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ABSTRACT

This paper presents an automatic description system of

drum sounds for real-world musical audio signals. Our

system can represent onset times and names of drums

by means of drum descriptors defined in the context of

MPEG-7. For their automatic description, drum sounds

must be identified in such polyphonic signals. The prob-

lem is that acoustic features of drum sounds vary with

each musical piece and precise templates for them can-

not be prepared in advance. To solve this problem, we

propose new template-adaptation and template-matching

methods. The former method adapts a single seed tem-

plate prepared for each kind of drums to the corresponding

drum sound appearing in an actual musical piece. The lat-

ter method then can detect all the onsets of each drum by

using the corresponding adapted template. The onsets of

bass and snare drums in any piece can thus be identified.

Experimental results showed that the accuracy of identi-

fying bass and snare drums in popular music was about

90%. Finally, we define drum descriptors in the MPEG-7

format and demonstrate an example of the automatic drum

sound description for a piece of popular music.

keywords: automatic description, polyphonic music,

drum sounds, template-adaptation, template-matching

1. INTRODUCTION

The automatic description of contents of music is an im-

portant subject to realize more convenient music infor-

mation retrieval. Today, audio editing, music composing

and digital distribution of music are very popular because

technological advances with respect to computers and the

Internet are remarkable. However, we have a few efficient

ways to retrieve our favorite musical pieces from huge

music databases (i.e., exploration is limited to artist-based

or title-based queries). In these backgrounds, many stud-

ies have addressed the content-based music information

retrieval by describing music contents [4, 12, 18].

In this paper, we discuss an automatic description sys-

tem of drum sounds. We aim at symbolically represent-
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ing onset times and names of drums by means of drum

descriptors defined in the context of MPEG-7. MPEG-

7 is a standardization to describe contents of multimedia.

Gómez et al. [4] and Peeters et al. [18] designed instru-

ment descriptors in the MPEG-7 format and claimed their

importance in music information retrieval. Kitahara et

al. [12] discussed the identification of harmonic sounds to

automatically describe names of instruments by using in-

strument descriptors. However, no research has addressed

the automatic drum sound description.

Because drums play an important role in contempo-

rary music, the drum sound description is necessary to ac-

curately extract various features of music that are useful

for music information retrieval (e.g., rhythm, tempo, beat,

meter and periodicity). Previous researches, however, ex-

tracted those features by numerical analysis, not consid-

ering symbolic information with respect to drum perfor-

mances [9, 15, 16, 20]. Some researches, for example,

addressed a genre classification problem [1, 21]. Charac-

teristic or typical drum patterns are different among gen-

res (e.g, rock-style, jazz-style or techno-style). Therefore,

symbolic information of drum sounds provides good clues

for the genre classification. In addition, it distributes to

music information retrieval which considers users’ prefer-

ences to music because drum patterns are closely related

to a mood of a musical piece [13].

It is required for the automatic drum sound description

to identify drum sounds in real-world CD recordings. To

identify instrument sounds with the harmonic structure,

several methods have been proposed [2, 14]. Those meth-

ods assuming the harmonic structure, however, cannot be

applied to drum sounds. Some researches addressed the

drum sound identification for solo tones [8, 10, 11] or syn-

thesized signals by MIDI [3, 5, 17]. Others discussed the

extraction of drum tracks, but did not mention the identi-

fication [22]. The accurate drum sound identification for

real-world polyphonic music is still difficult problem be-

cause it is impossible to prepare, in advance, all kinds of

drum sounds appearing in various musical pieces.

To identify drum sounds, we propose new template

adaptation and matching methods:

• The template-adaptation method uses template

models of the power spectrum of drum sounds. The

advantage of our method is that only one template

model called “seed template” is necessary for each
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Figure 1. Overview of template-adaptation method: The template is the power spectrum in the time-frequency domain.

