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This paper presents the design and implementation
of a two-stage human-voice enhancement system for
a hose-shaped rescue robot. When a microphone-
equipped hose-shaped robot is used to search for a vic-
tim under a collapsed building, human-voice enhance-
ment is crucial because the sound captured by a mi-
crophone array is contaminated by the ego-noise of the
robot. For achieving both low latency and high quality,
our system combines online and offline human-voice
enhancement, providing an overview first and then de-
tails on demand. The online enhancement is used for
searching for a victim in real time, while the offline
one facilitates scrutiny by listening to highly enhanced
human voices. Our online enhancement is based on an
online robust principal component analysis, and our
offline enhancement is based on an independent low-
rank matrix analysis. The two enhancement methods
are integrated with Robot Operating System (ROS).
Experimental results showed that both the online and
offline enhancement methods outperformed conven-
tional methods.

Keywords: hose-shaped rescue robot, blind human-voice
enhancement, search and rescue, robot audition

1. Introduction

Hose-shaped rescue robots have been developed for
gathering information in narrow spaces under collapsed
buildings where humans or animals cannot enter [1–3].
They have thin, long, and flexible bodies and have self-
locomotion mechanisms. The Active Hose-II robot [2],
for example, has small powered wheels enabling it to
move forward, and the Active Scope Camera robot [1, 3]
can move forward by vibrating the cilia covering its body
(see Fig. 1). In 2008, the Active Scope Camera robot
was used in an actual search-and-rescue mission in Jack-
sonville, Florida, USA [4].

Rescue robots should keep moving because a rescue ac-
tivity is a race against time [5]. Owing to the ego-noise
of the robot, it is difficult for the remote operator to hear
the voice of a victim at an unseen and distant place [6].
Stopping the actuators of the robot periodically so that
the operator can hear a human voice is an inefficient use
of search time, and does nothing to help the operator hear
a voice while the robot is moving. Real-time human-voice
enhancement should cope with ego-noise that changes dy-
namically according to the movements of wheels or vi-
brators and the friction between the robot’s body and sur-
rounding materials. However, conventional enhancement
methods [7–10] cannot work effectively because they as-
sume the noise stable or known in advance.
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Fig. 1. A hose-shaped rescue robot that has eight-channel
microphone array and is covered by cilia for moving.

A human-voice enhancement system for a hose-shaped
rescue robot requires low latency for search-and-rescue
activities. It also needs to address extremely low signal-
to-noise ratio (SNR) conditions because the ego-noise
generated from the body of the robot is much louder at
robot-mounted microphones and often masks targeted hu-
man voices. Conventional blind source separation (BSS)
methods also have a trade-off between latency and en-
hancement quality [11–14].

This paper presents the design and implementation of
a two-stage human-voice enhancement system for a hose-
shaped rescue robot. The system combines online real-
time enhancement and offline high-quality enhancement
to attain low latency and high quality. The online en-
hancement facilitates hearing a trapped victim’s voice in
real time, while the offline one facilitates scrutiny by lis-
tening to highly enhanced human voices.

To enhance a human voice in real-time, we developed
an online robust principal component analysis (RPCA)-
based enhancement. RPCA can decompose an input am-
plitude spectrogram into frequency components that ap-
pear repeatedly (e.g., the ego-noise of a hose-shaped res-
cue robot) and other components that occur infrequently
(e.g., a human voice) without prior learning [11, 15]. As
RPCA is designed for a single-channel input signal, we
first apply RPCA to each microphone input of the micro-
phone array, and then we combine the results of the mi-
crophones to improve the enhancement performance.

To obtain a high-quality enhancement result, we use an
offline independent low-rank matrix analysis (ILRMA)-
based enhancement [12, 16]. Although RPCA can work
in real-time without prior learning, its enhancement result
is distorted and includes artificial noise (called musical
noise) caused by its non-linearity. As ILRMA is a lin-
ear BSS method, the separation results are not distorted
by musical noise [12, 16]. We first apply ILRMA to a
multichannel audio input, and the estimated human-voice
sound is further refined by postfiltering.

The rest of this paper is organized as follows. Section 2
presents the design and implementation of our human-
voice enhancement system. Section 3 reports the experi-
mental results obtained using an actual hose-shaped robot.
Section 4 summarizes the key findings and mentions fu-
ture research. It should be noted that the multi-channel
online enhancement in this paper is partially based on an
international conference paper [6] written by some of the
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Fig. 2. Overview of two-step human-voice enhancement system.

authors. The contribution of this study is on the design,
implementation, and evaluation of a two-stage human-
voice enhancement system.

2. Two-Stage Human-Voice Enhancement
System for a Hose-Shaped Rescue Robot

In this section, we first discuss the design criteria for
our system that combines online and offline enhance-
ments; then, we describe the online and offline enhance-
ment methods used in the system. Finally we explain the
implementation of our system based on Robot Operating
System (ROS) [17].

