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CONTINUOUS PLSI AND SMOOTHING TECHNIQUES
FOR HYBRID MUSIC RECOMMENDATION

Kazuyoshi Yoshii

ABSTRACT

This paper presents an extended probabilistic latent seman-
tic indexing (pLSI) for hybrid music recommendation that
deals with rating data provided by users and with content-
based data extracted from audio signals. The original pLSI
can be applied to collaborative filtering by treating users
and items as discrete random variables that follow multi-
nomial distributions. In hybrid recommendation, it is nec-
essary to deal with musical contents that are usually repre-
sented as continuous vectorial values. To do this, we pro-
pose a continuous pLSI that incorporates Gaussian mix-
ture models. This extension, however, causes a severe lo-
cal optima problem because it increases the number of pa-
rameters drastically. This is considered to be a major fac-
tor generating “hubs,” which are items that are inappropri-
ately recommended to almost all users. To solve this prob-
lem, we tested three smoothing techniques: multinomial
smoothing, Gaussian parameter tying, and artist-based item
clustering. The experimental results revealed that although
the first method improved nothing, the others significantly
improved the recommendation accuracy and reduced the
hubness. This indicates that it is important to appropriately
limit the model complexity to use the pLSI in practical.

1. INTRODUCTION

The musical tastes of users of online music distribution ser-
vices that provide millions of items are strongly influenced
by the characteristics of the music automatically recom-
mended by those services. Users often have difficulty re-
trieving unknown items they might like. In such case, users
consider recommendations and get aware of what kinds of
items are their favorites. When only popular items are al-
ways recommended, users are not exposed to items they
might enjoy more and get used to enjoying only the “safe”
recommendations. This in turn strengthens the tendency to
recommend only popular items. In other words, there is a
severe limitation in serendipity of music discovery. In fact,
this negative-feedback phenomenon has been observed in
many services based on collaborative filtering.

We aim to enhance the serendipity by transforming the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.

(© 2009 International Society for Music Information Retrieval.

339

Masataka Goto
National Institute of Advanced Industrial Science and Technology (AIST)
{k.yoshii,m.goto} @aist.go.jp

Rating data

.
847 likes 7,

-
8 likes £,
fan)

g

3 likes ﬂ@b &,

Content-based data
S\

& a —> Features
‘Q?b —> Features
ﬁc —> Features

-~ H
| Mg likes Fe &, || &

y —> Features

Example of recommendation

(- s A
The objective is to recommend

items to 8 who likes [
c

D

Estimation of musical tastes

8 is likely to select
D

J. 9z is recommended to 8
J

Recommender ~@P> Train continuous-pLSI model
e N
[ ]

8

~

8

AN

Figure 1. Hybrid recommender based on continuous pLSI.

passive experience in which users only receive “default”
recommendations into an interactive experience in which
users can freely customize (personalize) those recommen-
dations. To achieve this, it is necessary to let users clearly
understand and express their own musical tastes that are es-
timated as bases of making default recommendations. The
conventional reasoning like “You like A, so you would like
B because other users who like like A also like B” is a rela-
tive expression of musical tastes. We aim to obtain a direct
expression of each user’s musical tastes that is easy to use
as a basis for interactive recommendation.

A promising way to do this is to use probabilistic latent
semantic indexing (pLSI) based on a multi-topic model,
which has been originally used for document modeling [1].
The model includes latent variables corresponding to the
concepts of topics. How likely a document and a word co-
occur is predicted by stochastically associating each docu-
ment and word with a topic. Documents and words that are
strongly associated with the same topic are likely to occur
jointly. The model can be applied to collaborative filtering
based on rating histories by treating documents and words
as users and items [2]. Given a user, we can predict how
likely each item is purchased by estimating how likely the
user chooses each topic. The musical tastes of users can be
expressed as the strength of user-topic associations.

