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ABSTRACT

We propose the task of detecting instrumental solos in poly-
phonic music recordings, and the usage of a set of four audio
features for vocal and instrumental activity detection. Three
of the features are based on the prior extraction of the pre-
dominant melody line, and have not been used in the context
of vocal/instrumental activity detection. Using a support
vector machine hidden Markov model we conduct 14 exper-
iments to validate several combinations of our proposed fea-
tures. Our results clearly demonstrate the benefit of combin-
ing the features: the best performance was always achieved
by combining all four features. The top accuracy for vocal
activity detection is 87.2%. The more difficult task of de-
tecting instrumental solos equally benefits from the combi-
nation of all features and achieves an accuracy of 89.8% and
a satisfactory precision of 61.1%. With this paper we also
release to the public the 102 annotations we used for train-
ing and testing. The annotations offer not only vocal/non-
vocal labels, but also distinguish between female and male
singers, and different solo instruments.

Keywords: vocal activity detection, pitch fluctuation, F0
segregation, instrumental solo detection, ground truth, SVM

1. INTRODUCTION

The presence and quality of vocals and other melody instru-
ments in a musical recording are understood by most listen-
ers, and often these are also the parts of the music listeners
are interested in. Music enthusiasts, radio disk-jockeys and
other music professionals can use the locations of vocal and
instrumental activity to efficiently navigate to the song po-
sition they’re interested in, e.g. the first vocal activity, or the
guitar solo. In large music collections, the locations of vo-
cal and instrumental activity can be used to offer meaningful
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audio thumbnails (song previews) and better browsing and
search functionality.

Due to its apparent relevance to music listeners and in
commercial applications the automatic detection of vocals
in particular has received considerable attention in the recent
Music Information Retrieval literature, which we review be-
low. Far less attention has been dedicated to the detection of
instrumental solos in polyphonic music recordings.

In the present publication we present a state-of-the-art
method for vocal activity detection. We show that the use
of several different timbre-related features extracted based
on a preliminary extraction of the predominant melody line
progressively improve the performance of locating singing
segments. We also introduce the new task of instrumental
solo detection and show that, here too, the combination of
our proposed features leads to substantial performance in-
creases.

Several previous approaches to singing detection in poly-
phonic music have relied on multiple features. Berenzweig
[2] uses several low-level audio features capturing the spec-
tral shape, and learned model likelihoods of these. Fujihara
uses both [3] a spectral feature and a feature that captures
pitch fluctuation based on a prior estimation of the predom-
inant melody. Thus more aspects of the complex human
voice can be captured and modelled. In fact, Regnier and
Peeters [14] note that “the singing voice is characterized
by harmonicity, formants, vibrato and tremolo”. However,
most papers are restricted to a small number of (usually
spectral) features [8, 9, 14]. Nwe and Li [12] have proposed
the most diverse set of features for vocal recognition that we
are aware of, including spectral timbre, vibrato and a mea-
sure of pitch height.

Our method is similar to that of Nwe and Li in that we
use a wide range of audio features. However, our novel mea-
surement of pitch fluctuation (similar to vibrato) is tuning-
independent and based on a prior extraction of the predom-
inant melody. Furthermore, we propose two new features
that are also based on the preliminary melody extraction
step: the timbre (via Mel-frequency cepstral coefficients) of
the isolated predominant melody, and the relative amplitude
of the harmonics of the predominant melody.
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The remainder of the paper is organised as follows: in
Section 2 we describe the features used in our study. Sec-
tion 3 describes a new set of highly detailed ground truth
annotations for more than 100 songs published with this pa-
per. The experimental setup and the machine learning tools
involved in training and testing our methods are explained
Section 4. The results are discussed in Section 5. Limi-
tations of the present method and future directions are dis-
cussed in Section 6.

2. AUDIO FEATURES

This section introduces the four audio features considered in
this paper: the standard MFCCs, and three features based on
the extracted melody line: pitch fluctuation, MFCCs of the
re-synthesized predominant voice, and the relative harmonic
amplitudes of the predominant voice.

We first extract all features from each track at a rate of
100 frames per second from audio sampled at 16 kHz, then
low-pass filter and downsample them to obtain features at 10
frames per second, which we use as the input to the training
and testing procedures (Section 4).