This method adapts the single seed template to the corresponding drum sounds appearing in an actual musical piece. The

method is based on an iterative adaptation algorithm, which successively applies two stages — the Excerpt-Selection stage

and the Template-Refinement stage — to obtain the adapted template.

kind of drums: the method does not require a large

database of drum sounds. To identify bass and snare

drums, for example, we should prepare just two

seed-templates (i.e., prepare a single example for

each drum sound).

• The template-matching method is developed to

identify all the onset times of drum sound after this

adaptation. It uses a new distance measure that can

find all the drum sounds in the piece by using the

adapted templates.

The rest of this paper is organized as follows. First,

Section 2 and 3 describe the template-adaptation and

template-matching methods respectively to identify bass

and snare drum sounds. Next, Section 4 shows experi-

mental results of evaluating those methods. In addition,

it demonstrates an example of the drum sound description

by using drum descriptors defined in the standard MPEG-

7 format. Finally, Section 5 summarizes this paper.

2. TEMPLATE ADAPTATION METHOD

In this paper, templates of drum sounds are the power

spectrum in the time-frequency domain. The promising

adaptation method of Zils et al. [23] worked only in the

time domain because they defined templates consisting of

audio signals. Extending their idea, we define templates in

the time-frequency domain because non-harmonic sounds

like drum sounds are well characterized by the shapes of

power spectrum. Our template-adaptation method uses a

single base template called “seed template” for each kind

of drums. To identify bass and snare drums, for exam-

ple, we require just two seed templates, each of which is

individually adapted by the method.

Our method is based on an iterative adaptation algo-

rithm. An overview of the method is depicted in Fig-

ure 1. First, the Rough-Onset-Detection stage roughly

detects onset candidates in the audio signal of a musical

piece. Starting from each of them, a spectrum excerpt is

extracted from the power spectrum. Then, by using all

the spectrum excerpts and the seed template of each drum

sound, the iterative algorithm successively applies two

stages — the Excerpt-Selection and Template-Refinement

stages — to obtain the adapted template.

1. The Excerpt-Selection stage calculates the distance

between the template (either the seed template or

the intermediate template that is in the middle of



adaptation) and each of the spectrum excerpts by

using a specially-designed distance measure. The

spectrum excerpts of a certain fixed ratio to the

whole are selected by ascending order with respect

to the distances.

2. The Template-Refinement stage then updates the

template by replacing it with the median of the se-

lected excerpts. The template is thus adapted to the

current piece and used for the next iteration.

Each iteration consists of these two stages and the iteration

is repeated until the adapted template converges.

2.1. Rough Onset Detection

The Rough-Onset-Detection stage is necessary to reduce

the computational cost of the two stages in the iteration. It

makes it possible to extract a spectrum excerpt that starts

from not every frame but every onset time. The detected

rough onset times do not necessarily correspond to the ac-

tual onsets of drum sounds: they just indicate that some

sounds might occur at those times.

When the power increase is high enough, the method

judges that there is an onset time. Let P (t, f) denote the

power spectrum at frame t and frequency f and Q(t, f)
be the its time differential. At every frame (441 points),

P (t, f) is calculated by applying the STFT with Hanning

windows (4096 points) to the input signal sampled at 44.1

kHz. The rough onset times are then detected as follows:

1. If ∂P (t, f)/∂t > 0 is satisfied for three consecutive

frames (t = a − 1, a, a + 1), Q(a, f) is defined as

Q(a, f) =
∂P (t, f)

∂t

∣

∣

∣

∣

t=a

. (1)

Otherwise, Q(a, f) = 0.

2. At every frame t, the weighted summation S(t) of

Q(t, f) is calculated by

S(t) =

2048
∑

f=1

F (f) Q(t, f), (2)

where F (f) is a function of lowpass filter that is de-

termined as shown in Figure 2 according to the fre-

quency characteristics of typical bass or snare drum

sounds.

3. Each onset time is given by the peak time found by

peak-picking in S(t). S(t) is smoothed by the Sav-

itzky and Golay’s smoothing method [19] before its

peak time is calculated.