As shown in Figure 1, we propose continuous pLSI for
hybrid recommendation that enhances serendipity by com-
bining rating data with content-based data extracted from
musical audio signals. Specifically, Gaussian mixture mod-
els (GMMs) are built into the collaborative filtering model
of pLSI in order to address continuous vectorial data. Un-
like the major collaborative methods relying on heuristics
[3,4], the pLSI model can be extended in a consistent man-
ner because it is flexible and has a theoretical basis.
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The continuous pLSI, however, suffers from a serious
local optima problem because a number of parameters lin-
early increases according to data size. This causes the hub
phenomenon [5], in which specific items are almost always
recommended to users regardless of their rating histories.
Thus, the serendipity of recommendations is insufficient.
Although a similar probabilistic model was proposed for
genre classification [6], this problem was not addressed.

To solve this problem, we propose three smoothing tech-
niques: multinomial smoothing, Gaussian parameter tying,
and artist-based item clustering. The first technique is ex-
pected to avoid overfitting and the other two reduce the
model complexity. We compared the effectiveness of these
techniques experimentally.

The rest of this paper is organized as follows. Section 2
introduces related work. Section 3 explains a model of the
continuous pLSI. Section 4 describes the three smoothing
techniques. Section 5 reports our experiments. Section 6
summarizes the key findings of this paper.

2. RELATED WORK

Music recommendation is an important topic today in the
field of music information processing. Conventional stud-
ies on recommendation have been intended to deal with
textual data (documents and words). In addition, many re-
searchers have proposed various ideas to make the most
of content-based data that is automatically extracted from
musical audio signals. For example, Logan [7] proposed a
content-based recommender based on the cosine distance
between a user’s favorite items and non-rated items. Magno
and Sable [8] reported subjective experiments showing that
a content-based recommender competes against Last.fm (a
collaborative recommender) and Pandora (a recommender
based on manual annotations) in terms of user satisfaction.
These reports indicate the synergistic effect of integrating
rating data with content-based data. Hybrid recommenders
have been actively investigated recently. Celma et al. [9]
used both content-based similarity and user profiles given
in RSS feeds to choose suitable items. Tiemann et al. [10]
integrated two weak learners (social and content-based rec-
ommenders) by using an ensemble learning method.
Another important issue is how to present recommenda-
tions to users. Donaldson and Knopke [11] visualized the
relationships of recommended items in a two dimensional
space. Lamere and Maillet [12] proposed a transparent and
steerable interface for a recommender based on crowds of
social tags. A common concept of these studies seems to
be that users had better actively explore or control recom-
mendations. This would result in enhanced serendipity.
The existence of hubs has recently been recognized as
a serious problem. Interestingly, this problem was not re-
ported in the field of text-based recommendation. In music
recommendation and retrieval, GMMs are generally used
to represent the distributions of acoustic features. Aucou-
turier et al. [5] pointed out that this kind of modeling tends
to create hubs that are wrongly evaluated as similar to all
other items. Berenzweig [13] concluded that the hub phe-
nomenon is related to the curse of dimensionality. Chordia
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et al. [14] discussed content-based recommendation based
on the Earth-Movers distance between GMMs of individ-
ual items. They empirically found that a homogenization
method can improve performance [15]. Hoffman et al. [16]
tried to solve this problem by using the hierarchical Dirich-
let process (HDP) for modeling content-based data. Unlike
the GMM, the HDP represents each item as a mixture of
an unfixed number of Gaussians. The number is automat-
ically adjusted to match the data complexity. In addition,
the same set of Gaussians is used to model all items, with
only the mixture weights varying from item to item. This
is similar to Gaussian parameter tying.

3. CONTINUOUS PLSI

This section explains a continuous pLSI model and a train-
ing method suitable for efficient parallel processing.