2.1 Mel-frequency cepstral coefficients

Mel-frequency cepstral coefficients [11] are a vector-shaped
feature which has the desirable property of describing the
spectral timbre of a piece of audio while being largely ro-
bust to changes in pitch. This property has made them the
de facto standard input feature for most speech recognition
systems. The calculation of MFCCs consists of a discrete
Fourier transform of the audio samples to the frequency do-
main, applying an equally-spaced filter bank in the mel fre-
quency scale (approximately linear in log frequency), and
finally applying the discrete cosine transform to the loga-
rithm of the filter bank output. Details are extensively cov-
ered elsewhere, see e.g. [13]. In our implementation, the
hop size is 160 samples (10 ms), the frame size is 400 sam-
ples (a 512-point FFT was used with zero-padding) and the
audio window used is a Hamming window.

2.2 Pitch Fluctuation

The calculation of pitch fluctuation involves three steps:

fundamental F0: estimate the fundamental frequency (F0)
of the predominant voice at every 10ms frame using
PreFEst [4], and take the logarithm to map them to
pitch space,

tuning shift: infer a song-wide tuning from these estimates,
shift the estimates so that they conform to a standard
tuning and wrap them to a semitone interval,

intra-semitone fluctuation: calculate the standard devia-
tion of the frame-wise frequency difference.

We use the program PreFEst [4] to obtain an estimate of
the fundamental frequency (F0) of the predominant voice at
every 10ms frame. For a frame at position t ∈ {1, . . . , N}
in which PreFEst detects any fundamental frequency f [t] we
consider its pitch representation f∗log[t] = log2 f [t], i.e. the
difference between two adjacent semitones is 1

12 .
The tuning shift in the second step is motivated as fol-

lows: our final pitch fluctuation measure employs pitch esti-
mates wrapped into the range of one semitone. The wrapped
representation has the benefit of discarding sudden octave
jumps and similar transcription artifacts, but if the semitone
boundary is very close to the tuning pitch of the piece, then
even small fluctuations will cross this boundary (they ‘wrap
around’) and lead to many artificial jumps of one semitone.
This can be avoided if we shift the frequency estimates such
that the new tuning pitch is at the centre of the wrapped
semitone interval. In order to calculate the tuning of the
piece we use a histogram approach (like [6]): all estimated
values f∗log[t], t ∈ {1, . . . , N} are wrapped into the range of
one semitone,

f∗log[t]

(
mod

1

12

)
, t ∈ {1, . . . , N}, (1)

and sorted into a histogram (h1, . . . , h100) with 100 his-
togram bins, equally-spaced at 1

1200 , or one cent. The rela-
tive tuning frequency is obtained from the histogram as

f ref
log =

(arg maxi hi)− 1

1200
− 0.5 (2)

∈ {−0.5,−0.49, . . . , 0.49},

and the semitone-wrapped frequency estimates we use in the
third step are

flog[t] =
(
f∗log[t]− f ref

log

)(
mod

1

12

)
, t ∈ {1, . . . , N}.

The third step calculates a measure of fluctuation on win-
dows of the frame-wise values flog[t]. We use Fujihara’s for-
mulation [3] of the frequency difference (up to a constant)

∆flog[t] =

2∑
k=−2

k · flog[t+ k] (3)

and define pitch fluctuation as the Hamming-weighted stan-
dard deviation of values ∆flog[.] in a neighbourhood of t,

F[t] = 12 ·

√√√√ 50∑
k=1

wk (∆flog[t+ k − 25]− µ[t])
2
, (4)

where µ[t] =
∑50

k=1 wk∆flog[t+ k − 25] is the Hamming-
weighted mean, and wk, k = 1, . . . , 50 is a Hamming win-
dow scaled such that

∑
k wk = 1.

In short, F[t] summarises the spread of frequency changes
of the predominant fundamental frequency in a window around
the tth frame.
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2.3 MFCCs of Re-Synthesised Predominant Voice

We hypothesize that audio features that describe the pre-
dominant voice in a polyphonic recording in isolation will
improve the characterisation of the singing voice and solo
instruments. To obtain such a feature we re-synthesize the
estimated predominant voice and perform the MFCC fea-
ture extraction on the resulting monophonic waveform. For
the re-synthesis itself we use an existing method [3] which
employs sinusoidal modelling based on the PreFEst esti-
mates of predominant fundamental frequency and the esti-
mated amplitudes of the harmonic partials pertaining to that
frequency. MFCC features of the re-synthesized audio are
calculated as explained in Section 2.1. They describe the
spectral timbre of isolated the most dominant note.

