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ABSTRACT

This paper describes a clustering-based music transcription
method that estimates the piano rolls of arbitrary musical
instrument parts from multi-instrument polyphonic music
signals. If target musical pieces are always played by par-
ticular kinds of musical instruments, a way to obtain piano
rolls is to compute the pitchgram (pitch saliency spectro-
gram) of each musical instrument by using a deep neural
network (DNN). However, this approach has a critical lim-
itation that it has no way to deal with musical pieces in-
cluding undefined musical instruments. To overcome this
limitation, we estimate a condensed pitchgram with an ex-
isting instrument-independent neural multi-pitch estimator
and then separate the pitchgram into a specified number of
musical instrument parts with a deep spherical clustering
technique. To improve the performance of transcription,
we propose a joint spectrogram and pitchgram clustering
method based on the timbral and pitch characteristics of
musical instruments. The experimental results show that
the proposed method can transcribe musical pieces includ-
ing unknown musical instruments as well as those contain-
ing only predefined instruments, at the state-of-the-art tran-
scription accuracy.

1. INTRODUCTION

The problem of estimating the fundamental frequencies of
multiple periodic signals, which is called multi-pitch esti-
mation (MPE) [1], is an important task of music informa-
tion retrieval (MIR) since it plays a basic role in automatic
music transcription (AMT), which is a task of converting
music signals into a symbolic form of music notation [2].
The conventional approaches to MPE primarily focused
on transcribing single-instrument music signals. The ac-
curacy of this single-instrument MPE (SI-MPE) has been
greatly improved by deep learning. Recently, some stud-
ies have extended SI-MPE and have tackled the problem
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Figure 1. Each bin of a condensed pitchgram is embedded
on a spherical latent space taking into account the timbral
characteristics. Piano rolls of each instrument part is ob-
tained by deep spherical clustering on the space.

of multi-instrument MPE (MI-MPE) for further general-
ization. An MI-MPE is a task which estimates the pitch-
grams (pitch saliency spectrograms) of every musical in-
strument from a music signal consisting of multiple instru-
ments. The difficulty of MI-MPE in addition to SI-MPE
is the necessity of estimating the corresponding instrument
part which the pitchgram belongs to. To alleviate this dif-
ficulty, previous studies [3, 4] for MI-MPE limited their
target musical instruments to a small number of predefined
instruments. One of the solutions to this problem is apply-
ing a classification technique to MI-MPE and separate the
music signal into each pitchgram.

These classification-based methods have been success-
ful [3, 4] in the framework of supervised learning, espe-
cially for classical music where the constituent instruments
are mostly fixed. However, in modern music (e.g.Pops and
EDMs) where a larger number of instruments often appear,
it would be ideal to have no limit on target instruments in
order to achieve better AMT.

In the field of speech separation, several studies [5–7]
have attempted a similar task of separating arbitrary speak-
ers. When handling arbitrariness of the target sources in
DNNs, technical problems related to permutations arise.
Specifically, DNNs deterministically map inputs to a de-
fined set of sources in each dimension, and thus does
not allow permutation between different targets. To solve
this permutation problem, a method called deep clustering
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has been proposed that treats speech separation for arbi-
trary speakers as a clustering problem, rather than a clas-
sification problem [5]. This approach avoids the above-
mentioned problem and achieves optimal clustering at the
same time by constructing an affinity matrix.

In this paper, we propose a new method to estimate
the piano rolls of arbitrary musical instrument parts from
multi-instrument polyphonic music signals based on deep
clustering (Figure 1). We estimate a condensed pitch-
gram which shows all played pitches, with an existing
instrument-independent neural multi-pitch estimator, and
then separate the pitchgram into a specified number of mu-
sical instrument parts with a deep spherical clustering tech-
nique. Also, by considering the spectrogram in addition
to the pitchgram in clustering phase, the optimal part esti-
mation can be performed based on both the timbral and
pitch characteristics of the instruments contained in the
music signal. Furthermore, since there is a complemen-
tary relationship between MPE and sound source separa-
tion [8–10], we propose a joint spectrogram and pitchgram
clustering method which can improve the transcription ac-
curacy.

