musical pieces
with complicated dance movements that include irregular
patterns. This means that the accuracy of beat tracking
using a single modality is limited.

In this paper we propose a multi-modal beat-tracking
method that analyzes both music audio signals recorded
by a microphone and dance movements observed as a
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Fig. 1. An overview of real-time audio-visual beat tracking
for music audio signals and human dance moves.

sequence of joint positions by a depth sensor (e.g., Mi-
crosoft Kinect) or a motion capture system (Fig. 1). Such
audio-visual integration has often been studied in the mu-
sic information retrieval (MIR) community, and it has
been shown to achieve better performance than single-
modal methods [9–14]. The proposed method is an im-
proved version of our previous method [15]. To effec-
tively integrate audio-visual information, it is necessary to
extract intermediate features that represent the likelihood
of a tempo and that of a beat time. Such integration has
been known to be effective in the context of audio-visual
speaker tracking [16]. In each frame, we estimate the like-
lihood of each tempo and the onset likelihood of the cur-
rent frame from music audio signals. This method is more
advantageous than the previous method [15], which di-
rectly and uniquely estimates an audio tempo without al-
lowing for other possibilities. On the other hand, another
likelihood of each tempo is also calculated from skele-
ton information. We then formulate a unified state-space
model that consists of latent variables (tempo and beat
time) and observed variables (acoustic and skeleton fea-
tures). A posterior distribution of latent variables can be
estimated by using a particle filter.

The remainder of this paper is organized as follows:
Section 2 introduces related work on audio, visual, or
audio-visual beat tracking methods. Section 3 explains
the proposed method and Section 4 reports experimental
results on beat tracking for two types of datasets. Sec-
tion 5 describes the implementation of a robot dancer
based on real-time beat tracking and Section 6 summa-
rizes our results.

2. Related Work

This section describes the related work on beat tracking
using audio and/or visual signals.

2.1. Beat Tracking for Music Audio Signals
Beat tracking for music audio signals has been stud-

ied extensively. Dixon et al. [17], for example, proposed
an offline method based on a multi-agent architecture in
which the agents independently estimate inter-onset in-
tervals (IOIs) of music audio signals and estimate beat
times by integrating the multiple interpretations. Goto
et al. [18] proposed a similar online method using both
IOIs and chord changes as useful clues for detecting beat

times. Stark et al. [19] proposed an online method that
combines a beat-tracking method based on dynamic pro-
gramming [20] with another method using a state-space
model for tempo estimation [21]. The performance of
this method was shown to equal with those of offline sys-
tems. These methods, however, are not sufficiently ro-
bust against noise because clean music audio signals are
assumed to be given. Murata et al. [5] proposed a real-
time method that enables a robot to step and sing to mu-
sical beats while recording music audio signals with an
embedded microphone. This method calculates an onset
spectrum at each frame and detects beat times by cal-
culating the auto-correlation of onset spectra. Oliveira
et al. [22] proposed an online multi-agent method using
several kinds of multi-channel preprocessing (e.g., sound
source localization and separation) to improve robustness
against environmental noise.

Neural networks have recently gained a lot of atten-
tion for significantly improving the accuracy of beat track-
ing [23]. Böck et al. [24] and Krebs et al. [25], for exam-
ple, used recurrent neural networks (RNNs) to model the
periodic dynamics of beat times. Durand and Essid [26]
proposed a method that uses acoustic features obtained by
deep neural networks to train conditional random fields.
However, the online application of these methods has
scarcely been discussed.

2.2. Beat Tracking for Dance Movements
Several studies have been conducted to analyze the

rhythms of dance movements. Guedes et al. [27] pro-
posed a method that estimates an audio tempo of dance
movements in a dance movie. This method can be used
to estimate a tempo from periodic movements, e.g., peri-
odically putting a hand up and down, provided that other
moving objects do not exist in a dance movie. It is diffi-
cult to use this method with the complicated movements
seen in real dance performances. Chu and Tsai [8] pro-
posed an offline method that extracts the motion trajec-
tories of a dancer’s body from a dance movie and then
detects time frames in which a characteristic point stops
or rotates. They proposed a system that uses this method
to replace the background music of a dance video.

