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Abstract—This paper proposes a novel concept we call
musical commonness, which is the similarity of a song to a
set of songs; in other words, its typicality. This commonness
can be used to retrieve representative songs from a song set
(e.g., songs released in the 80s or 90s). Previous research
on musical similarity has compared two songs but has not
evaluated the similarity of a song to a set of songs. The
methods presented here for estimating the similarity and
commonness of polyphonic musical audio signals are based
on a unified framework of probabilistic generative modeling of
four musical elements (vocal timbre, musical timbre, rhythm,
and chord progression). To estimate the commonness, we use a
generative model trained from a song set instead of estimating
musical similarities of all possible song-pairs by using a model
trained from each song. In experimental evaluation, we used
3278 popular music songs. Estimated song-pair similarities are
comparable to ratings by a musician at the 0.1% significance
level for vocal and musical timbre, at the 1% level for rhythm,
and the 5% level for chord progression. Results of commonness
evaluation show that the higher the musical commonness is, the
more similar a song is to songs of a song set.

Keywords-musical similarity; musical commonness; typical-
ity; latent Dirichlet allocation; variational Pitman-Yor language
model;

[. INTRODUCTION

The digitization of music and the distribution of content
over the web have greatly increased the number of musical
pieces that listeners can access but are also causing problems
for both listeners and creators. Listeners find that selecting
music is getting more difficult, and creators find that their
creations can easily just disappear into obscurity. Musical
similarity [1], [2] between two songs can help with these
problems because it provides a basis for retrieving musical
pieces that closely match a listener’s favorites, and several
similarity-based music information retrieval (MIR) systems
[3]-[6] and music recommender systems [2], [7] have been
proposed. None, however, has focused on the musical simi-
larity of a song to a set of songs, such as those in a particular
genre or personal collection, those on a specific playlist, or
those released in a given year or a decade.

This paper focuses on musical similarity and musical
commonness that can be used in MIR systems and music
recommender systems. As shown in Figure 1, we define
musical commonness as a similarity assessed by comparing
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Figure 1. Musical similarity and commonness.

a song with a set of songs. The more similar a song is
to songs in that set, the higher its musical commonness.
Our definition is based on central tendency, which, in
cognitive psychology, is one of the determinants of #ypicality
[8]. Musical commonness can be used to recommend a
representative or introductory song for a song set, and it can
help listeners understand the relationship between a song
and a song set.

To estimate musical similarity and commonness, we
propose a generative modeling of four musical elements:
vocal timbre, musical timbre, rhythm, and chord progression
(Figure 2). Two songs are considered to be similar if one has
descriptions (e.g., chord names) that have a high probability
in a model of the other. This probabilistic approach has
previously been used to compute similarity between two
songs [9], [10]. To compute commonness for each element,
a generative model is derived for a set of songs. A song is
considered to be common to that set if the descriptions of
the song have a high probability in the derived model.

II. METHODS

From polyphonic musical audio signals including a
singing voice and sounds of various musical instruments we
first extract vocal timbre, musical timbre, and rhythm and
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Figure 2.  Musical similarity and commonness based on probabilistic
generative modeling of four musical elements: vocal timbre, musical timbre,
rhythm, and chord progression.

estimate chord progression. We then model the timbres and
rhythm by using a vector quantization method and latent
Dirichlet allocation (LDA) [11]. The chord progression is
modeled by using a variable-order Markov process (up to a
theoretically infinite order) called the variable-order Pitman-
Yor language model (VPYLM) [12], [13].

When someone compares two pieces of music, they may
feel that they share some factors that characterize their
timbres, rhythms and chord progressions, even if they cannot
articulate exactly what these factors are. We call these “latent
factors” and would like to estimate them from low-level
features. This is difficult to do for individual songs, but using
the above methods (LDA and VPYLM) we can do so using
many songs.

Finally, for each element we calculate two probabilities
(Figure 2). One is for similarity estimation and is calculated
by using a generative model trained from a musical piece
(this model is called a song model). The other is for com-
monness estimation and is calculated by using a generative
model trained from a set of musical pieces (this model is
called a song-set model).

A. Similarity and commonness: Vocal timbre, musical tim-
bre, and rhythm

The method used to train song models of vocal timbre,
musical timbre, and rhythm is based on a previous work [14]
on modeling vocal timbre. In addition, we propose a method
to train song-set models under the LDA-based modeling.