To verify that our method can transcribe arbitrary musi-
cal instruments, we conducted experiments of MI-MPE for
various musical instruments. Experimental results show
that the method can successfully handle a wide variety of
instruments including those unseen during training. Al-
though our method does not set any limitation on applica-
ble instruments, the results suggest that it performs com-
parably to the state-of-the-art classification method [3].

Our main contribution of this study is the proposal of
a new clustering-based method to transcribe arbitrary mu-
sical instrument parts from a music signal. To our knowl-
edge, this is the first attempt of MI-MPE at frame-level
without any restriction on used instruments. Furthermore,
we show that the deep clustering method can be applied to
tasks other than speech separation, and describe its poten-
tial in several sound related tasks.

2. RELATED WORK

In this section, we limit our scope to studies related to
MI-MPE and methods dealing with arbitrariness of DNNs.
Brief explanations of each study will be provided in the
following subsections.

2.1 Multi-instrument Multi-pitch Estimation

Although AMT has been well studied, it still remains a
challenging task [11]. Among the various tasks associated
to AMT, MI-MPE is particularly difficult because it re-
quires to simultaneously perform SI-MPE and instrument
part estimation for each estimated note [2].

MI-MPE has commonly been tackled as a problem of
stream-level transcription: grouping estimated notes and
making continuous pitch contours for each part. Duan
et al. [12] proposed a constrained clustering approach
against the result of MPE. The clustering is performed un-
der the constraint of consistency in each part of uniform

discrete cepstrum. Their method can be used in comple-
ment with various MPE algorithms [13–15], and does not
require any source model trained with isolated recordings
of the underlying instruments. Following this study, Arora
et al. [16] took a similar approach. They used probabilis-
tic latent component analysis for MPE and source-specific
feature extraction, and hidden Markov random fields for
clustering into each instrument part. These two methods
can deal with a variety of instruments, but due to their al-
gorithms, each instrument must be a monophonic instru-
ment which plays only one note at a time. Unlike these
methods, Benetos et al. [17] focused on the differences in
the sounds played by each instrument. They used spec-
tral templates that correspond to sound states, supported
by the shift-invariant probabilistic latent component anal-
ysis method. To conduct MPE for each instrument, they
controlled the order of these templates by using hidden
Markov model-based temporal constraints.

In recent years, some studies have tackled MI-MPE
as a frame-level simultaneous MPE and musical instru-
ment recognition problem. Wu et al. [3] proposed a DNN
model based on the DeepLabV3+ [18] and U-Net struc-
ture [19]. They considered MI-MPE as a semantic segmen-
tation problem on the time-frequency bins generated from
music signals, where each object class represents a certain
musical instrument. Most recently, Cerberus Network was
proposed by Manilow et al. [4]. This model was built upon
the preceding Chimera Network [20] which was developed
for speech separation, adding a module that produces sep-
arated piano rolls for each instrument. The drawback of
these methods is that only musical instruments included in
the predefined set can be transcribed. In order to apply
classification-based methods to source separation, output
classes and object instances must be represented explicitly.
Therefore, it is difficult to use these methods in the general
case.

2.2 Arbitrariness with DNNs

In order to allow extraction of a piano roll of arbitrary in-
struments from an audio signal, the prediction itself must
take place in a process where the instruments are unidenti-
fied, i.e., individual piano rolls are referred to as instrument
one, two, three instead of their specific identity such as pi-
ano, guitar, violin, etc. However, when doing so by using a
DNN based approach, a problem of permutation arises as
previously mentioned. Specifically, when the piano rolls
of individual instruments are extracted but the instrument
type is unknown, the loss between predicted piano roll and
ground truth cannot be calculated straightforwardly since
the correspondence of instrument type between these two
remains unknown.

A similar problem has been addressed in the studies for
speaker-independent speech separation [5–7], whose goal
is to separate a piece of audio consisting of multiple peo-
ple speaking simultaneously into individual speakers au-
dio. Unless given an image or video of the target speaker,
correspondence between separated audio and ground truth
audio cannot be established, and hence the task poses the
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Figure 2. Overview of the proposed method. We extract two audio features Xpi and Xti from an input music signal and
concatenate them as an intermediate feature X in. The feature X in is mapped into two latent space, piano roll space V pi

and timbre space V ti. We generate binary masks Mpi and M ti from each space by clustering. These masks are applied to
corresponding features, and we obtain piano rolls for each musical instrument part Y pi and separated spectrograms Y ti.

same problem of permutation. To address this problem,
methods such as permutation invariant training (PIT) [6],
and deep clustering [5] have been proposed recently.