2.3. Audio-Visual Beat Tracking
There are two main approaches that use both acoustic

and skeleton features for multi-modal tempo estimation
and/or beat tracking. One approach focuses on predefined
visual cues that indicate a tempo. Weinberg et al. [12] de-
veloped an interactive marimba-playing robot called Shi-
mon that performs beat tracking while recognizing the vi-
sual cue of a head nodding to the beat. Petersen et al. [13]
proposed a method that uses the visual cue of a waving
hand to control the parameters of vibrato or tempo. Lim
et al. [14] developed a robot accompanist that follows a
flutist. It starts and stops its performance when it sees a
visual cue, and it estimates a tempo by seeing a visual beat
cue (the up and down movement of the flute to the tempo)
and listening to the notes from the flute.
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The other approach does not use predefined visual cues.
Itohara et al. [10] proposed an audio-visual beat-tracking
method using both guitar sounds and the guitarist’s arm
motions. They formulated a simplified model that repre-
sents a guitarist’s arm trajectory as a sine wave and in-
tegrates acoustic and skeleton features by using a state-
space model. Berman et al. [11] proposed a beat-tracking
method for ensemble robots playing with a human gui-
tarist. To visually estimate a tempo, a method similar to
that in [27] was used. This method can estimate the tempo
from a periodic behavior, such as a head and foot moving
up and down to the music in playing a guitar.

3. Proposed Method

This section describes the proposed method of audio-
visual beat tracking that jointly deals with both music
audio signals and skeleton information of dance move-
ments (Fig. 1). To effectively integrate acoustic and skele-
ton information so that they can serve as complementary
sources of information to improve beat tracking, we ex-
tract intermediate information as acoustic and skeleton
features that indicate the likelihoods of tempos and beat
times. In this stage, the method does not uniquely deter-
mine the current tempo and the next beat time. Instead,
the method keeps all the possibilities of tempos and beat
times. If a unique tempo were extracted from music audio
signals as in [15], tempo estimation failure would severely
degrade the overall performance. We therefore formulate
a nonlinear state-space model that has a tempo and a beat
time as latent variables and acoustic and skeleton features
as observed variables. The current tempo and the next
beat time are updated at each beat time in an online man-
ner by using a particle filter and referring to the history of
observed and latent variables.

We specify the problem of audio-visual beat tracking in
Section 3.1. We explain how to extract acoustic and skele-
ton features from music audio signals and dance move-
ments in Sections 3.2 and 3.3, describe the state-space
model integrating these features in Section 3.4, and pro-
vide an inference algorithm in Section 3.5.

3.1. Problem Specification

Our goal is to estimate incrementally, at each beat time
k, the current tempo φk and the next beat time θk+1 by us-
ing the history of acoustic features {A1, . . . ,Ak} and that
of skeleton features {S1, . . . ,Sk}:

Input: history of acoustic features: {A1,A2, . . . ,Ak}
history of skeleton features: {S1,S2, . . . ,Sk}

Output: current tempo: φk
next beat time: θk+1

where the tempo is defined in beats per minute (BPM).
This estimation step is iteratively executed when the cur-
rent time, denoted by t, exceeds the predicted next beat
time (t = θk+1).
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Fig. 2. Acoustic features consisting of an onset likelihood
and audio tempo likelihoods are extracted at each frame.

3.2. Extraction of Acoustic Features
The acoustic feature Ak at the current beat time θk con-

sists of frame-based onset likelihoods {Fk(t)|θk−1 < t ≤
θk +ε f} and audio tempo likelihoods {Rk(u)} over possi-
ble tempo u at the current beat time θk. Here, t is a frame
index (the frame-shift interval is 10 ms in our study), u
is a tempo parameter, and ε f is a few frames. Our re-
quirement for these features is that they be robust against
environmental noise and quick tempo change since audio
signals involve various kinds of loud noises, including the
sounds of footsteps and the voices of the audience. In the
following we describe a method for obtaining these like-
lihoods based on an audio beat-tracking method in [5].

