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ABSTRACT

In this paper, we introduce a method for converting an in-
put probabilistic piano roll (the output of a typical multi-
pitch detection model) into a binary piano roll. The task is
an important step for many automatic music transcription
systems with the goal of converting an audio recording into
some symbolic format. Our model has two components:
an LSTM-based music language model (MLM) which can
be trained on any MIDI data, not just that aligned with au-
dio; and a blending model used to combine the probabil-
ities of the MLM with those of the input probabilistic pi-
ano roll given by an acoustic multi-pitch detection model,
which must be trained on (a comparably small amount of)
aligned data. We use scheduled sampling to make the
MLM robust to noisy sequences during testing. We ana-
lyze the performance of our model on the MAPS dataset
using two different timesteps (40ms and 16th-note), com-
paring it against a strong baseline hidden Markov model
with a training method not used before for the task to our
knowledge. We report a statistically significant improve-
ment over HMM decoding in terms of notewise F-measure
with both timesteps, with 16th note timesteps improving
further compared to 40ms timesteps.

1. INTRODUCTION

The ultimate goal of the task of Automatic Music Tran-
scription (AMT) is to convert an audio signal into some
form of human- or machine-readable music notation [2].
This process is divided into two main steps. First, an
acoustic model performs multi-pitch detection by convert-
ing an input acoustic signal into a posteriogram: a pseudo-
piano roll matrix which contains the probability of each
pitch being present at each timestep according to the acous-
tic model. Next, a music language model (MLM) is used
to enforce some musicality on the results, converting the
posteriogram into a human-readable format.

While it is desirable to run these two models jointly—
and some systems have been designed in such a way
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with success, either with relatively simple MLMs (e.g.,
[19,20]), or for performing a simpler task than AMT (e.g.,
chord detection [15])—the search space and resulting com-
putation quickly becomes too large to be feasible for more
complex probabilistic MLMs which explicitly model mu-
sical structure (e.g., [22]). Furthermore, such MLMs have
typically been designed to take as input MIDI (or MIDI-
like) data which consists of lists of musical notes, rather
than the typical posteriogram output of acoustic models.

However, the conversion of a posteriogram into MIDI
is not a trivial task, and has not been the focus of much
research until recently. A naive approach is simple thresh-
olding of the posteriogram, and a simple two-state (on/off)
HMM has also been proposed [17]. Some more sophisti-
cated models have attempted to use neural networks as im-
plicit MLMs to incorporate some prior musical knowledge
into their systems (e.g., [21,24]), but often, they bring only
modest improvement [21] or the MLM is only used in rare
occasions [24] (see Section 2 for a more complete discus-
sion on these and other related systems). The main issues
that we identify with these previous attempts to incorporate
MLMs are (1) the MLM fails to capture musical features
because of an inappropriately short timestep which over-
emphasizes self-transitions [25], and (2) the MLM is not
robust to noise during decoding.

Our main contributions are to:
1. compare the use of a musically-relevant timestep for

MLM decoding—specifically a 16th note, as recom-
mended in [25]—to the more standard 40ms.

2. train the MLM with scheduled sampling [3], making
it more robust to noise at test time.

3. propose a novel “blending” model which dynami-
cally merges probabilities from the acoustic model
and the MLM rather than using a simpler method
such as a linear combination.

4. describe a new training method for a previously-
proposed post-processing HMM [17], leading to a
significant improvement in F-measure over the stan-
dard maximum likelihood approach.

For contribution (1), note that in a realistic setting, using
a 16th note timestep would require a beat-tracking algo-
rithm. However, in this proof-of-concept experiment, we
consider 16th note locations as given, and leave the integra-
tion of a noisy 16th note timestep for future work. It should
be noted that a 16th note timestep was already investigated
in [27] for polyphonic sequence transduction, which con-
cluded that although an improvement is observed when
using 16th note timesteps, it is attributed only to the fact
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that the resulting outputs are quantized to the ground truth
metrical grid. By contrast, we show here that a 16th-note
MLM brings improvement for language model decoding
beyond quantisation of the output.

We conduct our experiments using a state-of-the-art
piano-specific acoustic model [13] (although our system
could be applied to a variety of musical instruments and
styles). Overall, we show that our full system with the
16th note timestep, scheduled sampling, and the blending
model, leads to a significant improvement in F-measure
over both the baseline and the proposed HMM, with iden-
tical timesteps.