2.1. Design Criteria
The proposed system combines online real-time

human-voice enhancement and offline high-quality en-
hancement, providing an overview first and then details
on demand (Fig. 2). The system provides real-time
enhanced signals to a remote operator searching for a
trapped victim. When the remote operator wants to make
the enhanced voice clearer, such as when he detects a very
weak human voice in a real-time result, the system pro-
vides an offline high-quality enhanced signal for the final
several seconds of audio input.

The idea of an overview first and then details on
demand was originally proposed by Schneiderman as
an overview first zoom and filter, then details on de-
mand [18]. The original version was developed as a
guideline for designing an interactive visualization sys-
tem. In the case of a human-voice enhancement system
for a rescue robot, the real-time enhanced signal to which
the zoom and filter are already applied should be pre-
sented to a remote operator by default. Therefore, our sys-
tem has two steps, namely, 1) providing online enhance-
ment as an overview, and 2) providing offline enhance-
ment as details.

2.2. Hose-Shaped Robot with a Microphone Array
Figure 1 shows the hose-shaped rescue robot used in

this study. The body is made with a corrugated tube
38 mm in diameter and 3 m long. This robot has M = 8
microphones positioned on its body at intervals of 40 cm
and has a USB video camera at the tip. The audio sig-
nals of the microphones are captured at 16 kHz and 24-bit
sampling by a synchronized multichannel A/D converter
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Fig. 3. Configuration of microphones and vibrators on the
hose-shaped rescue robot.

Input Sparse component Low-rank component 

Voice Voice

Fig. 4. RPCA separates ego-noise and a human voice as
low-rank and sparse components, respectively. Input is a
mixture of a human voice and ego-noise of the hose-shaped
robot.

called RASP-ZX (System in Frontier Corp.). The body
was rotated at 90◦ after installing each microphone in
order to avoid having all microphones obstructed by the
ground. This robot moves forward by a mechanism in the
same way as that of the Active Scope Camera robot [1]:
the entire surface of the robot is covered by cilia, and the
robot moves forward by vibrating them. This vibration is
generated by seven vibration motors installed in the robot
(Fig. 3).

2.3. Online Human-Voice Enhancement
The online human-voice enhancement is conducted

based on an online RPCA [6, 11].

2.3.1. Motivation
The online enhancement is required to work in real

time and to address the deformation of the microphone
array, the layout of which changes as the robot moves.
The conventional online BSS methods, which separate
sound sources based on the phase differences among mi-
crophones, assume that the array layout is stable or known
in advance [14, 19, 20]. Although there are several of-
fline BSS methods that track the time-varying phase dif-
ferences or array layout [21], it is difficult to conduct such
tracking in real time and in an online manner.

To avoid using phase information that is sensitive to the
array layout, the proposed online enhancement method is
based on an online RPCA that works on an audio am-
plitude spectrogram [11, 15, 22]. RPCA can separate the
ego-noise and human voice based on the low-rankness
and sparseness of their amplitude spectrograms instead
of their phase information (Fig. 4). As the ego-noise of
our robot mainly consists of the periodic sounds gener-
ated by vibrators and friction between the robot body and
surrounding materials, it has a low-rank tendency. The
human voice, on the other hand, has sparse tendency be-
cause it is non-stationary and infrequently appears. These
tendencies enable an online RPCA to separate the ego-
noise and human voice without any prior training.

In this study, we improve the enhancement perfor-
mance of online RPCA by combining the single-channel
online RPCA results of multiple microphones. Because
the microphones and vibrators are alternately installed on
the long body, we can assume that each microphone cap-
tures the different ego-noise generated by different vibra-
tors. The target voice, on the other hand, is assumed to
be similarly recorded by all the microphones because the
sound source is single and it propagates in the air. Based
on these assumptions, we first apply online RPCA to each
microphone recording and then extract the components
common among the single-channel results.

2.3.2. Problem Statement

The online human-voice enhancement problem is de-
fined as follows:

Input: M-channel synchronized amplitude spectra
yyy1 j, . . . ,yyyM j ∈R

I

Output: denoised amplitude spectrum sss j ∈R
I

where I and j are the number of frequency bins and the
time frame index, respectively. The input amplitude spec-
tra are obtained by taking the absolute values of the short-
time Fourier transform (STFT) of captured signals.

2.3.3. Overview of Online RPCA

The proposed method uses an online extension of batch
RPCA [11]. The input amplitude spectrum of each chan-
nel yyym j is decomposed to a low-rank component lllm j and
sparse component sssm j by conducting the online RPCA:

yyym j ≈ lllm j + sssm j. . . . . . . . . . . . (1)

The ego-noise that changes periodically is separated into
the low-rank component, and the voice signal and other
sparse noise are separated into the sparse component [15].