3.1 Problem Statement

We define several symbols from a probabilistic viewpoint.
Let U = {uy,u2,--- ,ujy|} be the set of all users, where
|U| is the number of them, and let V' = {vy,va,- - , vy}
be the set of all items, where | V| is the number of them. Let
u and v be discrete random variables respectively taking
the values of one member of U and one member of V. Let
X = {x1, 22, , )y} denote content-based data that
is a set of D-dimensional feature vectors extracted from
individual items. Let x be a continuous random variable
in the D-dimensional space. Probabilistic distributions are
represented as p(variable) or p(variablel|variable2), e.g., a
discrete distribution p(u) or a conditional continuous dis-
tribution p(x|u). For example, probabilities or probability
densities are given by p(u = ;) or p(x = xzj|u = w;),
which are simply described as p(u;) or p(x;|u;).

As to available rating data, we mainly assume implicit
ratings such as purchase histories or listening counts, which
are recorded automatically even when users do not explic-
itly express their preferences for individual items. In gen-
eral, the number of implicit ratings tends to be much larger
than that of explicit ratings. We thus think that the former
are more suitable to probabilistic approaches because for
them the sparseness problem is less serious.

The total available data (combinations of rating data and
content-based data) is given by O = {(u(1),v(1), (1)),

* (U(N),’U(N), :E(N))}, where (u(n),v(n), cc(n)) (1 <n
< N) is a user-item-feature co-occurrence that user U(n)
has purchased (viewed or listened to) item v(,,) with fea-
ture x(,) and N is the number of co-occurrences. Let
¢(u, v) be the number of times that co-occurrence (u, v, )
was observed. Obviously, N = > c(u,v). An easy
way to utilize explicit ratings (e.g., numerical rating scores
such as the numbers of “stars” in an one-to-five scale rat-
ing system adopted by Amazon.com) is to set the value of
¢(u,v) to one if a user u likes item v, i.e., the rating score
is greater than a neutral score (three stars). Alternatively,
we could use rating scores for weighting c(u, v).

The final objective is to estimate the probabilistic distri-
bution p(v|u), which indicates how likely it is that user u
likes item v. Recommendations are then made by ranking
items not rated by user u in a descending order of p(v|u).
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3.2 Model Formulation

The graphical representation of a continuous pLSI model
is shown in Figure 2. This is an extended version of three-
way aspect models [17, 18] in which all variables are dis-
crete. We assume that users, items, and features are condi-
tionally independent through latent topics. In other words,
once a latent topic is specified, there is no mutual informa-
tion between three kinds of variables. Although this seems
a strong assumption, it is a reasonable way to avoid the lo-
cal optima problem. Introducing a dependency edge from
items to features in order to model the real world accurately
would increase the number of parameters drastically.

The pLSI model can explain the process generating co-
occurrence (U(n), V(n), T(n)). Let Z = {z1,---, 2z} be
a set of topics, where | Z| is the number of them. Let z be a
latent variable that takes the value of one of Z. Each topic
can be regarded as a soft cluster that is simultaneously as-
sociated with users and items. That is, each user and each
item stochastically belong to one of the topics. The model
thus treats triplet (w(y), U(n), € (n)) as incomplete data that
is latently associated with z(,,) € Z. The complete data is
given by quartet (u(y), U(n), T(n), Z(n))- An interpretation
of the generative process is that user u,,) stochastically se-
lects topic z(,,) according to his or her taste p(z(n)|u(n)).
and z(,,) stochastically generates item v and its features x
in turn. For convenience, we let S be {z(1), - , 2(n) }-

A unique feature of the continuous pLSI is that p(x|z)
is modeled with a Gaussian mixture model (GMM) in or-
der to deal with continuous observation . Let M be the
number of mixtures (Gaussian components). Each topic
zr € Z has a GMM defined by the mixing proportions
of Gaussians {wy, 1, - ,wy p} and their means and co-
variances {f;, 1, , g prp and {Bp 1,0, Bgarf. As
in the original pLSI, p(u), p(z|u), and p(v|z) are multino-
mial distributions. We practically use an equivalent defi-
nition of the model obtained by focusing on p(z), p(u|z),
and p(v|z). The parameters of these multinomial distribu-
tions are simply given by (conditional) probability tables
of target variables. Let 0 be the set of all parameters of | Z|
GMMs and |Z|(1 + |U| + |V|) multinomial distributions.