1) Extracting acoustic features: Vocal timbre: We use the
mel-frequency cepstral coefficients of the LPC spectrum of
the vocal (LPMCCs) and the AF|, of the vocal to repre-
sent vocal timbre because they are effective for identifying
singers [10], [14].

We first use Goto’s PreFEst [15] to estimate the F{y of the
predominant melody from an audio signal and then the Fj is
used to estimate the AFy and the LPMCCs of the vocal. To
estimate the LPMCCs, the vocal sound is re-synthesized by
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using a sinusoidal model based on the estimated vocal Fj
and the harmonic structure estimated from the audio signal.
At each frame the AF, and the LPMCCs are combined as
a feature vector.

Then reliable frames (frames little influenced by accom-
paniment sound) are selected by using a vocal GMM and
a non-vocal GMM (see [10] for details). Feature vectors of
only the reliable frames are used in the following processes
(model training and probability estimation).

2) Extracting acoustic features: Musical timbre: We use
mel-frequency cepstral coefficients (MFCCs), their deriva-
tives (AMFCCs), and Apower to represent musical timbre,
combining them as a feature vector. The MFCCs are musical
timbre features used in music information retrieval [16], and
this feature vector is often used in speech recognition.

3) Extracting acoustic features: Rhythm: To represent
rhythm we use the fluctuation patterns (FPs) designed to
describe the rhythmic signature of musical audio [16], [17].
They are features effective for music information retrieval
[16] and for evaluating musical complexity with respect to
tempo [18].

We first calculate the specific loudness sensation for each
frequency band by using an auditory model (i.e., the outer-
ear model) and the Bark frequency scale. The FPs are
then obtained by using a FFT to calculate the amplitude
modulation of the loudness sensation and weighting its
coefficients on the basis of a psychoacoustic model of the
Sfluctuation strength (see [16], [17] for details). Finally, the
number of vector dimensions of the FPs was reduced by
using principle component analysis (PCA).

4) Quantization: All acoustic feature vectors of each
element are converted to symbolic time series by using a
vector quantization method called the k-means algorithm.
In that algorithm the vectors are normalized by subtracting
the mean and dividing by the standard deviation, and then
the normalized vectors are quantized by prototype vectors
(centroids) trained previously. Hereafter, we call the quan-
tized symbolic time series acoustic words.

5) Probabilistic generative model: The observed data
we consider for LDA are D independent songs X =
{X17...,XD}. A song X, is N, acoustic words X, =
{Z41,...,%a n,}. The size of the acoustic words vocabulary
is equivalent to the number of clusters of the k-means
algorithm (= V), Z4,, is a V-dimensional “1-of-V” vector
(a vector with one element containing a 1 and all other
elements containing a 0). The latent variable of the observed
X, is 24 = {Z41, ., Zd N, }- The number of topics is K, so
Z4,n indicates a K- dimensional 1-of-K vector. Hereafter, all
latent variables of D songs are indicated Z = {Z1, ..., Zp}.

The full joint distribution of the LDA model is given by

p(X,Z, 7 6) = p(X|Z,o)p(Z|R)p(R)p(6) (1)

where 7 indicates the mixing weights of the multiple top-
ics (D of the K-dimensional vector) and ¢ indicates the



unigram probability of each topic (K of the V'-dimensional
vector). The first two terms are likelihood functions, and the
other two are prior distributions. The likelihood functions are
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where p(7r) and p(qb) are products of Dirichlet distributions,
@ and ﬁ are hyperparameters of prior distributions
(with no observation), and C(&®) and C(F®) are nor-
malization factors.

6) Similarity estimation: The similarity between song
a and song b is represented as a probability of song b
calculated using a song model of song a. This probability

pgy(bla) is defined as follows:
Ny
log pg(bla) = <= > logp(Zhul E[7al. EF]),  (6)
:L:l .
p(Zonl E[F, EI]) =D (Elmas] -Elgrol), ()

where E[-] is the expectation of a Dirichlet distribution
and v is the corresponding index (the word id) of the K-
dimensional 1-of-K observation vector & ,,.

7) Commonness estimation: To estimate the common-
ness, we propose a method for obtaining a generative model
from a song set without using the LDA-model-training
process again. In this case, hyperparameters o of the
posterior distribution can be interpreted as effective numbers
of observations of the corresponding values of the 1-of-K
observation vector T, p.