PIT tackled the permutation problem by calculating a
loss function for all possible pairs of predicted values and
ground truth, while optimization is only conducted for the
pair with minimum loss. Although its implementation is
simple and it can be combined with other learning tech-
niques, its computational complexity remains considerably
high. In details, when N sources are included in the target
mixture, N ! possible permutations must be calculated in
their algorithm.

On the other hand, deep clustering avoids the permuta-
tion problem by optimizing an embedded representation of
the desired output, so that the class separation can be con-
ducted via clustering in the embedded space at inference
time. Given a X ×D matrix A as the embedded repre-
sentation, where X is the time-frequency index and D is
the embedding dimension, the affinity matrix AAT is cal-
culated. In the same manner, the affinity matrix BBT is
obtained for the ground truth data B which is a X ×N
matrix, where N represents the number of speakers. The
optimization is conducted to minimize the distance be-
tween the two affinity matrices ||AAT −BBT||2F . Here,
deep clustering succeeds in circumventing the permutation
problem as (AP )(AP )

T
= AAT for anyD ×D permu-

tation matrix P . Furthermore, since optimization is con-
ducted on the transformed X ×X matrix, the target data
may include any number of sources. For these advantages,
we adopt the deep clustering method in our framework as
described in Section 3.

3. PROPOSED METHOD

This section describes our proposed clustering-based
method for the transcription of arbitrary musical instru-
ment parts (Figure 2). Our framework consists of three
parts: a feature extraction part, a feature embedding part
to obtain piano roll space and timbre space, and an esti-

mation part based on deep spherical clustering. We first
pretrain the feature extraction part and the feature embed-
ding part individually for the stabilization of early learning
stages, then optimize both parts in conjunction through the
entire learning.

3.1 Problem Configuration

Let S = {sk ∈ Rl}Kk=1 be a set of mixture audio sig-
nals, where l = 44.1 [kHz] × 10 [sec] is a length of the
signal, and K is the number of mixture audio signals. We
assume that each sn consists of three instrument parts. Let
Y pi = {ypi

n ∈ [0, 1]
T×C}N+1

n=1 be a set of pitchgrams of
piano rolls, where T is the number of time frames, C is the
number of constant-Q transform (CQT) frequency bins and
N is the number of musical instrument parts. Our goal is to
train a DNN f that maps S to Y pi. Here, we incorporated
two key ideas into f for the performance improvement and
the stable training. Let Y ti = {yti

n ∈ RT×F }Nn=1 be a set
of corresponding spectrograms of the piano rolls, where F
is the number of short-time Fourier transform (STFT) fre-
quency bins. We train f that maps S to not only Y pi, but
also Y ti for improving the performance of a transcription.
To achieve this with the stable training, we introduce an
intermediate supervision, which consists of two semantic
features. Let Xpi ∈ [0, 1]

T×C and Xti ∈ RT×F be a
set of pitch characteristics and a set of timbral character-
istics, respectively. We divided the f into two networks:
feature extraction network g that maps S to Xpi, and fea-
ture embedding network h that maps the concatenation of
Xpi and Xti to Y pi and Y ti. Firstly, the network g and h
are trained individually for the stable training, and then our
full network f (= h ◦ g) are jointly trained for the overall
optimization.

3.2 Feature Extraction

In the feature extraction stage, a pitchgram and spectro-
gram are obtained from the input music signal, as pitch
and timbral characteristics of each instrument are impor-
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tant for estimating piano rolls of each musical instrument
part. For pitch, we computed a condensed pitchgram of the
given music signal, in a form similar to a logarithmic fre-
quency spectrogram using an instrument-independent neu-
ral multi-pitch estimator [21]. This network receives har-
monic constant-Q transform (HCQT) as its input and out-
puts a condensed pitchgram denoted by Xpi. A value of
each pitchgram bin is proportional to its salience.

