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ABSTRACT
We propose a method for estimating the musical “typical-
ity” of a song from an information theoretic perspective.
While musical similarity compares just two songs, musi-
cal typicality quantifies how many of the songs in a set are
similar. It can be used not only to express the uniqueness
of a song but also to recommend one that is representative
of a set. Building on the type theory in information the-
ory (Cover & Thomas 2006), we use a Bayesian generative
model of musical features and compute the typicality of a
song as the sum of the probabilities of the songs that share
the type of the given song. To evaluate estimated results,
we focused on vocal timbre which can be evaluated quan-
titatively by using the singer’s gender. Estimated typicality
is evaluated against the Pearson correlation coefficient be-
tween the computed typicality and the ratio of the number
of male singers to female singers of a song-set. Our result
shows that the proposed measure works more effectively to
estimate musical typicality than the previous model based
simply on generative probabilities.

1 INTRODUCTION

The amount of digital content that can be accessed has
been increasing and will continue to do so in the future.
This is desirable with regard to the diversity of the content,
but is making it harder for listeners to select from this con-
tent. Furthermore, since the amount of similar content is
also increasing, creators will be more concerned with the
originality of their creations. All kinds of works are influ-
enced by some existing content, and it is difficult to avoid
an unconscious creation of content partly similar in some
way to other content.

This paper focuses on musical typicality which reflects
the number of songs having high similarity with the tar-
get song as shown in Figure 1. This definition of musi-
cal typicality is based on central tendency, which in cog-
nitive psychology is one of the determinants of typical-
ity [2]. Musical typicality can be used to recommend a
unique or representative song for a set of songs such as
those in a particular genre or personal collection, those on
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Figure 1. Musical similarity and typicality.
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Figure 2. Estimation of music typicality represented by a
discrete sequence based on the type theory. Both the pre-
vious and the proposed approach are illustrated.

a specific playlist, or those released in a given year or a
decade. And it can help listeners to understand the rela-
tionship between a song and such a song set. However,
human ability with regard to typicality is limited. Judg-
ing similarity between two songs is a relatively simple task
but is time-consuming, so judging the similarities of a mil-
lion songs is impossible. Consequently, despite the coming
of an era in which people other than professional creators
can enjoy creating and sharing works, the monotonic in-
crease in content means that there is a growing risk that
one’s work will be denounced as being similar to some-
one else’s. This could make it difficult for people to freely
create and share content. The musical typicality proposed
in this paper can help create an environment in which spe-
cialists and general users alike can know the answers to the
questions “How often does this occur?” and “How many
similar songs are there?”.

Much previous work has focused on musical similarity
because it is a central concept of MIR and is also impor-
tant for purposes other than retrieval. For example, the use

695



type

0 0 0 0 0 0

0 1 0 1 0 0

1 0 0 0 01

1

2/3

1/3

0

generative probability high

typicality high

Previous approach

Proposed approach

song a

song b

song c
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of similarity to automatically classify musical pieces (into
genres, music styles, etc.) has been studied [10,13], as has
its use for music auto-tagging [17]. Each of these applica-
tions, however, is different from musical typicality: musi-
cal similarity is usually defined by comparing two songs,
music classification is defined by classifying a given song
into one out of a set of categories (category models, cen-
troids, etc.), and music auto-tagging is defined by compar-
ing a given song to a set of tags (tag models, the closest
neighbors, etc.).

Nakano et al. proposed a method for estimating mu-
sical typicality by using a generative model trained from
the song set (Figure 2) [16] and showed its application to
visualizing relationships between songs in a playlist [14].
Their method estimates acoustic features of the target song
at each frame and represents the typicality of the target
song represented as an average probability of each frame
of the song calculated using the song-set model. However,
we posit that the generative probability is not truely appro-
priate to represent typicality.

The method we propose here, in contrast, introduces the
type from information theory for improving estimated mu-
sical typicality by a bag-of-features approach [16]. In this
context, the type is same meaning with the unigram distri-
bution. We first model musical features of songs by using
a vector quantization method and latent Dirichlet alloca-
tion (LDA) [4]. We then estimate a song-set model from
the song models. Finally, we compute the typicality of the
target song by calculating the probability of a type of the
musical sequence (quantized acoustic features) calculated
using the song-set model (Figure 2).