This means that a song-set model of a song set A
can be obtained by summing those hyperparameters dy =
{@g1,...,aq,x}. This model &4 is defined as follows:

=Y (&d - o7<0>) +a0),

dcA

®)

where the prior (#(?)) is added just once. Musical common-
ness between the song set A and the song a is represented as
a probability of song a that is calculated using the song-set
model of the song set A: logp,(alA).
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B. Similarity and commonness: Chord progression

We first estimate key and chord progression by using
modules of Songle [19], a web service for active music
listening.

Before modeling, estimated results of chord progression
are normalized. The root note is shifted so that the key will
be /C/, flat notes (b) are unified into sharp notes (), and the
five variants of major chords with different bass notes are
unified (they are dealt with as the same chord type). When
same chord types continue, they are collected into a single
occurrence (e.g., /C C C/ into /C/).

1) Probabilistic generative model: For modeling of chord
progression of a set of musical pieces, the VPYLM used as
a song-set model is trained using a song set used to compute
musical commonness. In the song modeling process, how-
ever, suitable training cannot be done using only a Bayesian
model (VPYLM) because the amount of training data is not
sufficient. To deal with this problem, we use as a song model
a trigram model trained by maximum likelihood estimation.

2) Similarity and commonness estimation: Similarity and
commonness are represented by using as the generative
probability the inverse of the perplexity (average probability
of each chord). To avoid the zero-frequency problem, chord
similarity between two songs is estimated by calculating
weighted mean probabilities of the song model and the song-
set model. The weights are (1 —r) and r, respectively (r is
set to 107°).

III. EXPERIMENTS

The proposed methods were tested in experiments eval-
uating the estimated similarity (Experiment A) and the
estimated commonness (Experiment B).

A. Dataset

The song set used for the model training, similarity
estimation, and commonness estimation comprised 3278
Japanese popular songs that appeared on a popular music
chart in Japan (http://www.oricon.co.jp/) and were placed in
the top twenty on weekly charts appearing between 2000
and 2008. Here we refer to this song set as the JPOP music
database (MDB). The twenty artists focused on for similarity
evaluation are listed in Table 1.

In addition, for GMM/k-means/PCA training to extract
the acoustic features, 100 popular songs from the RWC
Music Database (RWC-MDB-P-2001) [20] were also used.
These 80 song in Japanese and 20 in English reflect styles
of the Japanese popular songs (J-Pop) and Western popular
songs in or before 2001. Here we refer this song set as the
RWC MDB.

B. Experimental Settings

Conditions and parameters of the methods described in
the METHODS section are described here in detail.



Table 1
SINGERS OF THE 463 SONGS USED IN THE EXPERIMENTS.

D Artist name Gender of voca111§t(s) Number of songs
(*: more than one singer)
A Ayumi Hamasaki female 33
B B’z male 28
C Morning Musume female* 28
D Mai Kuraki female 27
E Kumi Koda female 25
F BoA female 24
G EXILE male* 24
H L’ Arc-en-Ciel male 24
1 Rina Aiuchi female 24
J w-inds. male* 23
K SOPHIA male 22
L Mika Nakashima female 22
M CHEMISTRY male* 21
N Gackt male 21
o GARNET CROW female 20
P TOKIO male* 20
Q Porno Graffitti male 20
R Ken Hirai male 20
N Every Little Thing female 19
T GLAY male 19
Total male 11 — female 9 463

1) Extracting acoustic features: For vocal timbre fea-
tures, we targeted monaural 16-kHz digital recordings and
extracted AFy and 12th-order LPMCCs every 10 ms. The
feature vectors were extracted from each song, using as
reliable vocal frames the top 15% of the feature frames.
Using the 100 songs of the RWC MDB, a vocal GMM
and a non-vocal GMM were trained by variational Bayesian
inference [21]. We set the number of Gaussians to 32 and
set the hyperparameter of a Dirichlet distribution over the
mixing coefficients to 1.0'.

For musical timbre features, we targeted monaural 16-
kHz digital recordings and extracted Apower, 12th-order
MFCCs, and 12th-order AMFCCs every 10 ms. The feature
vectors were extracted from 15% of the frames of each song
and those frames were selected randomly.