3.3 Model Training

The training method we explain here uses the Expectation-
Maximization (EM) algorithm [19] and is a natural exten-
sion of previous methods [17, 18] (c.f., discrete HMM v.s.
continuous HMM). Instead of maximizing the incomplete
log-likelihood, log p(O), the EM algorithm maximizes the
expected complete log-likelihood Eg[logp(S, O)] itera-
tively, where F.[f(z)] means an expected value of func-
tion f(z) with respect to p(z); E.[f(2)] = >, p(2) f(2).

The complete likelihood of (u, v, x, z) is given by

p(u,v,x, 2) = p(2)p(ulz)p(v|2)p(e|2). M
This can be easily calculated for given observations when

parameters 6 are obtained.
In the E-step we define a Q function as

Q<0|0currenl) = ES [Ing(Sv O)]

2)
3)
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Figure 2. Graphical representation of continuous pLSI.

where p(z|u, v, ) is a posterior distribution of latent vari-
able z and can be calculated by using the current parame-
ters Ocument s follows:

 plu,v,x,2)
Y p(uy v,y 2)

In the M-step we update the current parameters by max-
imizing Eqn. (3). Note that log p(u, v, x, z) can be decom-
posed into log p(z) + log p(u|z) +1og p(v|z) + log p(x|2).
This means that the parameters of each distribution can be
updated independently. To update p(z), for example, we
only focus on a term related to p(z) as follows:

Qp(z) = ZC(U,U)Zp(Z|u,U,(I:) logp(z).  (5)

U,v

“)

p(z|u, v, x)

Using a Lagrange multiplier A for a constraint of probabil-
ity standardization, we define a new function Fj, .y as

Foz) = Qpz) +A (1 - ZMZ)) :

We then calculate the differential of Eqn. (6) with respect
to p(z) and set it to zero as follows:

(6)

an(Z) 1
= — c(u,v)p(zlu,v,2¢) —A=0. (7)
Bp(e) ~ () 2 Sl vplet v,
The updated distribution p(z) can be obtained by
Zu v C(u? U)p(z|u? v? m)
p(z) = = (8)

Zu;u,z C(’U,7 ’U)p(z|u7 U? w) ’

The other two multinomial distributions p(u|z) and p(v|z)
can be similarly updated as follows:

22, e, v)p(z|u, v, )
D Clu, v)p(zlu, v, @)
22 c(u, v)p(zlu, v, @)
2wy €, 0)p(2|u, v, )
To update continuous distribution p(z|z), we focus on

Qp(a|z) = Zc(u,v) Zp(z|u,v7 x)logp(x|z) (11)

u,v

K M
=> c(u,v) > plzxl-)log D p(ykm)p(elze, ye,m), (12)
u,v k=1 m=1

p(ulz) = )

p(vlz) = (10)

where to improve legibility we wrote p(z|u, v, ) as p(z|-).
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Yk € {yr1, - ,yk,m} is a latent variable that indicates

which Gaussian in the GMM of topic z, generates . p(yy)

represents a probability distribution over M Gaussians, i.e.,
P(Yk.m) = Wk.m, and p(z|2, Yx.m) is the likelihood that

feature x is generated from a Gaussian indicated by y, .

Because the logarithmic operation for the summation makes
Eqgn. (12) hard to maximize directly, we focus on the ex-

pected value of Q|- With respect to y:

K
Eyk [Qp(a:|z)} = Z C(uv ’U) Zp(zk‘)
M u,v k=1

S Pyl 21) (10 W + 108 N (@t s Srm) ) (13)
m=1
where p(yg, m |, 21 ) is a posterior probability given by

PWkm)P(E| 2k Yk,m)

7 .
2 =1 PWk,m)P(Z |2k Yk,m)

To obtain optimized wy, ,,, we define the following func-
tion by introducing a Lagrange multiplier 3:

P(Yk,m T, 2K) = (14)

M
Fy, = Ey, [Qp(w|z)] + 0 (1 — Z w;ﬁm) . (15)
m=1
Calculating the partial partial differential of Eqn. (15) with

respect to wy, »,, and setting it to zero, we obtain

2w €t V)P (2K )P (Yh,m [T, 28)

o1 D €1, V)P (2| VD Yk, 1)

16)

Wk,m =

)

Setting the partial differential of Eqn. (13) to zero, the mean
and variance py, ,,, and X ,,, are obtained by

m=1

> (s V)P (2 )P (Yio,m |, 21) T
2w € V)P (2] )P (Yr,m [, 21)
>0 (V)P )P Yk m |2, 20) (® — By )
> (s V)P (2] )P(Yk,m [, 21)

I“I’k,m = ) (17)

Yim = . (18)

Given a user u;, recommendations are made by evalu-
ating p(vlu;) = Y, p(v|z)p(z|u;), where p(z|u;) is pro-
portional to p(z)p(u;|z) and indicates the musical tastes of
user u: how likely it is user u; selects (likes) topic z.

3.4 MapReducing EM Algorithm

Computational efficiency, a very important issue in mu-
sic recommendation when the database and model become
large, is especially critical when used data cannot be loaded
on the memory of a single machine. Elegant implementa-
tions, however, have scarcely been addressed.

A remarkable advantage of pLSI-based recommenders
is that we can easily implement them in parallel process-
ing environments that consist of multiple machines such
as clusters. Google News, for example, uses a distributed
computation framework called MapReduce [20].

We can implement the continuous pLSI by using MPI or
Hadoop [21]. Suppose we have GyGy machines (CPUs).
Let {U1,--- ,Ugq, } and {V4,--- , Vg, } be exclusive sets
of users and items, where Uy N---NUg, = U and V1 N
-+-NVg, = V. To update p(z), for example, we calculate

>

uclU;,veVj

(Ui, Vj) = c(u,v)p(zlu,v,2).  (19)
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This can be separately calculated in each machine. To cal-
culate p(z|u, v, x), we need only p(z), p(ulz) (v € U;),
p(v]z) (v € V;), and p(z|z). The number of parameters of
these distributions is much smaller than the total number
of parameters. Finally, we can get an integrated result by

>

1<i<Gu,1<j<Gv

p(z) o c: (Ui, Vj). (20)

4. SMOOTHING TECHNIQUES

To avoid overfitting, one needs to use appropriate smooth-
ing techniques. In our study, we use three techniques to im-
prove accuracy and reduce hubness: multinomial smooth-
ing, Gaussian parameter tying, and artist-based item clus-
tering. The first relaxes the excessive inclination of multi-
nomial parameters, and the others limit model complexity.

4.1 Multinomial Smoothing

We add a conjugate prior called a Dirichlet distribution to
a Q function as a regularization term. To estimate p(z), for
example, we consider the following function:

@p(z) = @p(z) + Dir(a),

where o is a set of K parameters of a Dirichlet distribution.
This results in the additive smoothing method. We set all
parameters to 1.0001. Maximizing Q; ()» We get

21

2w (s V)p(2lu, v, ) +a — 1

>, (Zu‘v c(u,v)p(zlu,v, ) + o — 1) .

The updating formulas of the other multinomial distribu-
tions are similarly given by

p(2) (22)

>, clu,v)p(zlu, v, @) + o — 1
w (Zv c(u,v)p(zlu,v, @) + o — 1) ’
> cu, v)p(zlu,v,2) + o — 1
> (Zu c(u,v)p(zlu,v, ) + o — 1) '

4.2 Gaussian Parameter Tying

p(ulz) = > (23)

p(v|z) = (24)

We force all GMMs to share the same set of Gaussians and
differ from each other in the mixing proportions of those
Gaussians. In the context of HMMs, this is called a tied
mixture model. The new updating formulas are given by