2 METHOD

The key concept of the method in this paper is the type of
a sequence on which we consider the typicality of a given
music. Previous work have mentioned/used simple gen-
erative probabilities to compute musical similarity [1] or
typicality [16] of a music and for singer identification [8].
However, simple generative probability will not conform
to our notion of typicality. Imagine the simplest example
in Figure 3: here, each song consists of alphabets of {0, 1}
and the stationary information source has a probability dis-
tribution on alphabets Q(0) = 2/3, Q(1) = 1/3.

Clearly, while the song “a” has the highest probability
of generation, we can see that the sequences like “b” and
“c” will occur more typically. This means that we should

think about the sum of the probabilities of songs that are
similar to the song to measure the typicality.

2.1 Type and the Typicality

Let us formalize our ideas from the viewpoint of informa-
tion theory [5–7]. Let x = {x1, x2, · · · , xn} be a sequence
of length n whose alphabet x comes from a set X . We
assume that x comes from a stationary memoryless infor-
mation source, i.e. we can drop the order of symbols in x
and regard x as a bag of words. Next, we introduce some
definitions:
Definition 1 (type). Let N(x|x) be the number of times
that x ∈ X appeared in sequence x. The type Px of the
sequence x is an empirical probability distribution of sym-
bols in x:

Px =

{
1

n
N(x|x)

∣∣∣∣ x ∈ X
}
. (1)

We denote the space of all Px as Pn.
Definition 2. Let P ∈ Pn. A set of sequences of length n
that share the same type P is called a type class Tn of P :

Tn(P ) = {x ∈ Xn | Px = P} . (2)

Now let us denote the probability of a sequence x from
an memoryless information whose symbol probabilities
are Q(x):

p(x) = Qn(x) =
n∏

i=1

Q(xi) . (3)

Given these definitions, the following simple theorems fol-
low:
Theorem 1. The probability of a sequence x having type
P from a stationary memoryless information source Q is
expressed as follows:

Qn(x) = exp
[−n(H(P ) +D(P ||Q))

]
(4)

Here, H(P ) and D(P ||Q) are an entropy of P and
Kullback-Leibler divergence of P from Q, respectively.

H(P ) = −
∑
x∈X

P (x) logP (x) (5)

D(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
(6)

Proof.

Qn(x) =
n∏

i=1

Q(xi) =
∏
x

Q(x)N(x|x) =
∏
x

Q(x)nP (x)

=
∏
x

exp
[
nP (x) logQ(x)

]
(7)

= exp
[
−n

(
−
∑
x

P (x) logQ(x)
)]

(8)

= exp
[
−n

(
H(P ) +D(P ||Q)

)]
. � (9)

Theorem 2 (lower and upper bounds). For any type P ∈
Pn,

1

(n+ 1)|X |−1
exp{nH(P )}

≤ |Tn(P )| ≤ exp{nH(P )}. (10)
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Using the theorems above, the following important the-
orem can be proved.
Theorem 3. For any type P ∈ Pn and any probability
distribution Q,

Qn(Tn(P ))
.
= exp{−nD(P ||Q)}, (11)

where an
.
= bn if limn→∞(1/n) log(an/bn) = 0.

Proof. Using (4) and (10),

Qn(Tn(P )) =
∑

x∈Tn(P ) Q
n(x)

= |Tn(P )| exp(−n(H(P ) +D(P ||Q)))
.
= exp(nH(P )) · exp(−n(H(P ) +D(P ||Q)))

= exp{−nD(P ||Q)} . � (12)

This theorem says that the sum of the probabilities of
sequences that share the same type P is given by an expo-
nential of Kullback-Leibler divergence from the informa-
tion source Q. While the equation (11) is usually used in
information theory to formalize that such a probability ex-
ponentially decays with the length n, here we do not care
for n but for the form of the function. Thus, we normalize
(11) for a unit observation like the well-known perplexity,
yielding the definition of typicality as follows:
Definition 3 (Typicality).

Typicality(P |Q) = exp{−D(P ||Q)} (13)

where P is the type of a musical sequence and Q is a gen-
erative model of its musical features.