2. RELATED WORK

The most basic strategy for binarizing time-pitch posteri-
ograms is simple thresholding, where outputs below some
value are set to 0 while all others are set to 1 (e.g., in
[9, 11, 13]). Slightly more sophisticated is to use a two-
state (on/off) HMM for each pitch (proposed in [17], used
in, e.g., [6, 7]), where results tend to be cleaner with fewer
spurious notes using this method. Still, the musicality of
such a model is limited, as it considers each pitch inde-
pendently, and does not consider more than one previous
frame for each transition.

Recently, deep learning methods have also been used
for this task, typically using some form of RNN. They
can be broadly grouped into performing one of two tasks:
transduction or language model decoding.

Transduction methods aim to convert one sequence of
symbols into another (here, the output of an acoustic model
into a binary piano roll). Examples include [5], which uses
an architecture combining an RNN with a Restricted Boltz-
mann Machine (RBM), and [27], which investigated the
performance of an LSTM-based model. One drawback of
transduction methods is that they require aligned MIDI and
audio recordings for training. Similarly, they are trained on
one specific acoustic model’s outputs, and do not necessar-
ily generalize to other acoustic models.

With language model decoding methods, an MLM is
trained to assess the likelihood of an output sequence. Im-
portantly, such a model is trained on symbolic data, inde-
pendent of any acoustic model. For example, [21] uses an
RNN-RBM as a language model, combined with various
neural acoustic models. Similarly, [24] uses an RNN-RBM
language model, but instead of using a fixed framerate, it
operates on frames corresponding to detected inter-onset-
intervals. Our method belongs to this second category of
language model decoders, with the caveat that one compo-
nent of it, the blending model, requires training on aligned
pairs of input and output, though much less than would be
needed to train a neural transduction model.

As mentioned, using an MLM has brought only lim-
ited improvement to the performance of AMT systems in
the above studies. One reason for this lack of substantial
improvement in [21] might be the use of an inappropriate
timestep for language modelling: the MLM operates on
32ms timesteps, a duration much shorter than the typical
duration of a note, and unrelated to the tempo of the piece
being analyzed. Indeed, [25] hints at the fact that for poly-

Figure 1. The proposed system.

phonic music sequence prediction, using a small time-step
only results in a smoothing effect due to the predominance
of self-transitions, and using a musically-relevant time step
such as a 16th note allows the network to learn more in-
teresting musical properties. To that end, [24] describes
an MLM which uses note-based timesteps. However, the
MLM was only used in the rare case that a note onset was
detected without a corresponding pitch. Using the MLM
over the whole note sequence resulted in decreased perfor-
mance over simple thresholding, possibly due to the dis-
crepancy between training using perfect inputs and decod-
ing noisy sequences (this issue was also noted in [21]).

3. PROPOSED SYSTEM

Our system takes as input a probabilistic piano roll, specif-
ically the output of the acoustic model from [13]. That
model is a CNN which takes as input a spectrogram with
logarithmically-spaced frequency bins and log-magnitude
with a timestep of 40ms, and is a benchmark acoustic
model for piano transcription.

Our system’s inputs are in the form of matrix I ∈
RNp×T , where T is the length of the input in frames,
Np = 88 (one row per key on a piano keyboard), and
each element Ip,t contains the probability of a pitch p be-
ing present at frame t. Our output is the binary matrix
O ∈ {0, 1}Np×T , where Op,t is 1 if pitch p is present at
frame t, and 0 otherwise.

Our system flow is shown in Fig. 1. It consists of two
main components: an LSTM-based language model (see
Section 3.1), which predicts the presence of each pitch at
a frame given the previous frames; and a blending model
(see Section 3.2), which combines the input acoustic prior
with the LSTM’s priors at each frame, and outputs a fi-
nal combined probability distribution over pitches at each
frame. The search process for finding the most probable
output according to our system is detailed in Section 3.3.