Zu,v,m C(u7 U)p(zk|)p(yk7m|w7 Zk)w
Zuvu,’m C(U7 v)p(zk|')p(yk,m |m: Zk)

D s 0)p 2 ) (Y |2, i) (® — By 1)
Zu,v,m C(u> U)p(Zkl)p(ykm|iE, Zk)

(25

H’k,m =

Ykm . (26)

4.3 Artist-based Item Clustering

We replace item-based distribution p(v|z) with artist-based
distribution p(a|z), where variable a represents one of the
artists in the database. Let A be a set of items sung by artist
a, That is, let all items be grouped according to their artist
names. We train an artist-based model for users, artists,
and features by iteratively updating p(a|z) as follows:

Zu,veA C(uv v)p(z|u, v, (13)
2w C(u, 0)p(z]u, v, )

plalz) = 27)
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Score 5 4 3 2 1
Counts | 5336 1458 457 211 333
Ratio | 68.5% 18.7% 5.86% 2.71% 4.27%

Table 1. Distribution of rating scores.

To recommend items rather than artists, we then con-

struct an ifem-based model by replacing p(a|z) with p(v|z).

To do this, we use an incremental training method [18] that

re-estimates a distribution of unknown items p(v|z) with-

out affecting other trained distributions p(z), p(u|z),(x|z):
p(2)p(ulz)p(x|2)

2 (V) S )

z)
p(2)p(u|z)p(x|2)
Eu,v C(U, U) >, p(2)p(ulz)p(x]2)

p(v]z) = (28)

5. EVALUATION

We experimentally evaluated the continuous pLSI in terms
of accuracy and hubness by using various combinations of
the smoothing techniques.

5.1 Data

The music items we used were Japanese songs recorded in
single CDs that were ranked in weekly top-20 sales rank-
ings from Apr. 2000 to Dec. 2005. To use these items,
we need real implicit ratings c¢(u, v) such as purchase his-
tories and listening counts, but most online services do
not release such data to the public. We therefore instead
collected explicit ratings (numbers of “stars” ranging from
one to five) from Amazon.co.jp by using official APIs [22]
that let us download almost all the information available
from Amazon.co.jp [22]. For reliable evaluation, we ex-
cluded users who had rated fewer than two items and ex-
cluded items that had been rated less than two times. As
a result, |U| was 1872 and |V'| was 1400. The number of
artists was 471. If a rating score given to item v; by user u;
was greater than three (the neutral score), we set c(u;, v;)
to the score. Otherwise, we set ¢(u;, v;) to zero. In other
words, we considered only positive ratings. A similar ap-
proach has been used previously [23]. Note that, as shown
in Table 1, the distribution of rating scores was strongly
skewed. The density of 6794 positive ratings (scores 4 and
5) was 0.259% in the user-item co-occurrence table.

With regard to the content-based data, we focused on
vocal features because all the items included singing voices
that strongly affected the musical tastes of users. To extract
these features from polyphonic audio signals, we used a
method proposed by Fujihara et al. [24]. We calculated a
13-dimensional feature vector at each frame where singing
voices were highly likely to be included, concatenated the
mean and variance of the feature vectors in each item into a
26-dimensional vector, and then used principal component
analysis to compress the dimensionality to 20 (D = 20).

5.2 Protocols

To test all combinations of the three smoothing techniques,
we prepared eight models of the continuous pLSI. For con-
venience, throughout Section 5, the multinomial smooth-
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Disabled SM1 SM2 SM1&2
Disabled 4.65 429 6.18 6.57
SM3 7.10 6.72 194 19.3

Table 2. Expected utility of recommendations: Higher
scores indicate better performance.

Disabled SM1 SM2 SM1&?2
Disabled 5.94 5.81 6.39 6.36
SM3 5.98 5.81 6.36 6.34

Table 3. Entropy of recommendations: Higher scores in-
dicate better performance (fewer hubs).

ing, Gaussian parameter tying, and item clustering are re-
spectively called SM1, SM2, and SM3. The number of
latent variables was 256 (|Z| = 256). Although the num-
ber of mixtures was 32, when SM1 was disabled it was set
to 1 in order to avoid overfitting.