2.2 Generative modeling and Type

To evaluate the typicality estimation method, we compute
the type of each song by modeling them in a way based
on our previous work [16]. From polyphonic musical au-
dio signals including a singing voice and sounds of various
musical instruments, we first extract vocal timbre. We then
model the timbre of songs by using a vector-quantization
method and latent Dirichlet allocation (LDA) [4]. Finally,
a song-set model Q is estimated by integrating all song
models (Figure 2).

In addition, we use the expectation of Dirichlet topic
distribution as a type P because the hyperparameter of the
posterior Dirichlet distribution can be interpreted as the
number of observations of the corresponding topic. In the
other words, the P indicates mixing weights of the multi-
ple topics.

2.2.1 Extracting acoustic features: Vocal timbre

We use the mel-frequency cepstral coefficients of the LPC
spectrum of the vocal (LPMCCs) and the ΔF0 of the vo-
cal to represent vocal timbre because they are effective for
identifying singers [8, 15]. In particular, the LPMCCs rep-
resent the characteristics of the singing voice well, since
singer identification accuracy is greater when using LPM-
CCs than when using the standard mel-frequency cepstral
coefficients (MFCCs) [8].

We first use Goto’s PreFEst [11] to estimate the F0 of
the predominant melody from an audio signal and then the

F0 is used to estimate the ΔF0 and the LPMCCs of the
vocal. To estimate the LPMCCs, the vocal sound is re-
synthesized by using a sinusoidal model based on the esti-
mated vocal F0 and the harmonic structure estimated from
the audio signal. At each frame theΔF0 and the LPMCCs
are combined as a feature vector.

Then reliable frames (frames little influenced by ac-
companiment sound) are selected by using a vocal GMM
and a non-vocal GMM (see [8] for details). Feature vec-
tors of only the reliable frames are used in the following
processes (model training and probability estimation).

2.2.2 Quantization

Vector quantization is applied using the k-means algorithm
to convert acoustic feature vectors of each element to a
symbolic time series representation. In that algorithm the
vectors are normalized by subtracting the mean and divid-
ing by the standard deviation, and then the normalized vec-
tors are quantized by prototype vectors (centroids) trained
previously. Hereafter, we call the quantized symbolic time
series acoustic words.

2.2.3 Probabilistic generative model: song model

The observed data we consider for LDA areD independent
songs X = {X1, ...,XD}. A song Xd is Nd acoustic
words Xd = {xd,1, ...,xd,Nd

}. The size of the acous-
tic words vocabulary equals to the number of clusters of
the k-means algorithm, V . We consider a K-dimensional
multinomial of latent topic proportions θd for each Xd,
and write θ = (θ1, · · · , θD).

Introducing latent topic assignments Zd =
{zd,1, ..., zd,Nd

} for Xd and collectively write
Z = {Z1, ...,ZD}, the full joint distribution of our
LDA model is given by

p(X,Z,θ,φ) = p(X|Z,φ)p(Z|θ)p(θ)p(φ) (14)

where φ indicates the emission distribution of each topic.
The first two terms are likelihood functions, and the other
two are prior distributions. The likelihood functions are
defined as

p(X|Z,φ) =

D∏
d=1

Nd∏
n=1

V∏
v=1

(
K∏

k=1

φ
zd,n,k

k,v

)xd,n,v

(15)

and

p(Z|θ) =
D∏

d=1

Nd∏
n=1

V∏
v=1

θ
zd,n,k

d,k . (16)

We endow θ and φ conjugate Dirichlet priors:

p(θ) =
D∏

d=1

Dir(θd|α0) ∝
D∏

d=1

K∏
k=1

θα0−1
d,k (17)

p(φ) =

K∏
k=1

Dir(φk|β0) ∝
K∏

k=1

V∏
v=1

φβ0−1
k,v . (18)

where p(θ) and p(φ) are products of Dirichlet distributions
and α0, β0 are their prior hyperparameters.

Finally, we obtain a type of each songXd as an expec-
tation of the Dirichlet posterior distribution of θd.
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Figure 4. Song-set model estimation of previous approach and a model estimated by our proposed method.