2.4 Normalised Amplitudes of Harmonic Partials

The MFCC features described in Sections 2.1 and 2.3 cap-
ture the spectral timbre of a sound, but they do not con-
tain information on another dimension of timbre: the nor-
malised amplitudes of the harmonic partials of the predom-
inant voice. Unlike the MFCC feature of the re-synthesised
predominant voice, this feature uses the amplitude values
themselves, i.e. at every frame the feature is derived from
the estimated harmonic amplitudes A = (A1, . . . , A12) by
normalising them according to the Euclidean norm,

Hi =
Ai√∑

iA
2
i

(5)

3. REFERENCE ANNOTATIONS

We introduce a new set of manually generated reference an-
notations to 112 full-length pop songs: 100 songs from the
popular music collection of the RWC Music Database [5],
and 12 further pop songs. The annotations describe ac-
tivity in contiguous segments of audio using seven main
classes: f – female lead vocal, m – male lead vocal, g –
group singing (choir), s – expressive instrumental solo, p –
exclusively percussive sounds, b – background music that
fits none of the above, n – no sound (silence or near si-
lence). There’s also an additional e label denoting the end
of the piece. In practice, music does not always conform to
these labels, especially when several expressive sources are
active. In such situations we chose to annotate the predomi-
nant voice (with precedence for vocals) and added informa-
tion about the conflict, separated by a colon, e.g.

m:withf.

Similarly, the label for expressive instrumental solo, s, is
always further specified by the instrument used, e.g.

s:electricguitar.

background 22.0 %female 30.6 %

male 32.8 %
group 2.0 %

inst. solo 12.6 %

Figure 1: Ground truth label distribution: the pie chart la-
bels provide information on the distribution in the extended
model with five classes. The simple model joins all vocal
classes (dark grey, 65.4%) and all non-vocal classes (light
grey, 34.6%).

The reference annotations are freely available for download 1 .

4. EXPERIMENTS

We used 102 of the ground truth songs and mapped the rich
ground truth annotation data down to fewer classes accord-
ing to two different schemes:
simple contains two classes: vocal (comprising ground truth

labels f,m and g) and non-vocal (comprising all other
ground truth labels)

extended contains five classes: female, male, group for the
annotations f,m and g, respectively; solo (ground truth
label s); and remainder (all remaining labels)

The frequency of the different classes is visualised in Fig-
ure 1. Short background segments (ground truth label b)
of less than 0.5 s duration were merged with the preceding
region.

We examine seven different feature configurations, the
four single features pitch fluctuation (F), MFCCs (M), MFCCs
of the re-synthesised melody line (R) and normalised apli-
tudes of the harmonics (H), and the following progressive
combinations of the four: FM, FMR and FMRH.

The relevant features in each feature configuration are
cast into a single vector per frame. We use the support vec-
tor machine version of a hidden Markov model [1] SVM-
HMM [7] via an open source implementation 2 . We trained
a model with the default order of 1, i.e. with the probability
of transition to a state depending only on the respective pre-
vious state. The slack parameter was set to c = 50, and
the parameter for required accuracy was set to e = 0.6.
The 102 songs are divided into five sets for cross-validation.
The estimated sequence is of the same format as the mapped
ground truth, i.e. either two classes (simple schema) or five
classes (extended schema).

1 http://staff.aist.go.jp/m.goto/RWC-MDB/
AIST-Annotation/

2 http://www.cs.cornell.edu/people/tj/svm_light/
svm_hmm.html
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(c) segmentation accuracy

Figure 2: Vocal activity detection (see Section 5.1).

5. RESULTS

In order to give a comprehensive view of the results we
use four frame-wise evaluation metrics for binary classifi-
cation: accuracy, precision, recall/sensitivity and specificity.
These metrics can be represented in terms of the number of
true positives (TP; method says its positive and ground truth
agrees), true negatives (TN; method says it’s negative and
ground truth agrees), false positives (FP; method says it’s
positive, ground truth disagrees) and false negatives (FN;
method says it’s negative, ground truth disagrees).

accuracy =
TP + TN

# all frames
, precision =

TP
TP + FP

recall =
TP

TP + FN
, specificity =

TN
TN + FP

.