For rhythm-based features, we targeted monaural 11.025-
kHz digital recordings and extracted FPs by using the Music
Analysis (MA) toolbox for Matlab [16]. A 1200-dimension
FP vector was estimated every 3 seconds and the analysis
frame length was 6 seconds. We then reduced the number of
vector dimensions by using PCA based on the cumulative
contribution ratio (< 95%). A projection matrix for PCA
was computed by using the 100 songs of the RWC MDB.
Finally, a 78-dimensional projection matrix was obtained.

The conditions described above (e.g., the 16- and 11.025-
kHz sampling frequencies) were based on previous works.

2) Quantization: To quantize the vocal features, we set
the number of clusters of the k-means algorithm to 100 and
also trained used the 100 songs of the RWC MBD to train the

IThe trained GMMs were models in which the number of Gaussians was
reduced, to 12 for the vocal GMM and to 27 for the non-vocal GMM.
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centroids. This % is same number used in our previous work
[14]. The number of clusters used to quantize the musical
timbre and rhythm features was set to 64 in this evaluation.

3) Chord estimation: With Songle, chords are transcribed
using 14 chord types: major, major 6th, major 7th, dom-
inant 7th, minor, minor 7th, half-diminished, diminished,
augmented, and five variants of major chords with different
bass notes (/2, /3, /5, /b7, and /7). The resulting 168 chords
(14 types x 12 root notes) and one “no chord” label are
estimated (see [19] for details).

4) Training the generative models: Training song models
and song-set models of the 4 musical elements by LDA and
VPYLM, we used all of the 3278 original recordings of the
JPOP MDB.

The number of topics K was set to 100, and the model
parameters of LDA were trained by using the collapsed
Gibbs sampler [22]. The hyperparameters of the Dirichlet
distributions for topics and words were initially set to 1 and
0.1, respectively. The conditions were based on our previous
work [14].

The number of chords used to model chord progression
was 97: the 8 chord types (major, major 6th, major 7th,
dominant 7th, minor, minor 7th, diminished, augmented) for
each of the 12 different root notes, and one “no chord” label
97 =8 x12+1).

5) Baseline methods: As baseline methods, simple meth-
ods were used to estimate the similarity and commonness.

The baseline methods used to estimate the similarity
of vocal timbre, musical timbre, and rhythm calculated
the Euclidean distance between mean feature vectors of
two songs. In the baseline methods used to estimate the
commonness of these elements, the mean feature vectors
were calculated for a song-set were used to calculate the
Euclidean distance from a target song. Each mean vector
was normalized by subtracting the mean and dividing by
the standard deviation.

To model chord progression, we used as a song model a
unigram model trained by maximum likelihood estimation.
The baseline modeling of chord progression of a set of mu-
sical pieces, the HPYLM n-gram model [23] as a song-set
model (n is set to 1). To avoid the zero-frequency problem,
chord similarity between two songs is also estimated by
calculating weighted mean probabilities of the song model
and the song-set model. The weights are (1 — r) and 7,
respectively (r is set to 1077).

C. Experiment A: Similarity estimation

To evaluate musical similarity estimation based on proba-
bilistic generative models, experiment A used all 3278 songs
for modeling and the 463 songs by the artists listed in Table
I (D4). The 463 songs were sung by the twenty artists
with the greatest number of songs in the modeling set. The
evaluation set is very diverse: artists include solo singers and
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Figure 4. Baseline similarities among all 463 songs.

bands, and a balance of male and female vocalists (11 and
9, respectively).

1) Similarity matrix: We first estimated the similarities
between the 463 songs with respect to the four musical
elements. Figures 3 (a) through (d) show the similarity

Group Yocal Musical Rhythm Chorq
timbre timbre progression
L-0 B-A K-G D-1
F-S H-T I-S O-B
J-1 | Q-K | D-C K-N
A-D M -R E-Q A-1J
B-Q D-L A-F H-T

©pl0 N R | s-1 | 0-H P-C
H-P P-N R-L S-L
E-C 0-G N-T F-E
G-N E-F P-B Q-G
K-T J-C J-M M-R
F-E G-1J P-0 O-P
T-1J O-E H-C T-R
H-D C-B G-S B-M
P-A T-R N-E Q-N
Q-L Q-A M-Q JT-A

bottom10 O-B P_F B_R D-K
G-S I-M K-F S-G
C-N S-N L-D H-F
M-K | H-L T-1J I-C
R-1 K-D A -1 L-E

(L — O, for example, means a song of singer L and a song of singer O)

Table IIT
THE TWENTY SONG PAIRS BELONG TO TWO GROUPS (BASELINE).
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matrix for each of these elements, and Figure 4 shows the
baseline results. In each figure the horizontal axis indicates
query song models and the vertical axis indicates target
songs of computing similarity.