2.2. Seed Template and Spectrum Excerpt

Preparation

Seed template TS , which is a spectrum excerpt prepared

for each of bass and snare drums, is created from audio

signal of an example of that drum sound, which must be

monophonic (solo tone). By applying the same method

100 200 frequency bin0

pass ratio

1.0
)( fF

f
Figure 2. Function of the lowpass filter according to the

frequency characteristics of typical bass and snare drums.

with the Rough-Onset-Detection stage, an onset time in

the audio signal is detected. Starting from the onset time,

TS is extracted from the STFT power spectrum of the sig-

nal. TS is represented as a time-frequency matrix whose

element is denoted as TS(t, f) (1 ≤ t ≤ 15 [frames], 1 ≤

f ≤ 2048 [bins]). In the iterative adaptation algorithm, a

template being adapted after g-th iterations is denoted as

Tg. Because TS is the first template, T0 is set to TS .

On the other hand, spectrum excerpt Pi is extracted

starting from each detected onset time oi (i = 1, · · · , N)
[ms] in the current musical piece. N is the number of the

detected onsets in the piece. The spectrum excerpt Pi is

also represented as a time-frequency matrix whose size is

same with the template Tg.

We also obtain T́g and Ṕi from the power spectrum

weighted by the lowpass filter F (f):

T́g(t, f) = F (f) Tg(t, f), (3)

Ṕi(t, f) = F (f) Pi(t, f). (4)

Because the time resolution of the onset times roughly

estimated is 10 [ms] (441 points), it is not enough to obtain

high-quality adapted templates. We therefore adjust each

rough onset time oi [ms] to obtain more accurate spectrum

excerpt Pi extracted from adjusted onset time o′i [ms]. If

the spectrum excerpt from oi − 5 [ms] or oi + 5 [ms] is

better than that from oi [ms], o′i [ms] is set to the time

providing the better spectrum excerpt as follows:

1. The following is calculated for j = −5, 0, 5.

(a) Let Pi,j be a spectrum excerpt extracted from

oi + j [ms]. Note that the STFT power spec-

trum should be calculated again for oi + j
[ms].

(b) The correlation Corr(j) between the template

Tg and the excerpt Pi,j is calculated as

Corr(j) =

15
∑

t=1

2048
∑

f=1

T́g(t, f) Ṕi,j(t, f), (5)

where Ṕi,j(t, f) = F (f) Pi,j(t, f).

2. The best index J is determined as index j that max-

imizes Corr(j).

J = argmax
j

Corr(j). (6)

3. Pi is determined as Pi,J .
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2.3. Excerpt Selection

To select a set of spectrum excerpts that are similar to the

intermediate template Tg, we propose an improved log-

spectral distance measure as shown in Figure 3. The spec-

trum excerpts whose distance from the template is smaller

than a threshold are selected. The threshold is determined

so that the ratio of the number of selected excerpts to the

total number is a certain value. We cannot use a normal

log-spectral distance measure because it is too sensitive to

the difference of spectral peak positions. Our improved

log-spectral distance measure uses two kinds of the dis-

tance Di — Di for the first iteration (g = 0) and Di for

the other iterations (g ≥ 1) — to robustly calculate the

appropriate distance even if frequency components of the

same drum may vary during a piece.

The distance Di for the first iteration are calculated af-

ter quantizing Tg and Pi at a lower time-frequency reso-

lution. As is shown in Figure 4, the time and frequency

resolution after the quantization is 2 [frames] (20 [ms])

fre
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en
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Figure 5. Updating the template by calculating the me-

dian of selected spectrum excerpts.

and 5 [bins] (54 [Hz]), respectively. The distance Di be-

tween Tg(TS) and Pi is defined as

Di =

√

√

√

√

√

15/2
∑

t̂=1

2048/5
∑

f̂=1

(

T̂g(t̂, f̂) − P̂i(t̂, f̂)
)2

(g = 0), (7)

where the quantized (smoothed) spectrum T̂g(t̂, f̂) and

P̂i(t̂, f̂) are defined as

T̂g(t̂, f̂) =

2t̂
∑

t=2t̂−1

5f̂
∑

f=5f̂−4

T́g(t, f), (8)