We also provide a measure of segmentation accuracy as one
minus the minimum of the directional Hamming divergences,
as proposed by Christopher Harte in the context of measur-
ing chord transcription accuracy. For details see [10, p. 52].

5.1 Vocal Activity Detection

Table 1 provides all frame-wise results of vocal activity
detection in terms of the four metrics shown above. The
highest overall accuracy of 87.2% is achieved by the simple
FMRH method. The difference to the second-best algorithm
in terms of accuracy (simple FMRH) is statistically signifi-
cant according to the Friedman test (p value: < 10−7).

Accuracy of single features. Figure 2a shows the dis-
tinct accuracy differences between the individual single au-
dio features. The H feature by itself has a very low accu-
racy of 68.2% (62.5% in the extended model). The accuracy
obtained by either the MFCC-based features, M and R are
already considerably higher—up to 73.8%—and the pitch
fluctuation measure F is the measure with the highest accu-
racy of 79.2% (73.4% in the extended model) among models

with a single feature. This suggests that pitch fluctuation is
the most salient feature of the vocals in our data.

Progressively combining features. It is also very clear
that the methods using more than one feature have an ad-
vantage: every additional feature increases the accuracy of
vocal detection. In particular, the R feature—MFCCs of
the re-synthesised melody line—significantly increases ac-
curacy when added to the feature set that already contains
the basic MFCC features M. This suggests that R and M
have characteristics that complement each other. More sur-
prising, perhaps, is the fact that the addition of the H feature,
which is a bad vocal classifier on its own, leads to a signifi-
cant improvement in accuracy.

Precision and Specificity. If we consider the accuracy
values alone it seems to be clear that the simple model is
better: it outperforms the extended model in every feature
setting. This is, however, not the conclusive answer. Accu-
racy tells only part of the story, and other measures such as
precision and specificity are helpful to examine different as-
pects of the methods’ performance. The recall measure does
not provide very useful information in this case, because—
unlike in usual information retrieval tasks—the vocal class
occupies more than half the database, see Figure 1. Hence,
it is very easy to make a trivial high-recall classifier by ran-
domly assigning a high proportion x of frames to the pos-
itive class. To illustrate this, we have added theoretical re-
sults for the trivial classifiers ‘rand-x’ to Table 1. A more
difficult problem, then, is to make a model that retains high
recall but also has high precision and specificity. Specificity
is the recall of the negative class, i.e. the ratio of non-vocal
frames that have been identified as such, and precision is
the ratio of truly vocal frames in what the automatic method
claims it is. The extended methods outperform each cor-
responding simple method in terms of precision and speci-
ficity. Figure 2b also shows that better results are achieved
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accuracy precision recall specificity

rand-0.500 0.500 0.654 0.500 0.500
rand-0.654 0.547 0.654 0.654 0.346
rand-1.000 0.654 0.654 1.000 0.000

simple H 0.682 0.678 0.979 0.120
simple R 0.736 0.736 0.930 0.371
simple M 0.738 0.739 0.926 0.383
simple F 0.792 0.811 0.891 0.607
simple FM 0.827 0.841 0.907 0.676
simple FMR 0.852 0.868 0.913 0.737
simple FMRH 0.872 0.887 0.921 0.778

ext. H 0.625 0.729 0.680 0.522
ext. R 0.708 0.799 0.740 0.649
ext. M 0.704 0.775 0.770 0.581
ext. F 0.744 0.822 0.777 0.682
ext. FM 0.798 0.856 0.830 0.736
ext. FMR 0.828 0.889 0.842 0.802
ext. FMRH 0.849 0.903 0.863 0.824

Table 1: Recognition measures for vocal activity.

by adding our novel audio features.
Segmentation accuracy. As we would expect from the

above results, the segmentation accuracy, too, improves with
increasing model complexity. The top segmentation accu-
racy of the top score of 0.724 is is approaching that of state-
of-the-art chord segmentation techniques (e.g. [10, p. 88],
0.782). For the four best feature combinations the simple
methods slightly outperform the extended ones, by 2 to 4
percentage points.

The best extended method, extended FMRH, has the high-
est precision (90.3%) and specificity (82.4%) values of all
tested algorithms, while retaining high accuracy and recall
(84.9% and 86.3%, respectively). In most situations this
would be the method of choice, though the respective sim-
ple method has a slight advantage in terms of segmentation
accuracy.