3.2.1. Onset Likelihoods
The onset likelihood Fk(t) in frame t indicates how

likely the frame is to include an onset. This feature can
be extracted by focusing on the power increase around
that frame (Fig. 2). The short-time Fourier transform is
first applied to the input audio signal y(t) to obtain fre-
quency spectra. The Hanning window is used as a win-
dow function. The obtained spectra are sent to a mel-
scale filter bank, which changes the linear frequency scale
to the mel-scale frequency scale, to reduce the computa-
tional cost. Let mel(t, f ) be a mel-scale spectrum, where
f (1 ≤ f ≤ Fω) represents a mel-scale frequency.

A Sobel filter is then used to detect frequency bins with
rapid power increase from the spectra mel(t, f ). Since the
Sobel filter has been commonly used for extracting edges
from images, it can be applied to a music spectrogram by
regarding it as an image (two-dimensional matrix). The
onset vectors d(t, f ) are estimated by rectifying the output
of the Sobel filter. The onset likelihood Fk(t) is obtained
by accumulating the values of the elements of the onset
vector d(t, f ) over frequencies as

Fk(t) =
Fω

∑
f =1

d(t, f ). . . . . . . . . . . (1)
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3.2.2. Audio Tempo Likelihoods
The audio tempo likelihood Rk(u) indicates a distribu-

tion of instantaneous tempo u at the current beat time θk.
Murata et al. [5] proposed a method of estimating the most
likely instantaneous tempo by calculating the autocorrela-
tion of the onset vector and extracting its peaks. To obtain
the likelihood of tempo instead of the most likely value,
we extend this method as follows:

Let us first define the normalized cross-correlation
(NCC) of the onset vector as follows:

R(t,s) =

Fω

∑
j=1

Pω−1

∑
i=0

d(t − i, j)d(t − s− i, j)

√√√√ Fω

∑
j=1

Pω−1

∑
i=0

d(t − i, j)2
Fω

∑
j=1

Pω−1

∑
i=0

d(t − s− i, j)2

,

. . . . . . . . . . . . . . . . . . . . (2)

where s is a shift parameter and Pω is a window length.
The NCC has the property of being able to be calculated
with a shorter window length than the conventional au-
tocorrelation. For real-time processing, we used the fast
NCC, a computationally efficient algorithm, to calculate
the NCC. R(t,s) tends to take larger values when s is close
to the time interval of a beat.

If R(t,s) is used, the audio tempo likelihood Rk(u) for
possible tempo u is given by this equation:

Rk(u) = exp(R(θk,su)), . . . . . . . . . (3)

where su = (60/u) is a time shift corresponding to tempo
u. Because R(t,s) can have negative values with the fast
NCC, we take the exponentials. In order to avoid the prob-
lem of double/halved tempos, the tempo value is restricted
to the range from m BPM to 2m BPM, as in [5].

3.3. Extraction of Skeleton Features
The skeleton feature Sk of the current beat time θk is

a vector of visual tempo likelihoods {Sk(u)} over possi-
ble tempo u. To extract this feature, we use an online
version of a visual tempo estimation method proposed by
Chu and Tsai [8]. Although the original method is as-
sumed to analyze the movements of characteristic points
detected from a dance movie, we develop a method that
can deal with the movements of the joints of a human
dancer. Let {bbb1(t), . . . ,bbbJ(t)} be a set of the 3D coor-
dinates of joints, e.g., neck and hip, where J is the num-
ber of joints (bbb j(t) ∈ R

3). The value of J depends on the
device, e.g., Kinect or a motion capture system, used to
analyze the movements of a human dancer.

The skeleton information {bbb1(t), . . . ,bbbJ(t)} is obtained
by following these three steps (Fig. 3). First, we detect
time frames in which some joints stop and turn (stopping
frames and turning frames). This step is considered to be
important because dancers tend to stop or turn their joints
at beat times. Second, we make a continuous signal from
a discrete set of the detected stopping and turning frames
for each joint. Finally, we obtain the likelihood of each
possible tempo by applying the Fourier transform to the

Joint (neck) Joint (hip)

Time
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Tempo

Visual tempo likelihoods
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m
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Fig. 3. Skeleton features (i.e., visual tempo likelihoods) are
extracted in each frame by detecting the characteristic points
of all joints.

signals of all joints independently and accumulating the
obtained spectra over all joints.