2.3 Typicality over a set of Songs

Given the type of each song, we wish to compute the typi-
cality of a song as compared to a set of other songs. In Sec-
tion 2.1, we defined the typicality of a sequence of type P
from an information source having distribution Q. There-
fore, we need some way to estimateQ from the set of songs
(i.e. types) beforehand. Actually, we do not have to esti-
mate a single Q but compute an expectation around it:

Typicality(P |Θ) = E[exp(−D(P ||θ))]θ∼Dir(α) (19)

where Θ = {θ1, · · · , θn} is a set of types of other songs
and Dir(α) is a prior Dirichlet distribution from which
each θi ∈ Θ is deemed to be generated.

In the previous work [16], we estimated the hyper-
parameter α by just summing the topic distributions
θ1, · · · , θn. As shown in Figure 4, however, this could lead
to an undesirable result and we employ a Bayesian formula
to estimate α. This derivation is based on the following
Dirichlet and Gamma distributions:

Dir(θ|α) = Γ (
∑

k αk)∏
k Γ(αk)

∏
k

θαk−1
k (20)

Ga(α|a, b) = ba

Γ(a)
αa−1e−bα (21)

Therefore,

p(α|Θ) ∝ p(Θ|α)p(α) (22)

∝
∏
k

αa−1
k e−bαk ·

∏
j

Γ (
∑

k αk)∏
k Γ(αk)

∏
k

θαk

k , (23)

which leads to

p(αk|αk−1,Θ) ∝ αa−1
k e−bαk ·

∏
j

Γ (
∑

k αk)

Γ(αk)
θαk

k . (24)

Because we cannot expand Γ(
∑

k αk)/Γ(αk), we make a
following approximation with n being a nearest integer to∑

j �=k αk [18]:

Γ(
∑

k αk)

Γ(αk)
=

Γ(αk+
∑

j �=k αj)

Γ(αk)
� Γ(αk+n)

Γ(αk)
(25)

= αk(αk + 1) · · · (αk + n− 1) (26)

=
n−1∏
i=0

αk(αk + i) (27)

=
n−1∏
i=0

∑
y∈{0,1}

(αk)
yi(i)1−yi . (28)

Therefore, introducing auxiliary variables

yi ∼ Bernoulli

(
αk

αk+ i

)
, (29)

we can make a following Gamma proposal for αk:

p(αk|αk−1,Θ) (30)

� αa−1
k e−bαk ·

∏
j

eαk log θjk ·
∏
j

n−1∏
i=0

α
yji

k (31)

= α
a+

∑
j

∑n−1
i=0 yji−1

k · e−αk(b−
∑

j log θjk) (32)

= Ga(a+
∑
j

n−1∑
i=0

yji, b−
∑
j

log θjk). (33)

Because this is just a proposal, we further correct the bias
using a Metropolis-Hastings algorithm with the exact like-
lihood formula (24).

2.4 Computing the Expectation

Once we obtain α fromΘ, we can compute the expectation
(19) analytically. Denoting P = (p1, · · · , pK) and writing
E[] as 〈〉,
Typicality(P |Θ) =

〈
exp(−D(P ||θ))〉

θ∼Dir(α)
(34)

=

〈
exp

K∑
k=1

pk log
θk
pk

〉
θ∼Dir(α)

=
1

exp(
∑

k pk log pk)

〈
exp

∑
k

pk log θk

〉
θ∼Dir(α)

= exp(H(P ))

〈
K∏

k=1

θpk

k

〉
θ∼Dir(α)

. (35)

Here, the second term is〈
K∏

k=1

θpk

k

〉
θ∼Dir(α)

=
Γ(

∑
k αk)∏

k Γ(αk)

∫ ∏
k

θαk−1
k ·

∏
k

θpk

k dθ

=
Γ(

∑
k αk)∏

k Γ(αk)

∫ ∏
k

θαk+pk−1
k dθ

=
Γ(

∑
k αk)∏

k Γ(αk)

∏
k Γ(αk+pk)

Γ(
∑

k αk+pk)
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=
1∑
k αk

∏
k

Γ(αk+pk)

Γ(αk)
. (36)

Therefore, from (35) we finally obtain

Typicality(P |Θ) =
exp(H(P ))∑

k αk

∏
k

Γ(αk+pk)

Γ(αk)
. (37)

3 EXPERIMENTS

The proposed methods were tested in an experiment eval-
uating the estimated typicality. To evaluate estimated re-
sults, we focused on vocal timbre which can be evaluated
quantitatively by using the singer’s gender.