We computed an STFT spectrogram Xti of the given
music signal. Although there are other possible represen-
tations for timbral characteristics, we use STFT following
the original deep clustering [5]. To reduce variations in to-
tal volume of input signals, the STFT spectrogram is nor-
malized so that each time-frequency bin has a mean of zero
and a standard deviation of one. Details are in Section 4.1.

3.3 Feature Embedding

We adopt joint learning of piano roll transcription and
sound source separation. They are known to have a com-
plementary relationship and have been reported to im-
prove performance when they are learned simultaneously
[8–10]. Following this knowledge, we propose a network
based on deep spherical clustering that allows joint learn-
ing of transcription and separation. To learn the obtained
pitch and timbral feature at the same time, we concate-
nate them along each frequency axis. This input feature
X in ∈ RT×(C+F ) is used as the input to our network. The
network maps the input feature X in to two separate latent
spaces: piano roll space V pi and timbre space V ti. The
structure of our network is shown in Figure 3, whereD and
D′ are the embedded dimensions of piano roll and timbre
space. It consists of a three layer Bidirectional Long short-
term memory (BLSTM), a fully connected (FC) layer for
each space with tanh activation, and finally L2 normaliza-
tion. L2 Normalization is conducted so that the piano roll
space and timbre space respectively form a D and D′ di-
mensional hypersphere.

The binary masks are made from the two latent spaces
and applied to the pitchgram and the spectrogram later. In
order to generate masks by clustering, all time-frequency
bins have to be located ideally on the spherical la-
tent spaces, i.e., bins of the same source are close and
bins of different sources are far apart. This can be
achieved by constructing the affinity matrix of each space,
V pi,tiV pi,tiT. Since V pi,ti is L2 normalized, TC × TC
or TF × TF matrix V pi,tiV pi,tiT show cosine similar-
ity of all time-frequency bins. Let TC × (N + 1) matrix

M̂
pi

and TF × N matrix M̂
ti

represent correct masks,
whereN is the number of musical instrument parts. We as-
sume that each time-frequency bin is attributed to only one
source. If more than one source share the same bin, the bin
is assigned to the dominant source which has the largest
volume (MIDI velocity) or the largest power spectrogram.
M̂

pi,ti
thus take binary value, one for assigned bin and

zero for the opposite, and affinity matrix M̂
pi,ti

M̂
pi,tiT

also have binary value. We can train this network using

M̂
pi,ti

M̂
pi,tiT

as target affinity matrix of V pi,tiV pi,tiT.

Note that we prepare an extra dimension for M̂
pi

. Be-
cause the condensed pitchgram Xpi is a prediction, Xpi

may include misestimations, i.e., false negatives and false
positives. Among them, false positives should be treated
as exceptions because they have no true instrumental attri-
bution. We therefore prepare an additional dimension for
bins which are silent in the ground truth, thus true neg-
atives and false positives are put in this dimension. We
also retain Xti bins whose magnitude is greater than the
original maximum magnitude minus 40 dB. This prevents
the network from considering about small power bins too
much.

3.4 Training Strategy

Training of the multi-pitch estimator is conducted by min-
imizing the cross entropy loss shown in Eqn (1),

LDS = −X̂
pi
log(Xpi)− (1− X̂

pi
) log(1−Xpi) (1)

where X̂
pi

and Xpi represent the ground truth condensed
pitchgram and the estimated condensed pitchgram. Both
have values ranging from zero to one. Training of simulta-
neous embedding part is conducted to minimize Eqn (2).

LDC
pi,ti = ||V pi,tiV pi,tiT − M̂

pi,ti
M̂

pi,tiT

||2F (2)

To reduce computational costs, we used a variation of
Eqn (2) in practice.

LDC
pi,ti = ||V pi,tiTV pi,ti||2F − 2||V pi,tiTM̂

pi,ti
||2F

+ ||M̂
pi,tiT

M̂
pi,ti
||2F (3)

Direct construction of the original affinity matrix is
avoided in Eqn (3) because TC and TF are much greater
than D and D′ [5]. Using these two kinds of losses, the
total loss function is described as Eqn (4).

Ltotal = LDS + αLDC
pi + βLDC

ti (4)

α and β in Eqn (4) are parameters to decide weights of
each loss. We set them both at 0.000001 in our experiment.