P̂i(t̂, f̂) =

2t̂
∑

t=2t̂−1

5f̂
∑

f=5f̂−4

Ṕi(t, f). (9)

On the other hand, the distance Di for the iterations af-

ter the first iteration is calculated by the following normal

log-spectral distance measure:

Di =

√

√

√

√

15
∑

t=1

2048
∑

f=1

(

T́g(t, f) − Ṕi(t, f)
)2

(g ≥ 1). (10)

2.4. Template Refinement

As is shown in Figure 5, the median of all the selected

spectrum excerpts is calculated and the updated (refined)

template Tg+1 is obtained by

Tg+1(t, f) = median
s

Ps(t, f), (11)

where Ps (s = 1, · · · , M) are spectrum excerpts selected

in the Excerpt-Selection stage.

We use the median operation because it can suppress

frequency components that do not belong to drum sounds.

Since major original frequency components of a target

drum sound can be expected to appear at the same po-

sitions in most selected spectrum excerpts, they are pre-

served after the median operation. On the other hand, fre-

quency components of other musical instrument sounds

do not always appear at similar positions in the selected

spectrum excerpts. When the median is calculated at t
and f , those unnecessary frequency components become

outliers and can be suppressed. We can thus obtain the

drum-sound template adapted to the current musical piece

even if it contains simultaneous sounds of various instru-

ments.
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by using the improved Goto’s distance measure to detect all the actual onset times. Our distance measure can judge

whether the adapted template is included in spectrum excerpts even if there are other simultaneous sounds.

3. TEMPLATE MATCHING METHOD

By using the template adapted to the current musical

piece, this method finds all temporal locations where a

targeted drum occurs in the piece: it tries to exhaus-

tively find all onset times of the target drum sound. This

template-matching problem is difficult because sounds of

other musical instruments often overlap the drum sounds

corresponding to the adapted template. Even if the tar-

get drum sound is included in a spectrum excerpt, the dis-

tance between the adapted template and the excerpt be-

comes large when using most typical distance measures.

To solve this problem, we propose a new distance mea-

sure that is based on the distance measure proposed by

Goto and Muraoka [5]. Our distance measure can judge

whether the adapted template is included in spectrum ex-

cerpts even if there are other simultaneous sounds. This

judgment is based on characteristic points of the adapted

template in the time-frequency domain.

An overview of our method is depicted in Figure 6.

First, the Weight-Function-Generation stage prepares a

weight function which represents spectral characteristic

points of the adapted template. Next, the Loudness-

Adjustment stage calculates the loudness difference be-

tween the template and each spectrum excerpt by using the

weight function. If the loudness difference is larger than a

threshold, it judges that the target drum sound does not ap-

pear in that excerpt, and does not execute the subsequent

processing. If the difference is not too large, the loudness

of each spectrum excerpt is adjusted to compensate for

the loudness difference. Finally, the Distance-Calculation

stage calculates the distance between the adapted tem-

plate and each adjusted spectrum excerpt. If the distance

is smaller than a threshold, it judges that that excerpt in-

cludes the target drum sound.

3.1. Weight Function Generation

A weight function represents the magnitude of spectral

characteristic at each frame t and frequency f in the

adapted template. The weight function w is defined as

w(t, f) = F (f) TA(t, f), (12)

where TA is the adapted template and F (f) is the low-

pass filter function depicted in Figure 2.

3.2. Loudness Adjustment

The loudness of each spectrum excerpt is adjusted to that

of the adapted template TA. This is required by our

template-matching method: if the loudness is different,

our method cannot estimate the appropriate distance be-

tween a spectrum excerpt and the adapted template be-

cause it cannot judge whether the spectrum excerpt in-

cludes the adapted template.