We conducted 10-fold cross validation by splitting the
positive explicit ratings into ten groups. Nine groups were
used for making recommendations with the eight models.
The other group was considered to be not observed and
was used for evaluating the recommendations.

5.3 Measures

Recommendation results given as ranked lists of items were
evaluated in terms of accuracy and hubness.

To calculate accuracy, we used the expected utility of a
ranked list [25], which for each user is defined as

|V |—#(rated items)

>

r=1

max(score,, » — 3,0)

. 2(r=1)/(v-1) ’

= (29)
where score,, - is the rating score that user u actually gave
the r-th ranked item although the item was considered a
non-rated item (the score was hidden) in model training.
When score,,, was not available, its value was set to 3.
v is a viewing half-life based on the assumption that the
probability that a user views an r-th ranked item is twice
the probability that the user views an (r + )-th ranked
item. We set v to 5 as in the literature [25]. R, was not
sensitive to the value of +. The total score is given by

Eu R"

R =100 S R

where R} is the maximum achievable utility if all items

with available scores given by user u had been at the top of

the ranked list in order of those scores. Basically, higher

values indicate better performance, but note that the prob-
ability of recommending known items is high.

We propose the following hubness measure based the

entropy of recommendations:
#
ol

VI .
H=-Y
j=1
where ¢(j) is the number of times that item v; was rec-
ommended with the highest (top 1) ranking. A larger H
(higher entropy) indicates a smaller bias in how many times
each item is recommended.

(0 < R < 100), (30)

t(j)
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5.4 Results

As shown in Table 2, the accuracies of recommendations
were greatly improved by using SM3. This can be ex-
plained from two aspects: the relationship between items
and features and that between items and users. First, the
items of each artist tend to be similar to each other in their
musical features. Second, most users of Amazon.co.jp tend
to like any of the items of the few artists they like. This
would be a common tendency of the users of many online
music distribution services. Therefore, SM3 reduced the
complexity of the model while preserving almost all the
information of the rating data.

SM2 improved the accuracy of recommendations made
regardless of the combinations in which it was used. Inter-
estingly, recommendations obtained by jointly using SM2
and SM3 were much more accurate than those made when
these techniques were used independently. SM1, on the
other hand, slightly reduced the accuracy because it is based
on additive smoothing. It is known that its approximation
errors are larger than those of the other smoothing methods
such as the Good-turing method.

Table 3 shows hubness of recommendations. SM2 sig-
nificantly reduced the hubness while the SM1 and SM3
had no gains. This is consistent with the results reported
by Hoffman et al. [16], who found that HDP and vector
quantization (VQ) did not produce many hubs. VQ can be
considered as a hard clustering version of the tied GMM,
which is a soft clustering model.

We conclude that combining SM2 and SM3 is the best
approach to improving performance. In our experiments,
it yielded accuracy comparable with that of conventional
methods of collaborative filtering.

6. CONCLUSION

This paper has presented a continuous-pLSI-based model
for hybrid music recommendation. The model uses GMMs
to represent distributions of acoustic features extracted from
musical audio signals. As in the original pLSI, users and
items are assumed to follow multinomial distributions. We
developed an algorithm for parameter estimation and im-
plemented it in a parallel processing environment. Experi-
mentally testing the abilities of three smoothing techniques
—multinomial smoothing, Gaussian parameter tying, and
artist-based item clustering—, we found that using the sec-
ond and third techniques to adjust model complexity sig-
nificantly improved the accuracy of recommendations and
that the second technique could also reduce hubness.

In the future, we plan to introduce conjugate priors of all
distributions (GMMs and multinomial distributions) into
the continuous pLSI to enable full Bayesian estimation.
Extending latent Dirichlet allocation (LDA) [23] and HDP-
LDA [26] are worth considering.
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