For the stabilization of early learning stage, we first
pretrained multi-pitch estimator and simultaneous embed-
ding network respectively using the loss in Eqn (1) and
Eqn (3). After pretraining, global optimization was con-
ducted through end-to-end training by Eqn (4). We used
Adam optimizer [22] for every training.

3.5 Estimation

At inference time, we generate two binary masks
{Mpi

i }i=1,...,N+1 and {M ti
j }j=1,...,N for Xpi and Xti re-

spectively from learned latent spaces V pi and V ti. Mask
generation is conducted by clustering the embedded fea-
tures. Here, since the two spaces are hyperspherical
shaped, we execute clustering by means of spherical k-
means [23] though original deep clustering simply uses k-
means. Because spherical k-means groups features based
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Figure 3. Details of simultaneous embedding part in
Figure 2. 2H is the number of hidden nodes in BLSTM.

on their distance on a hypersphere, i.e. cosine distance, this
should be applied for our purpose rather than k-means. Pi-
ano rolls of each musical instrument part and silent part
{Y pi

i }i=1,...,N+1 are calculated by Eqn (5).

Y pi
i = Xpi ⊗Mpi

i (5)

Additionally, spectrograms of each part {Y ti
j }j=1,...,N are

obtained by Eqn (6), which can be converted to separated
sounds of each instrument via inverse STFT.

Y ti
j = Xti ⊗M ti

j (6)

In Eqn (5) and Eqn (6), element wise product is described
as ⊗. Since M ti

j is only for retained bins of Xti, other
bins are shared with all sources.

4. EVALUATION

4.1 Data

We used the Slakh2100-orig dataset [24] for our evalua-
tion. The dataset contains 1500 training tracks, 375 vali-
dation tracks, and 225 test tracks. Each track is composed
of multiple instruments, and the dataset consists of both
mixed and separated sound sources with their MIDI data.
It contains twelve kinds of instruments: piano, bass, guitar,
drums, strings, synth pad, reed, brass, organ, pipe, synth
lead, and chromatic percussion. We eliminated drums and
chromatic percussion from the data to focus on instruments
where pitch is important, i.e., we used the other ten instru-
ments for the experiment. To demonstrate the capability of
estimating the piano rolls of arbitrary musical instrument
part, we only used seven instruments (piano, bass, guitar,
strings, synth pad, reed, and brass) for the training and vali-
dation data. We evaluated the performance using test data;
above seven for the closed condition (seen instruments),
and ten for the open condition (unseen instruments).

Training samples are constructed by cutting the tracks
into ten seconds segments. Ground truth for condensed
pitchgram is prepared by overlaying the MIDI data for the

constituent sound sources. To make the mixture signal and
the ground truth of condensed pitchgram, we overlaid both
cut sound sources and MIDI data. Here, segments that do
not have instrument sound for more than five seconds are
omitted. The mixture MIDI data are binarized and gaus-
sian blurred according to [21]. The musical recordings are
mono-channel and their sampling rates are 44.1kHz. We
computed STFT using Hann window with a size of 2048
time frames ≈ 50ms. The hop size is 512 frames ≈ 11ms
for both STFT and HCQT. HCQT is computed for harmon-
ics of {0.5, 1, 2, 3, 4, 5} with the minimum frequency
32.7Hz (C1) over six octaves. Our implementation uses
the librosa library [25]. In total, 11 hours of training data
and 3 hours of validation data were generated. For test
data, 6 hours of data were generated for each condition.

4.2 Experimental Conditions

We evaluated the frame-level accuracy of transcriptions for
each instrument part in the mixture. For the experiment,
we fixed the number of mixed instruments to three, i.e.,
N = 3. The transcription accuracy is evaluated by preci-
sion, recall, and F-measures. We count the pitchgram bin
of a certain instrument as correct when binary values of es-
timation result and ground truth match with a correct part
attribution. These metrics are calculated with Eqn (7),

P =
TP

TP + FP
, R =

TP

TP + FN
, F =

2PR

P +R
(7)

where TP, FP, and FN are the number of true positive, false
positive, and false negative, respectively. These values are
calculated by the mir_eval [26] library.