To calculate the loudness difference between the spec-

trum excerpt Pi and the template TA, we focus on spec-

tral characteristic points of TA in the time-frequency do-

main. First, spectral characteristic points (frequencies) at

each frame are determined by using the weight function w,

and the power difference ηi at each spectral characteristic
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point is calculated. Next, the power difference δi at each

frame is calculated by using ηi at that frame, as is shown in

Figure 7. If the power of Pi is too much smaller than that

of TA, the method judges that Pi does not include TA, and

does not proceed with the following processing. Finally,

the total power difference ∆i is calculated by integrating

δi. The algorithm is described as follows:

1. Let ft,k (k = 1, · · · , 15) be the characteristic points

of the adapted template. ft,k represents a frequency

where w(t, ft,k) is the k-th largest at frame t. The

power difference ηi(t, ft,k) is calculated as

ηi(t, ft,k) = Pi(t, ft,k) − TA(t, ft,k). (13)

2. The power difference δi(t) at frame t is determined

as the first quantile of ηi(t, ft,k).

δi(t) = first-quantile
k

ηi(t, ft,k), (14)

Ki(t) = arg first-quantile
k

ηi(t, ft,k). (15)

If the number of frames where δi(t) ≤ Ψ is satisfied

is larger than threshold Rδ , we judge that TA is not

included in Pi (Ψ is a negative constant).

3. The total power difference ∆i is calculated as

∆i =

∑

{t|δi(t)>Ψ} δi(t) w(t, ft,Ki(t))
∑

{t|δi(t)>Ψ} w(t, ft,Ki(t))
. (16)

If ∆i ≤ Θ∆ is satisfied, we judge that TA is not

included in Pi (Θ∆ is a threshold). Let P ′
i be an

adjusted spectrum excerpt after the loudness adjust-

ment, determined as

P ′
i (t, f) = Pi(t, f) − ∆i. (17)

3.3. Distance Calculation

The distance between the adapted template TA and the

adjusted spectrum excerpt P ′
i is calculated by using an

extended version of the Goto’s distance measure [5]. If

P ′
i (t, f) is larger than TA(t, f) — i.e., P ′

i (t, f) includes

TA(t, f), P ′
i (t, f) can be considered a mixture of fre-

quency components of not only the targeted drum but also

other musical instruments. We thus define the distance

measure as

γi(t, f) =
{ 0 (P ′

i (t, f) − TA(t, f) ≥ Ψ) ,
1 otherwise,

(18)

where γi(t, f) is the local distance between TA and P ′
i

at t and f . The negative constant Ψ makes this distance

measure robust for the small variation of frequency com-

ponents. If P ′
i (t, f) is larger than about TA(t, f), γi(t, f)

becomes zero.

The total distance Γi is calculated by integrating γi in

the time-frequency domain, weighted by the function w:

Γi =
15
∑

t=1

2048
∑

f=1

w(t, f) γi(t, f). (19)

To determine whether the targeted drum played at P ′
i ,

distance Γi is compared with threshold ΘΓ. If Γi < ΘΓ is

satisfied, we judge that the targeted drum played.

4. EXPERIMENTS AND RESULTS

Drum sound identification for polyphonic musical audio

signals was performed to evaluate the accuracy of identi-

fying bass and snare drums by our proposed method. In

addition, we demonstrate an example of the drum sound

description by means of drum descriptors in MPEG-7.

4.1. Experimental Conditions

We tested our method on excerpts of ten songs included

in the popular music database RWC-MDB-P-2001 de-

veloped by Goto et al. [6]. Each excerpt was taken

from the first minute of a song. The songs we used in-

cluded sounds of vocals and various instruments as songs

in commercial CDs do. Seed templates were created

from solo tones included in the musical instrument sound

database RWC-MDB-I-2001 [7]: the seed templates of

bass and snare drums are created from sound files named

421BD1N3.WAV and 422SD5N3.WAV respectively. All

data were sampled at 44.1 kHz with 16 bits.

We evaluated the experimental results by the recall rate,

the precision rate and the F-measure:

recall rate =
the number of correctly detected onsets

the number of actual onsets
,

precision rate =
the number of correctly detected onsets

the number of onsets detected by matching
,

F-measure =
2 · recall rate · precision rate

recall rate + precision rate
.