3.1 Language Model

The language model has the same architecture as described
in [25]. It is a single-layer LSTM, with a hidden layer of
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size 256 and sigmoid outputs of size Np. It is trained to
predict which pitches might be present in the next frame of
a binary piano roll, given all the previous (binary) frames,
using cross-entropy between the output of the network and
the actual next frame as training loss. Two different MLMs
were trained, one operating on 40ms timesteps, and one on
16th note timesteps. We use Lp,t to denote the MLM’s
output corresponding to pitch p at frame t.

During a typical training procedure, the input sequences
from which the network learns are taken directly from
the ground truth. Such an MLM learns to make predic-
tion based only on perfect musical sequences. However,
during inference, the MLM must make predictions based
on potentially noisy sequences, as input frames are ob-
tained from previous predictions and noisy acoustic multi-
pitch detections. This discrepancy hinders performance
of MLMs, as noted in [21] and [24]. To solve this prob-
lem, we use scheduled sampling [3]: during training, at
each timestep, instead of always using the ground-truth
frame, we randomly choose either the ground-truth frame
(with probability pGT ), or a frame sampled from predic-
tions made by the MLM at the previous timestep. Training
starts with pGT = 1, and pGT is decreased as training pro-
gresses, allowing the MLM to progressively become more
robust to noisy inputs and recover from previous mistakes.

One limitation is that the noise the MLM adapts to is
not the same the MLM sees at test time, since samples are
drawn using the acoustic model’s outputs as well at test
time. We could sample from a distribution that does the
same during training, but we choose not to, because (1)
[3] mentions that even adding uniform noise helps perfor-
mance, so exactly matching noise distributions is less im-
portant, and (2) this would require paired audio and MIDI
data for MLM training (as acoustic model predictions must
be made from audio), which is available in smaller quanti-
ties than MIDI data alone.

3.2 Blending Model

The intuition behind the blending model is that the MLM
and the acoustic model might each perform better or worse
in certain situations, so combining their probabilities with
a constant weight may achieve poor results. The blending
model’s job is to learn the situations in which each model
performs well, and output the combined prior for a pitch at
a frame based on both the probabilities from the acoustic
model and the MLM, as well as some surrounding context.

It is a feed-forward neural network with l 1 hidden lay-
ers with 5 nodes each followed by an output layer with a
single sigmoid. For each pitch p at time t, it takes as input:
(1) the acoustic and language priors at that pitch and frame
(Ip,t and Lp,t), (2) the sample history at that pitch for the
previous hist 1 frames (Op,t′ for max(0, t− hist) ≤ t′ <
t), and (3) nine additional hand-crafted features, described
in Table 1, resulting in an input vector of length 11 + hist.

The sample history allows the model to learn if there
are certain situations in which the LSTM performs partic-
ularly well or poorly. Features 1–4 model how peaked the

1 See Section 4.5 for details on the training of l and hist.

Feature Description Equation
1–2 Uncertainty Eqn. (1)
3–4 Entropy Eqn. (2)
5–6 Mean

∑
p′<Np

Ip′,t
Np

7–8 Flux Ip,t − Ip,t−1
9 Pitch p

Np

Table 1. The features used for the blending model. For
equations written using I , the second feature is calculated
identically with L.

output distribution from each model is (and thus how cer-
tain it might be) but with different nonlinear properties.
Features 5–6 model the expected polyphony, features 7–
8 model how fast-changing each model’s predictions are,
and feature 9 allows the blending model to learn if either
model performs better or worse for high or low pitches.

Uncertainty =
∑

p′<Np

{
(1− Ip′,t)

2 Ip′,t > 0.5

(Ip′,t)
2 Ip′,t ≤ 0.5

(1)

Entropy =
1

log2(Np)

∑
p′<Np∧Ip′,t 6=0

−Ip′,tlog2(Ip′,t) (2)

We create two versions of the blending model. First, a
weight model (WM) which outputs a weight wp,t, which is
used to calculate a blended prior Pp,t as a weighted sum:
Pp,t = wp,tIp,t + (1 − wp,t)Lp,t. Second, a prior model
(PM) which outputs Pp,t directly. The main difference be-
tween the two models is that WM can only ever result in a
Pp,t that lies somewhere between Ip,t and Lp,t, while PM
can always output any Pp,t between 0 and 1.