To explain online RPCA that is independent of the mi-
crophone index m, in the rest of this section we leave it
out. Let I × j matrices of input, low-rank, and sparse
spectrograms be YYY = [yyy1, . . . ,yyy j], LLL = [lll1, . . . , lll j], and SSS =
[sss1, . . . ,sss j], respectively. The original batch RPCA [23]
decomposes the input matrix into low-rank and sparse ma-
trices by solving the following problem:

min
LLL,SSS

{
1
2
‖YYY −LLL−SSS‖2

F +λ1‖LLL‖∗+λ2‖SSS‖1

}
. (2)

where ‖ · ‖F , ‖ · ‖∗, and ‖ · ‖1 represent the Frobenius, nu-
clear, and L1 norms, respectively, and minx f (x) is the
minimum point x of f (x). The parameter λ1 > 0 con-
trols the low-rankness of the low-rank matrix LLL, and the
parameter λ2 controls the sparseness of the sparse matrix
SSS. As this optimization, particularly the second term of
the nuclear norm, accesses all samples of the input ma-
trix, it is difficult to solve this RPCA problem in an online
manner [23].

To overcome this difficulty, the online RPCA [11]
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solves the following alternative problem:

min
WWW ,HHH,SSS

{
1
2
‖YYY −WWWHHHT −SSS‖2

F

+
λ1

2
(‖WWW‖2

F +‖HHH‖2
F)+λ2‖SSS‖1

}
(3)

where WWW ∈R
I×K and HHH = [hhh1, . . . ,hhh j]T ∈R

j×K (K < I, j)
represent the basis vectors of the low-rank spectrogram
and its coefficient vectors (LLL = WWWHHHT ). This alternative
problem is derived by using the upper bound of the nu-
clear norm ‖LLL‖∗ as follows [11, 24]:

‖LLL‖∗ = ‖WWWHHH‖∗ ≤ inf
WWW ,HHH

{
1
2
‖WWW‖2

F +
1
2
‖HHH‖2

F

}
. (4)

where infx f (x) is the infimum point x of f (x). The on-
line RPCA problem (Eq. (3)) can be solved in an online
manner by minimizing its following transformations:

f j(WWW) =
1
s

j

∑
j′=1

l(yyy j′ ,LLL)+
λ1

2 j
‖WWW‖2

F . . . (5)

l(yyy j,WWW) = min
hhh j ,sss j

{
1
2
‖yyy j−WWWhhh j− sss j‖2

F

+
λ1

2
‖hhh j‖2

F +λ2‖sss j‖1

}
. (6)

This cost function is minimized using an off-the-
shelf solver and block-coordinate descent with warm
restarts [11].

2.3.4. Online Normalization of Input Spectrum
The ego-noise of our hose-shaped rescue robot has

large powers at low frequency bins. As the online
RPCA estimates the low-rank components with the same
weight for all the frequency bins (owing to the first
term of Eq. (3)), it over-fits to the low frequency bins.
We therefore apply a normalization coefficient gggm j =
[gm1 j, . . . ,gmI j]T ∈R

I to the input yyym j:

y′mi j =
1

gmi j
ymi j. . . . . . . . . . . . (7)

As the peaks of the ego-noise changes depending on
the environment around the robot, the proposed method
learns the normalization coefficient in an online manner.
We assume that the average ego-noise does not change
frequently and drastically; therefore, the normalization
coefficient is updated as follows:

gggm j = (1−α)gggm( j−1) +αyyym j . . . . . . . (8)

where α is a learning weight parameter that is set to
a small value (e.g., 1.0× 10−2). The flowchart of the
channel-wise human-voice enhancement based on the on-
line RPCA is summarized in Fig. 5.

2.3.5. Combining Online RPCA Results
The sparse components of the microphones, sssm j =

[sm1 j, . . . ,smI j]T , are integrated to extract the common

Normalization

Input

Normalization gain

Normalized input

Sparse
component

Low-rank 
component

Online RPCA

Smoothing

Fig. 5. Human-voice enhancement using channel-wise on-
line RPCA for each microphone input signal.

Online
RPCA

Online
RPCA

Online
RPCA

Extract common 
component iFFTFFT

FFT

FFT

Fig. 6. Overview of online human-voice enhancement.

component, sss j = [s1 j, . . . ,sI j]T (Fig. 6). Because the ego-
noise is generated from the whole body of a robot and
the human voice is propagated in the air, this integration
is based on the assumption that the target human-voice
is similar at each microphone whereas the ego-noise dif-
fers at different microphones. Each sparse component in-
cludes musical noise and sparse noise measured when the
corresponding microphone touches the environment. The
integration is conducted by taking a median at each fre-
quency bin as follows:

si j = Median(s1i j, . . . ,sMi j) for all i = 1, . . . , I (9)

where Median(· · ·) represents the median of the argu-
ments.