3.3.1. Detection of Stopping and Turning Frames
Stopping and turning frames of each joint j are de-

tected using the latest movements of the joint {bbb j(t−N +
1), . . . ,bbb j(t)}, where N is the number of frames consid-
ered. The moving distance g j(i) at frame i is given by

g j(i) = ||bbb j(i+1)−bbb j(i)||. . . . . . . . (4)

Stopping frames are defined as frames in which the dis-
tance the joint moves takes a local minimum. A set of
stopping frames I st

j is obtained as follows:

I st
j =

{
argmin
i≤m≤i+n

g j(m)
∣∣∣ t −N +1 ≤ i < t −n

}
, (5)

where n is a shift length.
Turning frames, on the other hand, are defined as

frames at which the inner product of moving distances at
adjacent frames takes a local maximum. The inner prod-
uct h j(i) is given by

h j(i) = oooT
j,iooo j,i+1, . . . . . . . . . . . . (6)

ooo j,i =
bbb j(i+1)−bbb j(i)

g j(i)
. . . . . . . . . . (7)

A set of turning frames I tr
j is then obtained as follows:

I tr
j =

{
argmin
i≤m≤i+n

h j(m)
∣∣∣ t −N +1 ≤ i < t −n

}
, (8)

where n is a shift length.

3.3.2. Frequency Analysis of Continuous Signals Con-
verted from Stopping and Turning Frames

Since I st
j and I tr

j are discrete sets of time points, it is
difficult to directly analyze the periodicities of those se-
quences. To make periodicity analysis easy, we instead
generate continuous signals by convoluting a Gaussian
function with I st

j and I tr
j . More specifically, the two

signals yst
j (t) and ytr

j (t) corresponding to I st
j and I tr

j are
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given by

yst
j (t) = ∑

i∈I st
j

N (t|i,σ2
y ), ytr

j (t) = ∑
i∈I tr

j

N (t|i,σ2
y ), (9)

where N (x|μ,σ2) represents a Gaussian function with
mean μ and standard deviation σ . This enables us to use
the Fourier transform.

Let ŷst
j ( f ) and ŷtr

j ( f ) be the Fourier transform of yst
j (t)

and ytr
j (t). In each frame t, the visual tempo likelihood

S(t, f ) that indicates the likelihood over possible tempos
is calculated by accumulating the amplitude spectra of all
joints as follows:

S(t, f ) =
J

∑
j=1

(|ŷst
j ( f )|+ |ŷtr

j ( f )|). . . . . . (10)

The visual tempo likelihood Sk(u) of the current beat time
θk is given by Sk(u) = S(θk, fu), where fu = 2πu/60 (1/s)
is a frequency corresponding to tempo u.

3.4. State-Space Modeling for Feature Integration
We formulate a state-space model that integrates the

acoustic and skeleton features (Fig. 4). A state vector zzzk
is defined as a pair made up of the tempo φk and the beat
time θk:

zzzk = [φk,θk]T . . . . . . . . . . . . . (11)

An observation vector xxxk, is constructed from the audio
tempo likelihood Rk(u), the onset likelihood Fk(t) (acous-
tic features) and the visual tempo likelihood Sk(u) (skele-
ton features) as follows:

xxxk = [FT
k ,RT

k ,ST
k ]T . . . . . . . . . . . (12)

We then explain the two key components of the proposed
state-space model: an observation model p(xxxk|zzzk) and a
state transition model p(zzzk+1|zzzk).

3.4.1. Observation Model
We assume the components of an observation vector to

follow independent distributions. Each distribution is as-
sumed to be proportional to the likelihood function. Con-

sequently, the observation model is defined as follows:

p(xxxk|zzzk) = p(Fk|zzzk)p(Rk|zzzk)p(Sk|zzzk), . . . (13)
p(Fk|zzzk) ∝ Fk(t = θk), . . . . . . . . . (14)
p(Rk|zzzk) ∝ Rk(u = φk), . . . . . . . . (15)
p(Sk|zzzk) ∝ Sk(u = φk)+ ε, . . . . . . . (16)

where a small constant ε governs the smoothness of the
distribution.