3.3 Search Process

Since our model’s search space has a branching factor of
2Np at each frame, we cannot perform a global search.
Therefore, we use Viterbi decoding [23] with beam search
using a beam of size b and a branching factor k. Specifi-
cally, at each frame, we save only the b most probable his-
tories to that point. Then, for each of those at frame t, using
the blending model’s output distribution Pp,t, we sample
the k most probable samples using Algorithm 2 from [5]
(again saving only the top b from the b ∗ k resulting hy-
potheses). The sample at frame t is denoted St, and is a set
containing the pitches active at that frame. The probability
of a sample St, given the blended priors Pp,t is:

P (St) =
∏

p′∈St

Pp′,t

∏
p′<Np∧p′ /∈St

1− Pp′,t (3)

Beam search has the drawback that the beam can easily
become saturated with only slight variations of the most
probable hypothesis. Therefore, similar to [21] and [15],
we use a hashed beam search. We consider any two hy-
potheses which are identical for the past h frames to be
duplicates of each other for our purposes, and only save
the most probable of them.

The final output O of our system is constructed using
the sample history of the most probable state in the beam,
such that Op,t is 1 if p ∈ St and 0 otherwise.
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4. EXPERIMENTS

4.1 Data

For our experiments, we use the MAPS dataset [10], which
contains MIDI-aligned recordings of various classical mu-
sic pieces, some as played by an upright Disklavier, and
some synthesized using high-quality piano samples. We
create the exact same test set as was used in [13] (which
was created in the same way as Configuration II from
[21], with the additional constraint that only the Disklavier
recordings were used). We create our training and valida-
tion sets slightly differently because the blending model re-
quires a reasonably-sized validation set on which to train.
From the remaining synthesized pieces, we choose 20 to
become the validation set (counting multiple synthesized
recordings of a single piece as only 1), and use the remain-
ing pieces for training. This results in final split sizes of
59 pieces for test, 105 for training, and 32 for validation.
The decrease in training set size compared to [13] does not
seem to affect the performance of the acoustic model. We
train the acoustic model on the whole pieces, but our eval-
uation is performed on the first 30 seconds of each record-
ing, as is usually done, e.g. in [13].

To train our MLM, we use MIDI files taken from the
Piano-midi.de 2 dataset. This dataset currently holds 324
pieces of classical piano music from various composers,
with both quantised note durations and expressive timings.
Every piece in MAPS can be found in the Piano-midi.de
dataset, as these files were used to create MAPS. To avoid
training the MLM with pieces later used for testing, we
split the dataset using the same pieces as in the MAPS
splits: all the pieces in the MAPS test set are used for test-
ing (52 pieces), all the pieces in the MAPS validation set
are used for validation (20 pieces), and all the remaining
pieces are used for training (252 pieces).

We use two different timesteps in our experiments:
40ms (the resolution of [13]); and 16th-note, in which the
input is divided into 16th-note frames based on the metri-
cal grid. For the 16th-note timesteps, we use the metrical
annotations from the A-MAPS dataset [26]. To downsam-
ple the acoustic prior for the 16th-note timesteps, we take
the average of its original 40ms frames for the duration
of each new frame. Before evaluation, we upsample our
outputs back to 40ms timesteps, assigning each resulting
frame the value of the corresponding output frame.

4.2 Metrics

We report both framewise and two versions of notewise
precision (P), recall (R), and F-measure (F1), each of
which is averaged across all recordings in the test set. The
frame-based metrics are standard as used in the MIREX
Multiple-F0 Estimation task [1], comparing the output pi-
ano roll to the ground truth piano roll, using 40ms frames
(after upsampling when using 16th-note timesteps). Since
our model does not output onsets and offsets explicitly, we
treat any output 1 not preceded by a 1 as an onset, and any 0
not preceded by a 0 as an offset. We treat the ground truth
the same after first converting it into a piano roll. Thus,

2 http://piano-midi.de/

our “notewise” metrics do not correspond with notes ex-
actly, but rather as close as our output format can get. We
leave an analysis using proper notes for future work.