2.4. Offline Human-Voice Enhancement
The offline human-voice enhancement is conducted by

applying ILRMA to a multichannel audio input, and the
estimated human-voice signal is further refined by postfil-
tering.

2.4.1. Motivation
BSS is a technique taken to separately estimate the

sources without knowing any prior information, namely,
the sensor positions and source locations. It is well known
that BSS, which uses multichannel signals, is one of the
effective algorithms for human-voice enhancement be-
cause it utilizes the spatial information of sound sources,
e.g., the difference in directions of arrival of sources, as
well as the spectral characteristics of sources. This prop-
erty is a strong motivation to apply the BSS technique
into the hose-shaped rescue robot, where multiple micro-
phones with unknown locations are attached on the flexi-
ble robot body.

Journal of Robotics and Mechatronics Vol.29 No.1, 2017 201



Bando, Y. et al.

In order to solve the BSS problem, many methods, e.g.,
independent component analysis (ICA) [25, 26] have been
proposed so far. Therefore, we should carefully select
the most appropriate BSS algorithm based on the specific
signal and acoustic characteristics assumed in the rescue
robot. The dominant factors for ego-noise are the vibra-
tion sound generated by vibrating motors and fricative
sounds. Thus, we assume that ego-noise can be efficiently
expressed by nonnegative matrix factorization (NMF) be-
cause the time-frequency structure is obtained by repeat-
ing several types of similar spectra. In addition, because
the hose-shaped rescue robot moves very slowly and the
input signal is short enough for our use, the source separa-
tion using the inverse of the linear time-invariant mixing
system can be available, owing to the fact that the posi-
tional relationship between the ego-noise sources and the
microphones barely changes. These assumptions greatly
motivate us to introduce the ILRMA [12, 16] proposed by
some of the authors for the human-voice enhancement of
the rescue robot. Moreover, as the separation performance
is often insufficient, particularly for the purpose of actual
acoustic sound separation, we propose an extended sys-
tem that combines ILRMA with the statistical postfilter-
ing technique.

2.4.2. Overview of ILRMA

First, several preliminaries and definitions for signals
and system, which are different from those of the online
enhancement, are provided. The number of sources and
the number of microphones are assumed to be M. We de-
scribe multichannel sound source signals, observed sig-
nals, and separated signals in each time-frequency slot as
follows:

sssi j = (si j,1 · · ·si j,M)T , . . . . . . . . . (10)

xxxi j = (xi j,1 · · ·xi j,M)T , . . . . . . . . . (11)

yyyi j = (yi j,1 · · ·yi j,M)T , . . . . . . . . . (12)

where 1 ≤ i ≤ I (i ∈N) describes the frequency index,
1≤ j ≤ J ( j ∈N) describes the time index, T denotes the
vector transpose, and all entries for these vectors are com-
plex values. We can approximately represent the observed
signals as

xxxi j = AAAisssi j, . . . . . . . . . . . . . . (13)

where AAAi = [aaai,1 · · ·aaai,M] expresses the mixing matrix of
the observed signals (aaai,m is often called the steering vec-
tor). When WWW i = [wwwi,1 · · ·wwwi,M]H refers to the demixing
matrix, the separated signal yyyi j is represented as

yyyi j =WWW ixxxi j, . . . . . . . . . . . . . (14)

where wwwi,m is the demixing filter, and H is the Hermitian
transpose. The optimization of the demixing matrix WWW i
can be performed so that each component of yyyi j becomes
mutually independent.

Next, the formulation of ILRMA is derived as indicated
below. In ILRMA, the observed signal is represented by

the correlation matrix between the channels, Xi j, as

Xi j = xxxi jxxxH
i j . . . . . . . . . . . . . (15)

The separation model, X̂i j, that approximates Xi j is repre-
sented as

Xi j ≈ X̂i j = Σk(ΣmHi,mzmk)tikvk j, . . . . . (16)

where m = 1, . . . ,M is the index of sound sources, and
k = 1, . . . ,K is the index of the spectral bases for NMF.
Hi,m is an M×M spatial covariance matrix for each fre-
quency i and source m, and Hi,m = aaai,maaaH

i,m is limited to a
rank-1 matrix. The parameter, zmk ∈R[0,1], is a weight for
distributing K NMF bases (frequently appearing spectra)
to each sound source. It shows that the k-th basis con-
tributes to only the m-th source. In addition, tik ∈ R+ and
vk j ∈ R+ are the elements of the basis matrix TTT and the
activation matrix VVV ; thus TTTVVV is the modeled spectrogram
via NMF representation.