3.4.2. State Transition Model
Music performance and dancing inevitably have tim-

ing fluctuations due to tempo variations and the noise
of human movements. The current beat time, the next
beat time, and the tempo are expected to meet θk+1 =
θk + 60/φk in theory. By modeling the tempo variations
and the noise with Gaussians, the state transition proba-
bility is given as follows:

p(zzzk+1|zzzk) ∝ N (φk+1|φk,σ2
φ )N

(
θk+1|θk +

60
φk

,σ2
θ

)

= N

(
zzzk+1|

[
φk,θk +

60
φk

]T

,QQQ

)
, . . (17)

where σφ and σθ are standard deviations of tempo vari-
ation and the noise of human movements, and QQQ =
diag[σ2

φ ,σ2
θ ] is a covariance matrix.

3.5. Posterior Estimation Based on a Particle Filter
The tempo φk and the beat time θk are estimated by us-

ing a particle filter because the visual tempo likelihood
Sk(u) and the onset likelihood Fk(t) are not Gaussian dis-
tributed and φk and θk should be updated in an online
manner. Here we use sequential importance resampling
(SIR) [28] for efficient particle filtering. The posterior
distribution of the state vector p(zzzk|xxx1:k) is approximated
as a distribution of L particles:

p(zzz(l)
k |xxx1:k) ≈ w(l)

k , . . . . . . . . . . . (18)

where w(l)
k is the weight of particle l (1 ≤ l ≤ L).

This estimation consists of the following three stages:
state transition, weight calculation, and state estimation.
The proposal distribution is based on the state transition
model. Here, L′ particles selected randomly transit inde-
pendently from the state transition model. It prevents sig-
nificant concentrations of particles and enables adaptation
to tempo changes. The proposal distribution is defined as

zzz(l)
k ∼ q(zzzk|zzz(l)

k−1)

∝ N

(
zzzk
∣∣[φk−1,θk−1 +

b
φk−1

]T

,QQQ

)
+

L′

L
. (19)

The weight w(l)
k for each particle l is given by

w(l)
k = w(l)

k−1
p(zzz(l)k |zzz(l)

k−1)p(xxxk|zzz(l)
k )

q(zzzk|zzz(l)
k−1)

. . . . . (20)
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The observation and state transition probabilities are
given by Eqs. (13) and (17). The proposal distribution
is given by Eq. (19).

The expected value of the state vector zzzk = [φ k,θ k]T is
obtained by using the weights of particles:

φ k =
L

∑
l=1

w(l)
k φ (l)

k , . . . . . . . . . . (21)

θ k =
L

∑
l=1

w(l)
k θ (l)

k . . . . . . . . . . . (22)

In resampling, the particles with large weights are re-
placed by many new similar particles, whereas those with
small weights are discarded because they are unreliable.

4. Evaluation

This section reports on experiments conducted to eval-
uate the performance improvement of the audio-visual
beat-tracking method over mono-modal methods that use
either audio tempo likelihoods or visual tempo likeli-
hoods. Note that onset likelihoods obtained from music
audio signals are always required for beat times to be esti-
mated; they cannot be estimated if only skeleton features
(visual tempo likelihoods) are used.

4.1. Experimental Conditions
The five sessions were obtained from a dance motion

capture database released by the University of Cyprus
(J = 54 joints, about 30 frames per second (FPS)) [b]. In
addition, using a Kinect Xbox 360 depth sensor (J = 15
joints, about 20 FPS), we recorded the dance movements
of a female dancer. There were eight sessions of dances
to popular music. The distance between the Kinect sen-
sor and the dancer was about 2.5 meters. The whole body
of the dancer was captured by the Kinect sensor (Fig. 5).
Audio signals of dance music (noisy live recordings) were
played back and captured by a microphone with a sam-
pling rate of 16 kHz and a quantization of 16 bits. The
experiment was conducted in a room with a reverberation
time (RT60) of 800 msec.