To prepare actual onset times (correct answers), we ex-

tracted onset times of bass and snare drums from the stan-

dard MIDI file of each piece, and adjusted them to the

piece by hands.



piece bass drum snare drum

number method recall rate precision rate F-measure recall rate precision rate F-measure

No. 6 base 26 % (28/110) 68 % (28/41) 0.37 83 % (52/63) 83 % (52/61) 0.83

adapt 57 % (63/110) 84 % (63/75) 0.68 100 % (63/63) 97 % (63/65) 0.98

No. 11 base 54 % (28/52) 100 % (28/28) 0.70 27 % (10/37) 71 % (10/14) 0.33

adapt 100 % (52/52) 100 % (52/52) 1.00 95 % (35/37) 92 % (35/38) 0.93

No. 18 base 26 % (35/134) 100 % (35/35) 0.41 91 % (122/134) 82 % (122/148) 0.86

adapt 97 % (130/134) 71 % (130/183) 0.82 76 % (102/134) 94 % (102/109) 0.84

No. 20 base 95 % (60/63) 100 % (60/60) 0.98 24 % (15/63) 94 % (15/16) 0.38

adapt 94 % (59/63) 100 % (59/59) 0.97 78 % (49/63) 91 % (49/54) 0.84

No. 30 base 19 % (25/130) 89 % (25/28) 0.31 27 % (19/70) 90 % (19/21) 0.42

adapt 93 % (121/130) 94 % (121/129) 0.93 100 % (70/70) 96 % (70/73) 0.98

No. 44 base 6 % (6/99) 100 % (6/6) 0.11 9 % (7/80) 88 % (7/8) 0.16

adapt 93 % (92/99) 100 % (92/92) 0.96 68 % (54/80) 89 % (54/61) 0.77

No. 47 base 77 % (46/60) 98 % (46/47) 0.86 41 % (21/51) 70 % (21/30) 0.52

adapt 93 % (56/60) 98 % (56/57) 0.96 88 % (45/51) 75 % (45/60) 0.81

No. 50 base 92 % (61/66) 94 % (61/65) 0.93 94 % (102/108) 89 % (102/114) 0.92

adapt 97 % (64/66) 88 % (64/73) 0.92 67 % (72/108) 96 % (72/77) 0.78

No. 52 base 86 % (113/131) 96 % (113/118) 0.90 97 % (76/78) 94 % (76/81) 0.96

adapt 94 % (123/131) 90 % (123/136) 0.92 90 % (70/78) 97 % (70/72) 0.93

No. 61 base 96 % (73/76) 100 % (73/73) 0.98 99 % (66/67) 80 % (66/83) 0.88

adapt 93 % (71/76) 100 % (71/71) 0.97 99 % (66/67) 100 % (66/66) 0.99

average base 51.6 % (475/951) 94.8 % (475/501) 0.67 65.2 % (490/751) 84.6 % (490/579) 0.74

adapt 90.2 % (831/921) 90.0 % (831/927) 0.90 83.4 % (626/751) 92.7 % (626/675) 0.88

Table 1. Experimental results of drum sound identification for ten musical pieces in RWC-MDB-P-2001.

identified drum Rδ Ψ Θ∆ ΘΓ

(method) [frames] [dB] [dB]

bass drum (base) 7 -10 1 5000

bass drum (adapt) 7 -10 -10 5000

snare drum (base) 7 -10 -5 5000

snare drum (adapt) 7 -10 -7 5000

Table 2. Thresholds used in four experimental settings.

4.2. Results of Drum Sound Identification

Table 1 shows the experimental results of comparing our

template-adaptation-and-matching methods (called adapt

method) with a method in which the template-adaptation

method was disabled (called base method); the base

method used a seed template instead of the adapted one for

the template matching. In other words, we conducted four

experiments in different settings; the identification of bass

drum by the base or adapt method and that of snare drum

by the base or adapt method. We used different thresh-

olds shown in Table 2 among four experimental cases to

product the best results in respective case.