ILRMA models each sound source spectrogram as a
low-rank nonnegative matrix and decomposes the sources
based on their independent nature. This results in the min-
imization problem of the following Q function:

Q = ∑
i, j

[
∑
m

|yi j,m|2
∑k zmktikvk j

−2 log |detWWW i|

+∑
m

log∑
k

zmktikvk j

]
, . . . . . . (17)

where the first and second terms in the right side are re-
lated to the independence of sources, and the first and
third terms are related to the low-rank modeling of the
sources. To minimize the Q function while keeping non-
negativity of tik and vk j, the auxiliary function method
(also known as majorization-minimization method) can
be applied. The update rules of the demixing matrix WWW i
to obtain the separated signal yyyi j are as follows [12]:

ri j,m = Σkzmktikvk j, . . . . . . . . . . (18)

Vi,m =
1
J

Σ j
1

ri j,m
xxxi jxxxH

i j , . . . . . . . . (19)

wwwi,m ← (WWW iVi,m)−1 eeem, . . . . . . . . . (20)

where eeem is the unit vector and the only m-th element
equals 1. The partition function zmk, the elements of the
basis matrix, tik, and those of the activation matrix, vk j,
are updated as follows.

zmk ← zmk

√√√√Σi, j|yi j,m|2tikvk j
(
Σk′zmk′tik′vk′ j

)−2

Σi, jtikvk j
(
Σk′zmk′tik′vk′ j

)−1 . (21)

tik ← tik

√√√√Σ j,m|yi j,m|2zmkvk j
(
Σk′zmk′tik′vk′ j

)−2

Σ j,mzmkvk j
(
Σk′zmk′tik′vk′ j

)−1 . (22)

vk j ← vk j

√√√√Σi,m|yi j,m|2zmktik
(
Σk′zmk′tik′vk′ j

)−2

Σi,mzmktik
(
Σk′zmk′tik′vk′ j

)−1 . (23)

From the equations above, we find the separated signals
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by updating WWW i, zmk, tik, and vk j alternately and repeat-
edly. Finally, we restore the signal scale by applying a
projection-back technique.

2.4.3. Combination of Postfiltering
In most cases of BSS- or NMF-based signal separation,

a statistical postfilter is applied to attain improvement in
human-voice enhancement performance. In this study,
we propose to use a generalized minimum mean-square
error short-time spectral amplitude (MMSE-STSA) es-
timator [27]. The generalized MMSE-STSA estimator
calculates the spectrum gain that minimizes the average
squared error between the true target signal and the es-
timated signal given the a priori probability distribution
of the signal (see [27] for more detailed algorithm). In
the estimator, it is necessary to obtain the power spectrum
variance of the nontarget signal, and we can use the sep-
arated output from ILRMA, ∑m′ yi j,m′ , where m′ denotes
the nontarget source components, for this purpose.

2.4.4. Further Extension
ILRMA assumes the existence of an inverse of the

mixing system, i.e., the demixing matrix should be de-
termined as a linear time-invariant system. Therefore,
the proposed method often suffers from adverse effects
caused by the time-variant nature of the mixing system.
To address this problem, a noise-canceler-based compen-
sation is developed as our ongoing research, where the
time-domain noise component (inverse Fourier transform
of ∑m′ yi j,m′) is optimally subtracted from the noisy target
component based on time-variant impulse response esti-
mation (see [28] for more details).

Another possible extension is the introduction of a basis
supervision. In the application of robot audition, we can
often obtain a prototype of the ego-noise signal that can
be used as training data in advance. This property is very
suitable for embedding the supervision spectral bases into
ILRMA, encouraging the rapid convergence of the algo-
rithm [29].

2.5. Implementation of the Enhancement System
We implemented the two-stage human-voice enhance-

ment system using two laptop computers. One was used
for controlling the hose-shaped robot, capturing the video
and audio streams, and conducting the online human-
voice enhancement. The other was used for conducting
the offline human-voice enhancement. The online and of-
fline enhancements were conducted separately on these
two computers so that the offline enhancement could use
the full resource of the computer. The operating sys-
tem for these computers was a Linux OS called Ubuntu
14.04.1

The entire system was implemented on Robot Oper-
ating System (ROS) [17]. ROS provides hardware ab-
straction and application programming interfaces (APIs)
for message passing among multiple modules. A robot

1. http://www.ubuntu.com/ [Accessed July 24, 2016]

system constructed on ROS forms a network of exe-
cutable programs called nodes. Each node communicates
with other nodes via topics, which are data buses over
which the nodes exchange messages. Each topic is named
uniquely and the nodes communicate by publishing mes-
sages to a topic and subscribing to the topic. A ROS sys-
tem can be easily extended to a multiple-computer sys-
tem because this topic-based communication is imple-
mented on (transmission control protocol/internet proto-
col) TCP/IP and the name resolution of each computer is
automatically conducted by ROS with the topic name.