We compared the proposed audio-visual beat-tracking
method with two conventional audio beat-tracking meth-
ods [5, 15]. The method [5] is implemented in HARK [29]
robot audition software, and its parameters are set to
the default values except for m = 90. The method [15]

is similar to our method except that an audio tempo is
uniquely determined in each frame as an acoustic fea-
ture. To evaluate the effectiveness of integrating the three
kinds of features: onset likelihoods Fk, audio tempo like-
lihoods Rk (acoustic features), and visual tempo like-
lihoods Sk (visual features), we tested an audio-based
method using only Fk and Rk as well as a visual-based
method using only Fk and Sk (Table 1). Given a frame
rate tfps of the skeleton data, the parameters of visual
feature extraction were set as follows: N = 20tfps, n =
60tfps/180. The parameters of the particle filter were set
as follows: L = 1000, ε = {0.0,0.02}, and b = 60. σφ
and σθ were experimentally chosen from {1.0,3.0,5.0}
and {0.01,0.02,0.03,0.04}, respectively, for each method
such that the average performance over all sessions was
maximized. σM of the conventional method [15] was ex-
perimentally chosen from {0.25,4.0,9.0} such that the
average performance was maximized. Note that QQQ =
diag[σ2

φ ,σ2
θ ]. All the methods were implemented as

single-threaded codes and executed in an online manner
on a standard desktop computer with Intel Core i7-4790
(3.6 GHz).

The error tolerance between an estimated beat time and
a ground-truth beat time was 100 msec, because we con-
sider two sounds with onset times that differ by less than
100 msec to be played at the same time [30]. We cal-
culated the precision rate (rp = Ne/Nd), recall rate (rr =
Ne/Nc), and F-measure (2rprr/(rp + rr)), where Ne, Nd ,
and Nc correspond to the numbers of correct estimates,
total estimates, and correct beats. Each method was ex-
ecuted thirty times for each dataset and the average per-
formance over the thirty trials was calculated because the
results depend on random initialization of a particle filter.

4.2. Experimental Results
The experimental results in Fig. 6 show that the average

F-measures (88.2% and 82.0%) obtained by the proposed
model (ε = 0.2) were significantly better than those ob-
tained by the other methods for both the motion capture
data and Kinect data. The average F-measures obtained
by the audio-based method were 85.9% and 79.0% and
those obtained by the visual-based method were 84.1%
and 70.5%. This indicates that the proposed method of
integrating acoustic and visual features indeed serves to
improve the beat-tracking performance and the use of au-
dio tempo likelihoods brings improvements (85.7% and
72.5%) to our previous method that extracts a unique au-
dio tempo before probabilistic integration [15]. The av-
erage F-measures for the Kinect data were considerably
lower than those for the motion capture data. This is be-
cause the number of joints used for the Kinect data was
lower than that used for the motion capture data and be-
cause the Kinect data had a lot of noise and fluctuations.

For the proposed model, the F-measure for ε = 0.2 was
larger than that for ε = 0 in all cases. In particular, let
us discuss cases in which the F-measure for the visual-
based method was considerably worse than that for the
audio-based method, e.g., Kinect data Nos.1, 4, and 6.
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Table 1. Compared methods and parameter values.

Methods Onset likelihoods Audio tempo likelihoods Visual tempo likelihoods
(acoustic feature) (acoustic feature) (skeleton feature)

Proposed � � �
Audio-based � �
Visual-based � �

1 2 3 74 5 6 8 Average

1 2 3 74 5 6 8 Average
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Fig. 6. Experimental results for two datasets with ε = 0 and ε = 0.2.

The visual-based method failed in these cases because it
was difficult to detect the stopping and turning frames of
joints from dances in which the hands and feet moved
very little. In these cases, we see that whereas the pro-
posed method with ε = 0 had F-measures close to those
for the visual-based method, the case with ε = 0.2 had F-
measures closer to those for the audio-based method. This
is probably because the smoothing by nonzero ε can avoid
excessive concentration of particles when the visual like-
lihoods are unreliable and thus the complementary infor-
mation of acoustic features can be more effectively used.
This confirms that it is effective to smooth visual likeli-
hoods for integration with acoustic features in the state-
space model.