These results showed the effectiveness of the adapt

method: the template-adaptation method improved the F-

measure of identifying bass drum from 0.67 to 0.90 and

that of identifying snare drum from 0.74 to 0.88 on av-

erage of the ten pieces. In fact, in our observation, the

template-adaptation method absorbed the difference of the

timber by correctly adapting seed templates to actual drum

sounds appearing in a piece.

In many musical pieces, the recall rate was signifi-

cantly improved in the adapt method. The base method

often detected a few onsets in some piece (e.g., No. 11 and

No. 30) because the distance between an unadapted seed

template and spectrum excerpts were not appropriate; the

distance became too large because of the difference of the

timber. On the other hand, the template-matching method

of the adapt method worked effectively; all the rates in

No. 11 and No. 30, for example, were over 90% in the

adapt method. If the difference of the timber is small, the

base method produced the high recall and precision rates

(e.g., No. 52 and No. 61).

Although our adapt method is effective in general, it

caused a low recall rate in a few cases. The recall rate

of identifying the snare drum in No. 50, for example,

was degraded, while the precision rate was improved. In

this piece, the template-matching method was not able to

judge that the template was correctly included in spectrum

excerpts because frequency components of the bass guitar

often overlapped spectral characteristic points of the bass

drum in those excerpts.

4.3. Demonstration of Drum Sound Description

In this section, we demonstrate an example of the auto-

matic drum sound description by using drum descriptors.

Our proposed template-adaptation and template-matching

methods can detect onset times of bass and snare drums

respectively. To symbolically represent these informa-

tion in the context of MPEG-7, drum descriptors and their

schemes must be defined in the MPEG-7 format.

First, we define drum descriptors and drum descriptor

schemes. To describe onset times and names of drums,

we use the mpeg7:MediaTimePoint data type and the Enu-

meration facet respectively:



<simpleType name="InstrumentNameType">

<restriction base="string">

<enumeration value="BassDrum"/>

<enumeration value="SnareDrum"/>

...

</restriction>

</simpleType>

<complexType name="InstrumentOnsetType">

<sequence>

<element name="MediaTimePoint"

type="mpeg7:MediaTimePointType"/>

<element name="InstrumentName"

type="InstrumentNameType"/>

</sequence>

</complexType>

<complexType name="InstrumentStreamType">

<sequence>

<element name="InstrumentOnset"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

where the InstrumentOnsetType data type indicates infor-

mation of a time and a name which corresponds to a onset

in a musical piece. The InstrumentStreamType data type

is a set of multiple InstrumentOnsetType elements.

Next, we describe onset times and names of drums in

a musical piece by means of drum descriptors defined

above. We demonstrate an example of the drum sound

description for No. 52 by using our proposed methods.
<element name="DrumStream" type="InstrumentStreamType"/>

<DrumStream>

<InstrumentOnset>

<MediaTimePoint>T00:00:36382F44100</MediaTimePoint>

<InstrumentName>BassDrum</InstrumentName>

</InstrumentOnset>

<InstrumentOnset>

<MediaTimePoint>T00:00:54684F44100</MediaTimePoint>

<InstrumentName>SnareDrum</InstrumentName>

</InstrumentOnset>

<InstrumentOnset>

<MediaTimePoint>T00:01:22506F44100</MediaTimePoint>

<InstrumentName>BassDrum</InstrumentName>

</InstrumentOnset>

...

</DrumStream>

5. CONCLUSION

In this paper, we have presented an automatic description

system that can describe onset times and names of drums

by means of drum descriptors. Our system used two meth-

ods to identify all the onset times of bass and snare drums

respectively in real-world CD recordings. Even if drum

sounds prepared as seed templates are different from ones

used in a musical piece, our template-adaption method can

adapt the templates to the piece. By using the adapted

templates, our template-matching method then detects all

the onset times. Our experimental results have shown that

the adaptation method largely improved the F-measure of

identifying bass and snare drums. In addition, we defined

drum descriptors in the context of MPEG-7 and demon-

strated the automatic drum sound description for a real-

world musical piece. In the future, we plan to use multi-

ple seed templates for each kind of drums and extend our

method to identify other drum sounds.
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