The online enhancement was implemented as a ROS
node with a robot audition software called HARK2 [30].
HARK provides various online signal processing mod-
ules, such as those needed for sound source localization,
separation, and recognition. Because these modules are
implemented by using C++ and connected with each
other by function calls, HARK attains a real-time low-
overhead processing. By using a graphic user interface
(GUI) tool called HARK Designer, users of HARK can
easily configure the connections among the modules to
make a HARK system suitable for their robots. Although
most of the separation and enhancement methods imple-
mented in HARK cannot be used with a hose-shaped
robot because they assume that microphone locations are
known in advance [7, 19], we used HARK’s fundamen-
tal functions such as Fourier transforms and ROS com-
munications. We implemented online RPCA and median
integration modules as HARK modules using C++ and
a linear algebra library called Eigen3.3 These modules
were combined to form a single ROS node that enhances
human voice in an online manner.

The offline enhancement, on the other hand, was im-
plemented using MATLAB.4 Because a longer time can
be spent for the offline enhancement than the online one,
we gave weight to the maintainability instead of the real-
time processing. MATLAB provides functions for lin-
ear algebraic operations as its standard functions. More-
over, with a minimal change of the MATLAB source
code, we can easily introduce multi-core processing and
general-purpose computing on graphics processing units
(GPGPU).

Figure 7 shows a diagram of the proposed two-
stage human-voice enhancement system. The audio
capture node captures the eight-channel synchro-
nized audio signal with the microphone array on our
robot, and publishes the signal to the audio signal
topic. The HARK node, which performs the on-
line human-voice enhancement, subscribes to the audio
signal topic and publishes the enhanced signal to
the enhanced signal topic. The audio signal
published to the enhanced signal topic is played
back by the playback node. To perform the offline
enhancement, the WAV file saver node stores the
audio stream published to the audio signal topic,

2. Honda Research Institute Japan Audition for Robots with Kyoto Univ.
3. http://eigen.tuxfamily.org/ [Accessed July 24, 2016]
4. http://www.mathworks.com/products/matlab/

[Accessed July 24, 2016]
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Motor controller
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Audio mixer

Analog audio

A
nalog audio

Enhanced signal topic

Fig. 7. Configuration of the two-stage human-voice enhancement system.

and writes a WAV file of the last five seconds when this
node is required to stop. When the operator wants an of-
fline enhancement signal, it is obtained by quitting the
WAV file saver node, running the offline enhance-
ment, and playing back the resulting WAV file. Because
the online and offline processes are conducted on differ-
ent computers, their output audio signals are downmixed
for presentation to the remote operator.

3. Experimental Evaluation

In this evaluation, the performances of online and of-
fline enhancement methods were first evaluated separately
with simulated recordings because the inputs of these two
methods are different. The online enhancement is used for
a streaming input and the offline enhancement is used for
a short recording extracted from the streaming input. Af-
ter independent evaluation of each method, they are com-
pared using an actual recording captured in a simulated
collapsed building.

3.1. Evaluation 1: Online Enhancement
This subsection reports the performance of the online

human-voice enhancement.

3.1.1. Experimental Settings
This experiment was conducted in a mockup rubble

field as shown in Fig. 8(a). Wooden obstacles and sev-
eral plastic plates were placed in the upper half space of
the field. Our robot was inserted into this space from the
top of the field. In this evaluation the ego-noise and target
voice were recorded separately and then mixed at SNRs
from −20 dB to +5 dB. The ego-noise was recorded for
60 seconds while inserting the robot into the rubble. The
arrangement of the robot and the loudspeaker from which
the target voice was emitted is shown in Fig. 8(b). We
tested two loudspeaker positions, i.e., middle and bottom.
The target voice data consisted of two recordings of male

(a) Photograph of the field

Bottom

Middle

2.4 [m]

2.
1 

[m
]

1.
7 

[m
]

(b) Configuration of the field

Fig. 8. Mockup rubble field used in Evaluation 1. Two
arrangements of the loudspeaker were tested.

voices and two recordings of female voices, each with du-
ration of one minute. Low-noise target voice signals were
generated by convoluting the clean voice recorded in an
anechoic chamber and the impulse response recorded with
the loudspeaker.

The human-voice enhancement performance was eval-
uated using signal-to-distortion ratio (SDR) and signal-
to-interference ratio (SIR) [31]. SDR measures the over-
all quality of the retrieved enhancement result, while SIR
measures how much the interference due to the ego-noise
is suppressed. They were measured using a Python library
called MIR-EVAL [32].