5.2 Instrumental Solo Activity

More difficult than detecting vocals is detecting the instru-
mental solos in polyphonic pop songs because they occupy
a smaller fraction of the total number of frames (12.6%, see
Figure 1). Hence, this situation is more similar to a tradi-
tional retrieval task (the desired positive class is rare), and
precision and recall are the relevant measures for this task.
Table 1 shows all results, and—for comparison—the theo-
rtical performance of the three classifiers ‘rand-x’ that ran-
domly assign a ratio of x frames to the solo class.

The method that includes all our novel audio features,
FMRH, achieves the highest accuracy of all methods. How-
ever, all methods show high accuracy and specificity; preci-
sion and recall show the great differences between the meth-
ods. Figure 3 illustrates the differences in precision of solo

H

R

M

F

FM

FMR

FMRH

precision

0.0 0.1 0.2 0.3 0.4 0.5 0.6

29.8%

46.5%

52.5%

22.4%

53.8%

57.7%

61.1%

Figure 3: Detection of instrumental solos: precision of the
extended methods.

accuracy precision recall specificity

rand-0.126 0.780 0.126 0.126 0.874
rand-0.500 0.500 0.126 0.500 0.500
rand-1.000 0.126 0.126 1.000 0.000

ext. H 0.829 0.298 0.262 0.911
ext. R 0.866 0.465 0.406 0.933
ext. M 0.877 0.525 0.290 0.962
ext. F 0.860 0.224 0.045 0.977
ext. FM 0.876 0.538 0.152 0.981
ext. FMR 0.889 0.577 0.445 0.953
ext. FMRH 0.898 0.611 0.519 0.952

Table 2: Recognition metrics for instrumental solo activity.

detection between the extended methods. The methods that
combine our novel features have a distinct advantage, with
the FMRH feature setting achieving the highest precision.
Note, however, that the precision ranking of the individual
features is different from the vocal case, where the F fea-
ture was best and the M and R features showed very similar
performance: the method using the R feature alone is now
substantially better than that of the simple MFCC feature M,
suggesting that using the isolated timbre of the solo melody
is a decisive advantage. The F feature alone shows low pre-
cision, which is expected because pitch fluctuation is high
for vocals as well as instrumental solos.

Considering that the precision of a random classifier in
this task is 12.6% the best performance of 61.1%—though
not ideal—makes it interesting for practical applications.
For example, in a situation where a TV editor requires an
expressive instrumental as a musical backdrop to the video
footage, a system implementing our method could substan-
tially reduce the amount of time needed to find suitable ex-
cerpts.

6. DISCUSSION AND FUTURE WORK

A capability of the extended methods we have not discussed
in this paper is to detect whether the singer in a song is
male or female. A simple classification method is to take
the more frequent of the two cases in a track as the track-
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wise estimate, resulting in a 70.1% track-wise accuracy. In
this context, we are currently investigating hierarchical time
series models that allow us to represent a global song model,
e.g. ‘female song’, ‘female-male duet’ or ‘instrumental’. In-
formal experiments have shown that this strategy can in-
crease overall accuracy, and as a side-effect it delivers a
song-level classification which can be used to distinguish
not only whether a track’s lead vocal is male or female, but
also whether the song has vocals at all.

7. CONCLUSIONS

We have proposed the usage of a set of four audio features
and the new task of detecting instrumental solos in poly-
phonic audio recordings of popular music. Among the four
proposed audio features three are based on a prior transcrip-
tion of the predominant melody line, and have not been used
in the context of vocal/instrumental activity detection. We
conducted 14 different experiments with 7 feature combina-
tions and two different SVM-HMM models. Training and
testing was done using 5-fold cross-validation on a set of
102 popular music tracks. Our results demonstrate the ben-
efit of combining the four proposed features. The best per-
formance for vocal detection is achieved by using all four
features, leading to a top accuracy of 87.2% and a satisfac-
tory segmentation performance of 72.4%. The detection of
instrumental solos equally benefits from the combination of
all features. Accuracy is also high (89.8%), but we argue
that the main improvement through the features can be seen
in the increase in precision to 61.1%. With this paper we
also release to the public the annotations we used for train-
ing and testing. The annotations offer not only vocal/non-
vocal labels, but also distinguish between female and male
singers, and different solo instruments.

This work was supported in part by CrestMuse, CREST,
JST. Further thanks to Queen Mary University of London
and Last.fm for their support.
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