We also perform two post-processing steps for the note-
wise metrics, for all methods: (1) minimum duration prun-
ing, where we remove any notes shorter than 50ms; and
(2) gap filling, where we fill rests shorter than 50ms. Ad-
ditionally, we report both onset-only (On) and onset-offset
(OnOff) notewise results. For On, a note is considered
correct if its pitch is correct and its onset time is within
50ms of the ground truth, and for OnOff, we add the con-
straint that the offset is such that the note duration is within
20% of ground truth (or 50ms, whichever is biggest).
Both are as described for note-tracking in [1], and we use
mir_eval [18] to perform all calculations.

As argued in [12], the most relevant metrics are the
notewise metrics. Indeed, a poor transcription system
could still score high in terms of framewise F1 if its only er-
rors correspond to short spurious notes and fragmentation
of held notes. When discussing our results, we thus con-
centrate mainly on the notewise metrics. Furthermore, the
onset-only metrics are the most commonly-used ones for
the task, and onsets are much more perceptually important
(and salient) than offsets [4, 8]. Thus, our main evaluation
concentrates on onset metrics, and we discuss the OnOff
metrics only in Section 5.4.

4.3 Configurations

Besides the two versions of our blending model described
in Section 3.2 (WM and PM), we use a baseline blend-
ing model: a constant weight (CW) model, which always
calculates Pp,t similarly to WM, but using the constant
wp,t = 0.8 for all p and t (a value set in an ad hoc fash-
ion on the validation set). CW should indicate whether the
adaptability of the blending model is important for perfor-
mance. For each blending model, we train a version both
with and without scheduled sampling (using +S to denote
its use) for each timestep.

There is a risk with PM that the blending model might
choose to dismiss the MLM input completely. With WM,
even if the MLM is not used to choose the weight, it will
still have an influence on the resulting probabilities, unless
the blending model’s output is exactly 1. To see whether
our improvement comes from the MLM or simply the use
of the blending model, we also train a blending model
which is identical to configuration PM+S, except that any
of its inputs which come from the MLM’s predictions are
set to 0 at both train time and test time (this includes the
MLM prediction itself as well as various features which
use the MLM’s output). We call this configuration PM-A,
and present a brief discussion of its results in Section 5.2.

4.4 Baselines

We compare our models against that of [13], retrained with
our training and validation sets. We threshold its output at
a 0.5, setting all values ≥ 0.5 to 1 and all others to 0.

We also compare our model against a common HMM
baseline [17] where each pitch is represented by a simple
2-state (on/off) HMM, run independently. Typically, the
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Method
40ms timesteps 16th note timesteps

Framewise On-Notewise Framewise On-Notewise
P R F1 P R F1 P R F1 P R F1

[13] 73.0 65.5 68.3 54.2 65.7 58.1 75.2 65.5 69.2 70.9 63.6 65.9
HMM 74.6 63.9 68.0 64.0 62.2 61.9 73.7 69.4 70.7 74.4 66.4 69.1

CW 73.7 64.9 68.2 61.2 63.3 61.1 76.6 61.6 67.3 76.1 55.7 63.0
CW+S 73.9 64.8 68.2 61.3 63.3 61.3 76.6 61.5 67.3 74.8 55.9 62.6

WM 73.0 64.8 67.9 63.0 60.8 61.0 77.2 62.6 68.0 75.6 61.4 66.7
WM+S 75.1 62.3 67.3 67.6 60.2 62.8 77.8 61.2 67.5 79.4 58.5 66.0

PM 81.8 50.8 60.8 57.0 66.5 59.9 77.2 63.9 69.1 72.4 66.4 68.3
PM+S 79.7 57.4 65.6 61.4 65.6 62.6 77.6 64.2 69.3 76.8 68.7 71.7

Table 2. Results of all experiments, with all timesteps, with the best values in bold. CW uses our constant weight model,
WM uses the weight model, and PM uses the prior model. +S denotes the use of scheduled sampling in training.

HMM raises precision and lowers recall, removing short
spurious notes from the output. In [17], one HMM is
trained per pitch class. For transposition invariance, we
instead train a single HMM, and use it for all pitches. In
previous work, it has been standard to use maximum like-
lihood estimation (MLE) to set the transition probabilities
(by counting transitions in some training set), and to treat
the input probabilistic piano roll directly as the observa-
tion probabilities. We instead learn the transition prob-
abilities with Bayesian Optimization (BO) [16] to maxi-
mize the notewise F1 on the validation set. There are only
two probability values to search for (since P (off|S) =
1 − P (on|S)). We use the validation set instead of the
larger training set so that the HMM has noisier observa-
tions during training (for both MLE and BO), and we set
the initial state probabilities to a uniform distribution.