The proposed method (Median-ORPCA) was com-
pared with the following three methods: histogram-based
recursive level estimation (HRLE) [8], Tip-ORPCA, and
Mean-ORPCA. HRLE is one of the conventional spec-
trum subtraction methods. Because HRLE works with
a single-channel input, we evaluated the HRLE result of
the tip (8th) microphone. We used HRLE implemented in
HARK. Tip-ORPCA was ORPCA applied to the record-
ings of the tip microphone. The results of Mean-ORPCA
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Fig. 9. SDR and SIR results obtained in Evaluation 1.

were the results obtained by taking mean values of all the
microphone results of online RPCA. The frame length of
STFT was set to 512 samples, and the frame shift length
was 160 samples. The λ1 and λ2 of ORPCA were set to
8.0/257× 10−3. The other parameters of the proposed
method were decided experimentally, and those of HRLE
were set to the default values of the HARK implementa-
tion.

3.1.2. Experimental Results
As shown in Fig. 9(a), in both the two loudspeaker con-

ditions, the SDRs of the proposed method were higher
compared to those of the other methods at the SNR con-
ditions between −20 dB and 0 dB. Moreover, the SIR of
the proposed method was more than 8.2 dB higher than
those of the other methods under all the test conditions.

The SIR measures how much the ego-noise is sup-
pressed. As shown in Fig. 10, the suppressed spectro-
gram of the proposed method contains less noise than
those of the other suppressed spectrograms. As shown
by the vertical-stripe patterns in Fig. 10(b), the ego-noise
changes with a frequency of 30 Hz. Because HRLE rep-
resents the ego-noise as a single-spectrogram template,
it leaves the fluctuation residuals of the ego-noise as
vertical-stripe patterns (Fig. 10(f)). The result of the pro-
posed method, on the other hand, contains less noise than
those of the other methods (Fig. 10(c)).

3.2. Evaluation 2: Offline Enhancement
The offline human-voice was evaluated in the same

mockup rubble field as Evaluation 1. In this evalua-
tion, the input signals were five-second signals including
human-voice signals and ego-noise of the robot.

3.2.1. Experimental Settings
We developed a computationally efficient offline sys-

tem to consider the real-field robot operation that requires
a feasible calculation. To achieve this, in this experiment,
the number of bases for each source in ILRMA was set to

Fig. 10. Examples of online enhancement results obtained
when the loudspeaker was at the middle of the field (“Mid-
dle”) and the SNR was set to −10 dB. A female voice was
emitted between 1.0 and 2.5 sec.

one which is equal to the case of independent vector anal-
ysis (IVA) [33]. Moreover, as for the postfilter, we set
specific parameters in the generalized MMSE-STSA to
obtain a “spectral-subtraction-type” gain estimator. Then,
a smoothing technique [34] was applied to improve the
sound quality. The above mentioned simplifications sig-
nificantly reduced the computational cost, while avoiding
serious degradation in the separation performance [35].

The flexible robot had eight microphones with un-
known locations, which recorded the observed signals
consisting of one target voice signal and ego-noise. The
target signal was imitated using clean male and female
voice signals with real-recorded impulse responses from
the source to each microphone. The multichannel ego-
noise signals were independently recorded with the ac-
tual dynamics of the robot, and were added into the target
voice signals.

The rest of the experimental conditions is as follows.
The total length of the observed signals was five sec-
onds. The ego-noise and target voice signals were mixed
at SNRs varying from−20 dB to +5 dB. The frame length
of STFT was set to 2048 samples, and the frame shift
length was 512 samples. The number of iterations for pa-
rameter updating in ILRMA (IVA) was 100.

3.2.2. Experimental Results
Figure 11 shows the SDR and SIR scores [31] for each

condition, where we compare the quality of signals of
observation (“Input”), simple IVA (“IVA”), and the pro-
posed method (“IVA+Postfilter”). We can confirm that
IVA can increase the SDR and SIR scores to some extent,
particularly for the case of low input SNR condition, i.e.,
−10 dB. In addition, the proposed method significantly
outperforms the other methods, resulting in 1.8–9.8 dB
improvement in SDR and 11.3–18.5 dB improvement in
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Fig. 11. SDR and SIR results obtained in Evaluation 2.

Fig. 12. Examples of offline enhancement results obtained
when the loudspeaker was at the middle of the field (“Mid-
dle”) and the SNR was set to −10 dB. A male voice was
emitted between 2.0 and 5.0 sec.

SIR from IVA when the input SNR was between −15 dB
and 0 dB.

Figure 12 shows an example of spectrograms obtained
in this experiment. This clarifies the significant contribu-
tion of the postfilter and shows the efficacy of the pro-
posed combination of BSS and postfiltering.