Figure 7 shows four examples of the experimental re-
sults. In Figs. 7(a) and (c), both the visual and audio
likelihoods had peaks near the ground-truth tempos, and
we see that the estimated tempo gradually converged to
the ground-truth tempo in real-time beat tracking. On the
other hand, Figs. 7(b) and (d) show cases in which the
visual likelihoods were unreliable. Such cases may hap-
pen when there are occlusions due to frequent rotations of
the body or the dance motion involves only small move-
ments of the hands and feet. Even in such situations, the
estimated tempo gradually converged to the correct one
in both examples. The convergence time is much faster in
Fig. 7(d) than in Fig. 7(b) since the audio tempo likeli-
hoods had more peaks near the true tempo values.

4.3. Evaluation on Noise Robustness
To evaluate the effectiveness of audio-visual integration

in terms of noise robustness, we conducted an additional
experiment using noise-contaminated audio signals. In
this comparative experiment, crowd noise was added to
each song of the dance motion capture database [b] with
a different signal-to-noise (SNR) ratio of 20, 10, 0, −20,
or −10 dB. The proposed method of audio-visual integra-
tion was compared with the audio-based and visual-based
methods (see Table 1).

As shown in Fig. 8, the proposed method attained the
best performances in almost all SNR conditions except
for the SNR of −10 dB. In the SNRs of 20 and 10 dB,
the audio-based method worked better than the visual-
based method. In the SNRs of 0, −10, and −20 dB, on
the other hand, in which audio signals were severely con-
taminated, the visual-based method worked slightly better
than the audio-based method did, in which the proposed
method was better than or comparable to the visual-based
method. A reason why the performance was significantly
degraded in a low SNR condition is that the proposed and
visual-based methods need to use onset likelihoods ob-
tained from audio signals to determine beat times because
only tempos can be estimated from visual data.

4.4. Discussion
To realize a humanoid robot that can adaptively and

autonomously dance like humans, it will be necessary to
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Fig. 8. Experimental results for noise-contaminated audio
signals with motion capture data.

solve several problems in the future. First, real-time beat
tracking often fails for music audio signals with com-
plicated rhythms such as syncopation, and dance move-
ments, such as slowly-varying movements. In addition,
the response of the proposed beat-tracking method is not
fast enough because correct beat times cannot be esti-
mated stably before several tens of beat times have passed
from the beginning of a musical piece, as seen in Fig. 7.
Second, it is difficult to perform real-time beat tracking
for music audio signals recorded by a microphone at-
tached to the robot. One way to suppress self-generated
motor noise originating from the robot’s own dance move-

ments would be to extend a semi-blind source separation
method [31] such that noise sounds to be suppressed can
be predicted from the dancing movements.

5. Application to Robot Dancer

This section presents a entertainment humanoid robot
capable of singing and dancing to a song in an improvisa-
tional manner while recognizing the beats and chords of
the song in real time. Among various kinds of entertain-
ment robots that are expected to live with humans in the
future, music robots, such as robot dancers and singers,
are considered to be one of the most attractive applications
of music analysis techniques. Our robot mainly consists
of listening, dancing, and singing functions. The listening
function captures music audio signals and recognizes the
beats and chords in real time.

5.1. Internal Architecture
The listening, dancing, and singing functions are com-

municated among themselves in an asynchronous man-
ner through data streams managed by the Robot Operat-
ing System (ROS) (Fig. 9). The listening function, which

132 Journal of Robotics and Mechatronics Vol.29 No.1, 2017



Audio-Visual Beat Tracking for a Robot Dancer
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Device driver
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Fig. 9. System architecture of a singing robot dancer.

Fig. 10. Visual programming interface of HARK.

is implemented with HARK, an open-source robot audi-
tion software, takes music audio signals captured by a mi-
crophone and recognizes the beats and chords of those
signals in real time. The dancing function then receives
the recognition results and then determines dance move-
ments. The singing function also receives the recognition
results, determines vocal pitches and onsets, and synthe-
sizes singing voices by using a singing-voice synthesizer
called eVY1, Yamaha Corp. (MIDI device).