The resulting HMM is one which is much more likely
to change states: for 40ms timesteps, P (on|off) is 0.004
with MLE and 0.493 with BO, and P (off|on) is 0.167 with
MLE and 0.196 with BO. 16th-note timesteps see a simi-
lar change. Specifically, the probability for transitioning
from off to on is much greater, likely because the observed
data is much more accurate at note onsets, and thus the
model can safely trust those values in most cases. The
BO-trained HMM leads to a significant increase in both
framewise and notewise F1 for both timesteps compared to
the MLE-trained HMM (MLE results omitted).

4.5 Training

The MLM is trained using the Adam optimizer [14] with a
learning rate of 0.001. Piano rolls are cut into smaller se-
quences of 750 frames for 40ms timesteps and 300 frames
for the 16th-note timesteps. We augment the data by trans-
posing each sequence by a number of semitones randomly
chosen between -5 and 7 at each epoch, so that each tonal-
ity is equally represented without shifting the note range
too much. We use early stopping, such that if the cross-
entropy evaluated on the validation dataset does not de-
crease for 200 epochs, training is stopped, and the best
model so far is kept. For scheduled sampling, we decrease
pGT linearly from 1 to 0.7 over 500 epochs. Validation is
done using a fixed value of pGT = 0.7, and we use early
stopping once the schedule is finished (after 500 epochs).

The blending model is trained on the validation set to

maximize On-notewise F1. Training data is generated by
running our MLM on the first 30 seconds of each piece in
the validation set with a fixed weight of 0.8 and a beam size
of 10. We save a data point—containing the priors, a sam-
ple history of length hist, and features—for each (frame,
pitch, hypothesis) triple for which the acoustic prior differs
from the language prior by at least ∆min. Bayesian Opti-
mization for 200 iterations is used to search for the values
of ∆min and hist (up to 10 for 16th-note timesteps and up
to 50 for 40ms timesteps), and how many hidden layers l
to use (1–4 of size 5).

The parameters for the beam search are set in an ad
hoc fashion on the validation set. The beam size b and the
branching factor k have small effects, where larger values
lead to better results, but slower computation, and we use
b = 50 and k = 5 for evaluation. The hash length h has
an effect where smaller values force the model to perform
a more global search, but with less ability to make deci-
sions based on frames further in the past. We use a value
of h = 12 for evaluation.

5. RESULTS

Full framewise and On-notewise results are in Table 2.
Overall, we can see that for 40ms timesteps, PM+S and
WM+S outperform all other models in the On-notewise F1

(p < 10−3 with a paired t-test, which we use for all signif-
icance tests), but WM+S does not significantly outperform
PM+S. For 16th note timesteps, PM+S is significantly bet-
ter than all other models for On-notewise F1 (p < 10−6).
The baselines achieve the best framewise results—HMM
for 16th-note (p = 0.021 over PM+S) and [13] for 40ms
(not significant). This makes sense, as our blending models
are optimised for On-notewise F1. Moreover, our MLM is
designed to take advantage of knowledge of musical struc-
ture, which is more clear at the note level.

In the following sections, we investigate the impact of
each component of our system: the timestep (5.1), sched-
uled sampling (5.3), and the blending model (5.2). The
OnOff-notewise metrics are presented in Section 5.4.

5.1 Timestep

It is clear that using 16th-note timesteps improves the re-
sults (framewise for the baselines and On-notewise for all
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methods). Similar results were seen in [27], which showed
that the improvement was mainly due to quantisation of
the output. Here, the increase in performance of [13] is
due entirely to this quantisation. However, when perform-
ing the same quantisation procedure to the output of the
40ms-timestep PM+S, we see framewise and On-notewise
F1 of only 63.6 and 62.9 respectively, significantly worse
than PM+S with a 16th-note timestep (p < 10−6 for
both). PM also sees a significant improvement when us-
ing a 16th-note timestep directly (p < 10−8 for both), as
well as WM+S, but for On-notewise F1 only (p = 0.01).
Weaker or insignificant effects are seen for our other mod-
els, both framewise and On-notewise. This shows that
for our MLM, much of its improvement with 16th-note
timesteps is due to its ability to learn more musical patterns
at that scale, particularly when the full system has the abil-
ity to take advantage of that knowledge. In the following
sections, therefore, we concentrate on the results with the
16th-note timestep.