To compare with the existing state-of-the-art
classification-based method, we reimplemented [3]
with eight output classes: the seven known instruments
above and a non-instrument class. For a fair comparison
between our clustering approach and the existing classifi-
cation approach while considering the correctness of part
attribution, we set evaluation conditions as follows:

1. In the clustering approach, part attribution is not con-
ducted explicitly. Thus, clusters are assigned to each
instrument source by optimizing the F-measure.

2. In the classification approach under the closed condi-
tion, estimated parts are directly used as part assign-
ments.

3. In the classification approach under the open condi-
tion, by design, part attribution cannot be conducted
for unknown instrument sources. Thus, estimated
parts are reassigned to each instrument source in-
cluded in the audio by optimizing the F-measure.

4.3 Experimental Results

The experimental results are shown in Table 1. Our
proposed method outperformed the state-of-the-art
classification-based method [3] in the transcription of
unknown instruments under the open condition. Fur-
thermore, the F-measure score of unknown instruments
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Closed condition Open condition

[3] Our method [3] Our method

Instrument P R F P R F P R F P R F

Piano 51.28 46.50 45.87 62.02 39.61 44.07 52.51 48.04 47.37 61.87 38.90 43.64
Bass 73.75 58.79 64.04 39.72 50.78 42.24 74.27 59.66 64.67 40.59 51.88 43.23
Guitar 46.64 36.72 37.69 52.91 35.45 39.46 44.59 37.12 37.25 53.45 36.50 40.32
Strings 55.27 56.79 52.74 66.35 48.74 52.40 53.21 56.97 52.05 65.31 48.40 52.04
Synth pad 43.72 44.80 42.07 49.65 35.12 38.70 44.42 46.89 43.91 51.99 36.58 40.81
Reed 28.53 33.90 29.27 29.87 37.37 31.53 26.92 31.72 27.53 28.87 35.46 30.04
Brass 35.24 25.12 24.50 37.10 30.23 29.53 37.66 25.67 25.89 36.78 30.64 30.26

Organ — — — — — — 20.14 19.01 16.89 36.62 28.57 29.11
Pipe — — — — — — 22.62 27.13 23.02 38.37 39.49 35.22
Synth lead — — — — — — 20.58 17.44 17.59 29.41 25.11 24.98

Table 1. Comparative results of MI-MPE on the Slakh2100-orig dataset [24] with classification-based method by [3] and
our method. P , R, and F are precision, recall and F-measure, respectively, defined in Eqn (7).
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Figure 4. Transcribed piano rolls of each instrument part from the mixture signals. The left pairs are successful cases
(Track01879) and the right pairs are failure cases (Track01878). The left column shows the estimated piano rolls (black)
and the right column shows the ground truths (red). Each row shows the corresponding part, respectively.

was comparable to that of known instruments in our
method, while the score significantly decreased in the
classification-based method. Our method also succeeded
in transcribing known instruments under both conditions at
an accuracy equivalent to the classification-based method.

Examples of estimated piano rolls using our method are
illustrated in Figure 4. In the successful cases, although
some errors are present, it can be seen that our proposed
method well-conducted pitch estimation and instrument
assignment. In the failure cases, some notes which have
to appear in piano roll two are transcribed in piano roll one
around three seconds, in addition to many misestimations.

4.4 Discussion

Our method can obtain separated sounds of each instru-
ment part in addition to their piano rolls; however, match-
ing the estimated piano rolls and the instrument part labels
still have to be done manually. One of the most interesting
directions of this research is the automation of this process.

Also, we assume that each time-frequency bin is attributed
to only one source as mentioned in Section 3.3 though dif-
ferent instruments may share the same bin in practice. To
deal with this case, another direction is to introduce the
von Mises-Fisher (vMF) distribution [27, 28] into the hy-
perspherical latent space and perform soft clustering based
on this distribution.

5. CONCLUSION

This paper presented a method for transcription of arbitrary
musical instrument parts based on deep spherical cluster-
ing. Timbral and pitch characteristics of the music signal
are simultaneously considered in the transcription, through
joint clustering of a pitchgram and a spectrogram. The
experimental results showed that the proposed method is
capable of transcribing musical pieces including musical
instruments not in training data. We plan to automate the
matching process and introduce the vMF distribution into
the hyperspherical latent space for future work.
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