5.2. Listening Function
The listening function mainly consists of two mod-

ules: the beat tracking proposed in this paper and
chord estimation, which are performed in real time on
the HARK dataflow-type visual programming interface
(Fig. 10). The latter module classifies 12-dimensional
beat-synchronous chroma vectors extracted from music
spectra into 24 chords (12 root notes × 2 types (ma-
jor/minor)). To enhance the accuracy of chord estima-
tion, we used von Mises-Fisher mixture models rather
than standard Gaussian mixture models as classifiers [32].

5.3. Dancing and Singing Functions
The dancing function concatenates dance movements

according to the chord progression of a target musical
piece. We defined 24 different dance movements corre-
sponding to the 24 chords (Fig. 11). A proprietary device
driver called NAOqi should be linked to the ROS to send
control commands to the robot.

Cm C#m Dm D#m Em Fm

F#m Gm G#m Am A#m Bm

C C# D D# E F

F# G G# A A# B

Fig. 11. Predefined dance movements.

The singing function controls the eVY1 device to gen-
erate beat-synchronous singing voices, the pitches of
which match the root notes of the estimated chords. eVY1
can be controlled in real time as a standard MIDI device.

5.4. Discussion
We conducted an experiment using a sequence of sim-

ple chords (toy data) and a Japanese popular song (real
data) in a standard echoic room without a singing func-
tion. Each signal was played back from a loudspeaker.
The audio signals were captured through a microphone
behind the robot. The distance between the loudspeaker
and the microphone was about 1 m. Our robot has great
potential as an entertainment robot because we felt that
the robot generated chord-aware beat-synchronous dance
movements. The dance response, however, came after a
delay of two beats after new chords began because the
robot has no chord prediction function. The develop-
ment of prediction capability should be included in future
work. Another research direction would be to generate
more flexible and realistic dance movements by consider-
ing the body constraints of a robot. For example, it would
be more exciting for a robot to be able to incrementally
learn a human partner’s dance movements to mimic those
movements instead of generating predefined movements.
To achieve this, the joint movements of a humanoid robot
should be estimated such that the generated dancing mo-
tions are as close as possible to human motions, as in [7].

6. Conclusion and Future Work

This paper presented an audio-visual real-time beat-
tracking method for a robot dancer that can perform in
synchronization with music and human dancers. The pro-
posed method, which focuses on both music audio signals
and the joint movements of human dancers, is designed to
be robust to noise and reverberation. To extract acous-
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tic features from music audio signals, we estimate audio
tempo likelihoods over possible tempos and an onset like-
lihood in each frame. Similarly, we calculate visual tempo
likelihoods in each frame by analyzing the periodicity of
the joint movements. These features included in each beat
interval are gathered together into an observation vector
and then fed into a unified state-space model that con-
sists of latent variables (tempo and beat time) and ob-
served variables (acoustic and visual features). The pos-
terior distribution of the latent variables is estimated in an
online manner by using a particle filter. We described an
example implementation of a singing and dancing robot
using HARK robot audition software and the Robot Op-
erating System (ROS). The comparative experiments us-
ing two types of datasets, namely motion capture data and
Kinect data, clearly showed that the probabilistic integra-
tion of intermediate information obtained by audio and
visual analysis significantly improved the performance of
real-time beat tracking and was robust against noise.

Future work will include improvement of audio-visual
beat tracking, especially when Kinect is used, by explic-
itly estimating the failure or success of joint-position es-
timation in a state-space model. When microphones are
attached to a robot and the recorded music signals are con-
taminated by self-generated noise, semi-blind indepen-
dent component analysis (ICA) [31] is a promising so-
lution, canceling such kinds of highly predictable noise
(see [5]). In addition, it is important to estimate bar lines
and relative positions of beat times in a bar by extending
the latent space of a state-space model to generate more
rhythm-aware dance movements. To develop a more ad-
vanced robot to dance with humans, we plan to conduct
subjective experiments using various kinds of music.
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