5.2 Blending model

The adaptability of WM and PM clearly allow them to out-
perform CW, and the wider output range of PM leads to
improvement over WM (p = 0.018 for WM over CW with-
out scheduled sampling, p < 10−6 for all other pairs), al-
though WM’s precision is greater. For the framewise met-
rics, a similar pattern is seen, though the effect is weaker
(p < 0.001 for PM over WM, p = 0.048 from WM over
CW, and not significant for WM+S over CW+S).

To see whether our improvement comes from the MLM
or simply from the use of the blending model, we evalu-
ate the PM-A configuration. This model achieves an On-
notewise F1 of 65.1 with a 16th-note timestep, significantly
worse than PM+S (p < 10−9), which shows that both the
MLM and the blending model play an important part in
our system’s performance. In the following sections, we
concentrate on PM results.

5.3 Scheduled sampling

We can see that PM+S performs significantly better over-
all than PM for On-notewise (p < 10−7), but not frame-
wise F1 (p = 0.50). Looking at the results in a piecewise
fashion leads to an interesting conclusion about where that
improvement comes from. In Figure 2, we plot the note-
wise F1 of [13] (x-axis, a proxy for the noisiness of the
input) against the increase in On-notewise F1 for PM+S
over PM (y-axis) for each piece in our test set. Here, it can
be seen that PM+S outperforms PM by a greater margin
in exactly those cases that we expect scheduled sampling
to help: when the input is noisier. This correlation is sig-
nificant (p = 0.02), but with high variance (R2 = 0.09).
Overall, we can conclude that scheduled sampling does in-
deed lead to improved performance with noisy inputs.

5.4 Onset-offset Evaluation

Table 3 presents the OnOff-notewise results for the two
baselines and our overall best performing model (PM+S),
where it can be seen that our model significantly outper-
forms the other systems (p < 10−5 for both timesteps).

Figure 2. Increase of On-notewise F1 of PM+S over PM
plotted against On-notewise F1 of [13] for each piece. Dot-
ted line shows linear correlation (p = 0.02, R2 = 0.09).

Method 40ms timestep 16th-note timestep
P R F1 P R F1

[13] 31.8 37.7 33.8 41.0 37.3 38.5
HMM 37.8 36.5 36.5 41.3 37.5 38.8
PM+S 41.5 43.2 41.8 47.7 43.3 45.0

Table 3. Results using the OnOff-notewise metrics. PM+S
uses our prior model with scheduled sampling.

This is promising, and it seems that the MLM might have
learned some rhythmic components of musical structure.

6. CONCLUSION

In this paper, we have presented a system for convert-
ing a posteriogram output of an acoustic multi-pitch de-
tection system into a binary piano roll. Our system con-
sists of an LSTM-based MLM and a feed-forward neural
blending model to combine the MLM outputs with those
from the acoustic model. We have shown that our system
performs significantly better than thresholding the poste-
riogram, as well as post-processing it with a new strong
baseline HMM. We have further shown that (1) scheduled
sampling helps the MLM perform better in the case of
noisy inputs, and (2) the use of a 16th-note timestep al-
lows the MLM to learn musical structures better than with
a 40ms timestep.

To that end, in future work, we intend to investigate the
use of noisy 16th-note labels from a beat-tracking system,
rather than the ground truth labels that we have used here.
Furthermore, we will perform a systematic ablation study
for the input features of the blending model. We also in-
tend to analyze our results in a more qualitative fashion
in future work with listening tests. Our own subjective
conclusions are that our system does often produce more
musical results than the baselines, but a proper listening
test would show more objectively whether that is the case
throughout the test set, and what aspects of the resulting
piano rolls become more musical in which cases. In the
meantime, we provide some examples of our model’s per-
formance as supplementary material 3 , along with the code
to reproduce our experiments 4 .

3 c4dm.eecs.qmul.ac.uk/ycart/ismir19.html
4 github.com/adrienycart/MLM_decoding
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