3.3. Evaluation 3: Comparison of Online and
Offline Enhancements

We compared the proposed online and offline human-
voice enhancement methods using actual data recorded in
a simulated collapsed building.

3.3.1. Experimental Settings
This experiment was conducted in a simulated col-

lapsed building at Tohoku University, Miyagi, Japan in
2016. The simulated building consisted of three sections:
1) an attic, 2) a second floor, and 3) a first floor. As shown
in Fig. 13, the hose-shaped rescue robot was inserted into
the second floor from the attic section and penetrated into
the first floor. A mannequin mockup victim was placed in
the first floor. This building simulated a Japanese wooden
house collapsed by an earth quake. In the second floor

(a) The second floor

(b) The first floor

(c) Mockup victim and loudspeaker

Fig. 13. The robot was placed into a simulated collapsed
building with a loudspeaker next to a mannequin.

Table 1. PESQ results in MOS-LQO.

Input signal Online enhancement Offline enhancement
(tip microphone) (Sec. 2.3) (Sec. 2.4)

1.092 1.126 1.229

were six fallen wooden beams, and in the first floor a
wooden shelf had fallen on the mannequin. A loudspeaker
was placed next to the mannequin for emitting a target
voice signal (Fig. 13(c)). The target voice signal was a
recording of a female voice that was 30-second long. We
recorded the target voice signal while the vibrators of the
robot were turned on.

The online and offline systems were compared us-
ing perceptual evaluation of speech quality (PESQ) [36].
PESQ is designed for evaluating the speech quality
in telephones and telecommunication. As the original
PESQ only measures the frequency band from 300 Hz to
3.5 kHz, we used an extension of PESQ called wideband-
PESQ which measures the frequency band from 100 Hz
to 7.0 kHz. The wideband-PESQ performance is repre-
sented in mean opinion scores of listening quality objec-
tive (MOS-LQO), which range from 1.02 to 4.56.

3.3.2. Experimental Results
Table 1 shows the PESQ results of the proposed online

and offline enhancement methods. The online enhance-
ment improves by 0.034 in MOS-LQO from the raw input
recording. Moreover, the offline enhancement improves
by 0.137 in MOS-LQO from the raw input. As shown in
Fig. 14, both the online and offline methods reduce the
ego-noise of the robot and enhance the human-voice. The
result of the online enhancement has musical noise ap-
pearing as salt-and-pepper noise in the spectrogram. The
result of the offline enhancement has much less musical
noise than the online result.
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Fig. 14. Results of online and offline enhancement of data recorded in a simulated collapsed building.

Because of the difference in processing time, our sys-
tem usually outputs online enhancement results, and out-
puts an offline result of a short-time recording only when
the operator wants a clearer result. It should be noted
that in the offline enhancement, our target value for the
real-time factor is less than four (e.g., five-second data
should be processed within 20 seconds), and consequently
we should limit the number of iterations in the IVA part
within 20. The resultant computational time spent in this
signal separation experiment was approximately 17 sec-
onds for the IVA part and 1 second for the postfiltering
part or a total of less than 20 seconds using an Intel Core
i5-5200U (2-core, 2.20 GHz) laptop computer. Thus, this
system achieves the target real-time factor of four. On the
other hand, in the online enhancement, our target value for
the real-time factor is less than one. The elapsed time for
the online enhancement of a 60-second input signal us-
ing an Intel Core i7-4500 CPU (2-core, 1.8 GHz) laptop
computer was 41 seconds. This value was small enough
to allow the online enhancement to work in real time.

4. Conclusion

This paper presented the two-stage human-voice en-
hancement system for a hose-shaped rescue robot. Our
system combines online and offline human-voice en-
hancement to achieve low latency and high quality. The
online enhancement is used for searching for a victim in
real-time while the offline one facilitates scrutiny by lis-
tening to highly enhanced human voices. The online en-
hancement is conducted by applying online RPCA to each
microphone recording and combining the results. The of-
fline enhancement is conducted by applying ILRMA and
postfiltering. These two methods were integrated on ROS
for attaining a real-time system, multi-computer process-
ing, and buffering audio recordings. The experimental

results showed that both online and offline enhancement
methods outperformed the conventional methods.

We have two directions for future research, namely, 1)
developing an efficient GUI, and 2) developing an auto-
matic voice activity detection (VAD). As the current sys-
tem provides only a command line interface and enhanced
audio signal, the usability of our system could be im-
proved by implementing a GUI that can switch the online
and offline enhancement and visualize the enhancement
results. Furthermore, by conducting VAD to the online
enhancement results, our system could be able to indicate
the existence of a victim to the operator, and speculatively
conduct the offline enhancement before the operator man-
ually switches to it. Our system will be further improved
by visualizing the VAD results and the speculative offline
results.
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