The similarity matrix represents 214,369 = 463 x 463
pairs. In the matrices, only the 46 target songs (10% of
D 4) having the highest similarities for each of the queries
are colored black.

2) Comparing estimated similarities with human ratings:
We next evaluated the song models by using human ratings.
Twenty song pairs belonged to two groups, referred to as



(a) vocal timbre (b) musical timbre

T op<01% 1 o p<01%
4l =i ifl ............. ]
o :
£ : I —
E 1 = — —
= .
E 7 (c) rhythm (d) chord progression
£ :
2R PR I
- il
1 £ m—
top10 bottom10 top10 bottom10
Figure 5. Box plots showing the statistics for the song-pair similarity

ratings by a musician.

(a) vocal timbre (b) musical timbre

pP<1%

I R | -
£ : ; — :
-E 1 S —] EI ;l
2
5 7 (c) rhythm (d) chord progression
E — p<10% _ p<01%
» 4 El ........ - R

1= == = =

top10 bottom10 top10 bottom10
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the topl0 and bottoml0. The toplO group included the
ten song pairs having the highest similarities for each of
the musical elements, under the selection restriction that
there is no overlapping of singer names in the group. This
means that this group comprises only pairs of songs sung
by different singers. The bottom10 group includes the ten
song pairs (also selected under the no-overlapping-name
condition) having the lowest similarities for each of the
musical elements. Table III shows the topl0 and bottom10
groups.

A male musician who had experience with audio mix-
ing/mastering and arrangement/composition of Japanese
popular songs was asked to rate song-pair similarity on a 7-
point scale ranging from 1 (not similar) to 7 (very similar).
Rating to a precision of one decimal place (e.g., 1.5) was
allowed.

Figure 5 shows the results of the rating and Figure 6 shows
the results of the rating based on the baseline results. The
statistics of the ratings are shown by box plots indicating
median values, 1/4 quantiles, 3/4 quantiles, minimum values,
and maximum values. Testing the results by using Welch’s ¢-
test [24] revealed that the differences between the two groups
were significant at the 0.1% level for vocal and musical
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timbre, the 1% level for rhythm, and the 5% level for chord
progression (Figure 5).

3) Discussion: From the similarity matrix one sees that
songs by the same artist have high similarity for vocal timbre
and musical timbre. For rhythm and chord progression, on
the other hand, some songs by the same artist have high
similarity (indicated by arrows in Figures 3 (c) and (d))
but most do not. These results reflect musical characteristics
qualitatively and can be understood intuitively.

On the similarity matrix for rhythm, horizontal lines can
be seen. This means that there are songs that in most cases
get high similarity regardless of which song is the query
song. On the other hand, there are also songs that get low
similarity with most query songs. LDA topic distributions
for both kinds are shown in Figure 7. The former kind’s is
flat and has some topics having value, and the latter kind’s
has a few topics having value. On the similarity matrix for
chord progression by using the trigram song models, there
are query songs that get high similarity with all other songs
(e.g., a song of singer A) and there are query songs that
get low similarity with all other (see, for example, Figure
8). In the baseline unigram setting, on the other hand, the
query song of singer A has different similarities with all
other songs (Figure 9).
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The comparison with the results of the expert ratings
suggests that the proposed methods can estimate musical
similarity appropriately. To improve the performance with
regard to all elements, conditions such as those for extracting
acoustic features, for quantization, for chord estimation, and
for model training can be considered in future work.

D. Experiment B: Commonness estimation

To evaluate musical commonness estimation based on
probabilistic generative models, experiment B also used the
3278 songs of the JPOP MDB to train the song-set models
and for evaluating each musical element.

When evaluating the commonness estimation method, we
first evaluated the number of songs having high similarity.
For example, in Figure 1 the song a has many similar
songs in the song set A. If a song having higher musical
commonness and it is very similar to songs of a song set.