3.1 Dataset

The song set used for the LDA-model-training and typical-
ity estimation comprised 3,278 Japanese popular songs1
that appeared on a popular music chart in Japan (http:
//www.oricon.co.jp/) and were placed in the top
twenty on weekly charts appearing between 2000 and
2008. Here we refer to this song set as the JPOP MDB.

The song set used for GMM training and k-means train-
ing to extract the acoustic features consisted of 100 popu-
lar songs from the RWC Music Database (RWC-MDB-P-
2001) [9]. These 80 songs in Japanese and 20 in English
reflect styles of the Japanese popular songs (J-Pop) and
Western popular songs in or before 2001. Here we refer
this song set as the RWC MDB.

3.2 Experimental Settings

Conditions and parameters of the methods described in the
METHODS section are described here in detail. Some
conditions and each parameter value were based on pre-
vious work [15, 16].

3.2.1 Typicality estimation

The number of iterations of the Bayesian song-set model
estimation described in Subsection 2.3 was 1000.

3.2.2 Extracting acoustic features

For vocal timbre features, we targeted monaural 16-kHz
digital recordings and extractedΔF0 and 12th-order LPM-
CCs every 10 ms. To estimate the features, the vocal sound
was re-synthesized by using a sinusoidal model. The ΔF0

was calculated every five frames (50 ms).
The feature vectors were extracted from each song, us-

ing as reliable vocal frames the top 15% of the feature
frames. Using the 100 songs of the RWC MDB, a vocal
GMM and a non-vocal GMM were trained by variational
Bayesian inference [3].

3.2.3 Quantization

To quantize the vocal features, we set the number of clus-
ters of the k-means algorithm to 100 and used the 100
songs of the RWC MDB to train the centroids.

1 Note that some are Western popular songs and English in them .

3.2.4 Training the generative models

Training song models and song-set models of the vocal
timbre by LDA, we used all of the 3,278 original record-
ings of the JPOP MDB.

The number of topics,K, was set to 100, and the model
parameters of LDA were trained using the collapsed Gibbs
sampler [12]. The hyperparameters of the Dirichlet distri-
butions for topics and words were initially set to 1 and 0.1,
respectively.

3.3 Four typicality measures

We evaluated the following four typicality computing con-
ditions.
T1: computing the Euclidean distance
T2: computing the generative probability [16]
T3: computing the KL-divergence, equation (13)
T4: computing the KL-divergence, equation (37)
As a baseline method, under the T1 condition, one sim-

ple method used to estimate the typicality of vocal timbre
calculated the Euclidean distance between mean feature
vectors of a song and a song-set. Each mean vector was
calculated from each song, using the reliable vocal frames,
and was normalized by subtracting the mean and dividing
by the standard deviation of all mean vectors.

Under the T2 condition, one typicality between a song
and a set of songs is obtained by calculating a genera-
tive probability [16] of song P calculated using a song-set
model of song Q. This typicality pg(P |Q) is defined as
follows:

log pg(P |Q) =
1

NP

NP∑
n=1

log p(xP,n| E[θQ],E[φ]), (38)

p(xP,n| E[θQ],E[φ]) =

K∑
k=1

(E[θQ,k] · E[φk,v]) , (39)

where E[·] is the expectation of a Dirichlet distribution,
NP is the number of frames, and v is the corresponding
index (the word id) of theK-dimensional 1-of-K observa-
tion vector xb,n.

The other two typicalities, under the T3 and T4 condi-
tions, are calculated Typicality(P,Q) by using equations
(13) and (37), respectively.

3.4 Experiment: musical typicality estimation

We evaluated the four typicality computing conditions (T1-
T4) in combination with the following three song-set mod-
eling conditions.
M1: computing a mean vector
M2: summing the Dirichlet hyperparameters [16]
M3: Bayesian estimation of the hyperparameters de-

scribed in Subsection 2.3
We computed typicalities under five evaluation conditions
T1+M1, T2+M2, T3+M2, T3+M3, and T4+M3.

Our typicality evaluation experiment used five hundred
songs by a hundred singers (50 male and 50 female), each
singer sung five songs. The songs are taken from the JPOP
MDB and each of the songs included only one vocal. To
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Evaluated First selection Second selection Third selection Fourth selection Fifth selection
conditions ρm ρf ρmf ρm ρf ρmf ρm ρf ρmf ρm ρf ρmf ρm ρf ρmf

T1+M1 .855 .866 .855 .775 .821 .798 .935 .835 .882 .870 .876 .872 .914 .842 .876
T2+M2 .924 .930 .860 .905 .921 .866 .953 .918 .879 .925 .938 .875 .945 .910 .864
T3+M2 .921 .927 .861 .912 .921 .871 .951 .919 .880 .924 .935 .876 .944 .907 .865
T3+M3 .940 .961 .931 .910 .961 .926 .962 .955 .944 .936 .967 .934 .952 .950 .933
T4+M3 .936 .973 .942 .844 .973 .896 .968 .962 .952 .930 .976 .936 .970 .949 .939

Table 1. Pearson correlation coefficients of a hundred songs under the five evaluated conditions (“T4+M3” is the proposed
method) and the underline means the highest value. The songs are randomly selected five times from five hundred songs.
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scaled values for each of the five evaluation conditions.

estimate musical typicality, a hundred songs by different
singers are randomly selected five times. Then, to integrate
or estimate song-set models, fifty songs are randomly se-
lected from the songs with different ratios of the number of
male singers to female singers (1 : 49, 2 : 48, ..., 49 : 1).
When a model with a high proportion of female songs is
used, the typicality of songs sung by females is higher than
the typicality of songs sung by males (and vice versa).

Estimated typicality was evaluated against the Pearson
product-moment correlation coefficient between the com-
puted typicality the ratio of the number of male singers to
female singers with respect to song-set modeling. Before
computing the coefficients, the typicality for each song was
scaled to have values from 0 to 1 for evaluating smooth
transition. Let ρm, ρf , and ρmf denote the coefficients un-
der a set of songs consist of 50 songs by male singers, 50
songs by female singers, and all 100 songs, respectively.

The estimated typicalities and those scaled values are
shown in Figure 5 for each of the five evaluation con-
ditions. The Pearson’s correlation coefficients are listed
in Table 1. The results show that the proposed method
achieved the highest value of the correlation coefficient
(T4+M3). This means that the proposed method works

better than the baseline method based on the Euclidean dis-
tance of mean vectors (T1+M1) and the previous method
based on computing the generative probabilities (T2+M2).
The results also show that estimated musical typicality by
using the proposed method can reflect the ratio between
the number of songs belonging to a class (e.g., male singer)
and the number of songs belonging to another class (e.g.,
female singer).

4 CONCLUSION

We proposed a method for estimating musical typicality
based on the type theory. Although this method is used for
quantized acoustic features for vocal timbre in this paper,
it can be used for other discrete sequence representations
of music, such as quantized other acoustic features (e.g.,
MFCCs to represent musical timbre/genre), lyrics and mu-
sical score. It can also be used with probabilistic represen-
tation instead of estimating musical similarities of all pos-
sible song-pairs by using a model trained from each song,
for integrating or collaboration with other probabilistic ap-
proach as a unified framework.

Our definition of musical typicality was based on the
central tendency [2] which is only the definition to be com-
puted from the audio data; this is the reason to adopt it. In
future work we expect to deal with two other definitions
in cognitive psychology are frequency of instantiation and
ideals. The frequency of instantiation is a perspective on
social recognition, that is, things with a lot of exposure on
media or in advertisements are typical, and ideals focuses
on an ideal condition of the category, that is, things that are
close to an ideal condition are typical.

Musical typicality can be used not only for music-
listening support interface such as retrieving an uniqueness
song or visualizing typicalities, but also to do this by devel-
oping a music-creation support interface enabling high/low
typicality elements (e.g., timbre and lyrics) to be used to
increase originality or visualize typicality in order to avoid
unwarranted accusations of plagiarism. We also want to
promote a proactive approach to encountering and appre-
ciating content by developing music-appreciation support
technology that enables people to encounter new content
in ways based on its typicality to other content.
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