1) Relation between commonness and the number of
songs having high similarity: Figure 10 shows the rela-
tionships comparing the estimated commonness of songs
contained in the JPOP MDB to the number of songs having
high similarity. We used as the threshold for deciding the
similarity of an element to be high the 3/4 quantile value
of all similarities among all possible song-pairs in the JPOP
MDB (10,745,284 = 3278 x 3278 song-pairs).

The Pearson product-moment correlation coefficients are
also shown in each part of the figure, and Table IV. The
reliability of the estimated similarity can be evaluated by
using the results of Figure 5 and 6. The asterisk mark (*)
and the double-asterisk mark (**) indicate the differences
between the two groups (the topl0 and bottom10 groups)
significant at the 1% and 0.1% level, respectively.

203

Table TV
PEARSON PRODUCT-MOMENT CORRELATION COEFFICIENTS BETWEEN
ESTIMATED COMMONNESS OF THE FOUR ELEMENTS EACH SONG AND
THE NUMBER OF SONGS HAVING HIGH SIMILARITY WITH THE SONG.

correlation coefficients

element condition C CB
vocal S** 0.766 —0.175
musical timbre S** 0.834 0.350
rhythm S* 0.735 0.650
chord progression S 0.670 0.886
vocal SB* 0.137 0.960
musical timbre SB 0.402 0.958
rhythm SB 0.774 0.898
chord progression SB** 0.759 0.846

Conditions
S: The number of songs having high similarity
SB: The number of songs having high similarity (baseline)
C: commonness
CB: commonness (baseline)

Estimated similarity is comparable to ratings by a musician
**: at the 0.1% significance level (Figure 5 and 6)
*: at the 1% significance level (Figure 5 and 6)

Under conditions of the relatively reliable similarities
(“vocal S**”, “musical timbre S**”, and “rhythm S*”)
the values of the correlation coefficient of the proposed
method (“C”: 0.766, 0.834, and 0.735) is bigger than the
baseline method (“CB”: —0.175, 0.350, and 0.650). The
results suggest that the more similar a song is to songs of the
song set, the higher its musical commonness in the proposed
method. Although two coefficients of the condition “vocal
SB*” and “chord progression SB**” are positive value (“C”:
0.137 and 0.759), the value of the baseline method (“CB”:
0.960 and 0.846) is bigger than those coefficients. The
improvement of the correlation coefficients is a subject for
future direction.

2) Application of commonness in terms of vocal timbre:
Only the song-set models of vocal timbre can be evaluated
quantitatively by using the singer’s gender. These models are
integrated song models with different ratios of the number
of male singers to female singers.

To train song-set models, we used 14 songs by different
solo singers (6 male and 8 female) from the JPOP MDB.
We trained three types of song-set models: one trained by
using all 14 songs, one trained by using one female song
and all 6 male songs, and one is trained by using one male
song and all 8 male songs.

Figure 11 shows the vocal timbre commonnesses based
on the 3 different song-set models. When a model with a
high proportion of female songs is used, the commonness
of songs sung by females is higher than the commonness
of songs sung by males (and vice versa). Figure 12 shows
the statistics of the commonnesses are shown by box plots.
The results suggest the commonnesses can be reflected vocal
tract features.
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Figure 11. Vocal timbre commonness based on 3 different song-set models
for 14 songs (6 male and 8 female).
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Figure 12. Box plots showing the statistics for the vocal timbre common-
ness (Figure 11).

IV. CONCLUSIONS AND FUTURE WORK

This paper describes a musical similarity and commonness
estimation method based on probabilistic generative models:
LDA and the VPYLM. Four musical elements are modeled:
vocal timbre, musical timbre, thythm, and chord progression.
The commonness can be estimated by using song-set mod-
els, which is easier than estimating the musical similarities
of all possible pairs of songs.

The experimental results showed that our methods are
appropriate for estimate musical similarity and commonness.
The probability calculation can be applied not only to a
musical piece but also to a part of a musical piece. This
means that musical commonness is also useful to creators
because a musical element that has high commonness is an
established expression and can be used by anyone creating
and publishing musical content (e.g., a chord progression).

Since this paper focused on the above four elements, we
plan to use melody (e.g., Fy) as the next step. Future work
will also include the integration of generative probabilities
based on different models, calculating probabilities of parts
of one song, investigating effective features, and developing
an interface for music listening or creation by leveraging
musical similarity and commonness.
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