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Abstract— This paper presents a novel active audition method
that enables multiple mobile robots to move to optimal positions
for improving the performance of sound source separation. A
main advantage of our distributed system is that each robot has
its own microphone array and all mobile robots can collaborate
on source separation by regarding a set of movable microphone
arrays as a big reconfigurable array. To incrementally optimize
the positions of the robots (the layout of the big microphone
array) in an active-audition manner, it is necessary to predict
the source separation performance from a possible layout of
the next time step although true source signals are unknown.
To solve this problem, our method simulates delay-and-sum
beamforming from a possible layout for theoretically calculating
the gain for each frequency component of a source signal in
the corresponding separated signal. The robots are moved into
a layout with the highest average gain over all sources and the
whole frequency range. The experimental results showed that
the harmonic mean of signal-to-distortion ratios (SDRs) was
improved by 6.0 dB in simulations and by 5.7 dB in a real
environment.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) has ac-
tively been studied in recent years as one of the most funda-
mental techniques for mobile robots that work autonomously
in an unknown environment [1]-[3]. In general it is difficult
for a robot to directly estimate its own absolute position
without using a GPS system. To make a near-field map and
estimate its own relative position on the map, the robot needs
to gather information of a surrounding area. A scanned area
is gradually expanded by moving the robot. Several kinds
of visual information obtained from cameras [1] and laser
rangefinders [2], [3] have commonly been used for attaining
accurate SLAM. Those sensors, however, can neither work
effectively if obstacles exist in the field of vision nor detect
notable sounds occurring around the robot.

Recently, audio-based SLAM has gained a lot of attention
for making a map of sound objects [4]-[6]. If multiple sound
sources exist in an environment, a robot needs to localize and
separate mixture sounds recorded by its own microphones.
Although this is attained by using a technique of microphone
array processing [7]-[11], its performance is limited by the
layout of sound sources, e.g., if multiple sound sources exist
in the same direction, the separation performance is degraded
[12]. One solution to this problem is to move the robot to
a better position. Although such active audition has been
considered to be promising [13], it is often difficult to find
a position that sparsifies the directions of all sound sources.
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Fig. 1. Optimizing the layout of multiple mobile robots for cooperative
sound source separation that regards a set of movable microphone arrays as
a big reconfigurable microphone array.

Move

A new approach to audio-based SLAM is to use multiple
mobile robots, each of which has a microphone array, for
cooperative localization and separation of multiple sound
sources existing in a real environment. Such a distributed sys-
tem has an advantage that each robot can independently work
or all robots can cooperate by regarding a set of movable
microphone arrays as a big reconfigurable array [14]. While
each robot can estimate only the directions of sound sources,
for example, the two-dimensional positions of those sources
can be estimated from the localization results of multiple
robots by using a triangulation method. Since a lot of effort
has been devoted to sound source localization [15]-[17], in
this paper we focus on cooperative sound source separation
using multiple mobile robots.

One of the main problems of cooperative sound source
separation is how to determine the optimal layout of multiple
mobile robots that maximizes the performance of source sep-
aration. The actual performance of source separation cannot
be calculated because true source signals are unknown. It is
thus necessary to predict the source separation performance
from a possible layout of the next time step before actually
moving into the layout.

In this paper we propose a novel active audition method
that moves multiple robots to optimal positions by simulating
delay-and-sum beamforming from a possible layout under
a condition that the positions of sound sources are already
known (Fig. 1). If this type of beamforming is used for source
separation, the gain, which is the expected ratio of a target
sound source and the other sound sources in the correspond-
ing separated signal, can be theoretically calculated from the
positions of the robots and sound sources. The separation
performance is then predicted from the gains by taking
into account of the directions of microphone arrays and the
distances between the sound sources and the robots. Since
it is often difficult to find the best layout with the highest
predictive performance via local search, we use a genetic
algorithm that tends to avoid the local optimal solution.

*Demo page: http://winnie.kuis.kyoto-u.ac.jp/members/sekiguch/iros2015/
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II. RELATED WORK

This section introduces several studies on active audition
and sound source separation.

A. Active Audition

Active audition is a technique that aims to improve the
performance of auditory scene analysis (analysis of surround-
ing sound objects) by making effective use of the movement
of a robot equipped with microphones. Several studies have
tried to accurately estimate the directions of sound sources by
turning the head of a humanoid robot. Nakadai et al. [18], for
example, developed a humanoid robot with two microphones
that can track sound source directions by integrating audio,
visual, and motor control. Berglund and Sitte [19] developed
a robot with two microphones that learns how to orient
toward a sound source via reinforcement learning. Kim et al.
[15] proposed a method that can reduce the errors of sound
source localization by taking into account the results of voice
activity detection (VAD) and face tracking.

Active audition has often been used for a single moving
robot that estimates the position of a sound source. Reid and
Milios [16], for example, developed a robot that estimates the
3D position of a sound source by moving two microphones.
Sasaki et al. [17] developed a mobile robot with a micro-
phone array that estimates the positions of multiple sound
sources. Since the robot can move around sound sources, the
positions of those sources are obtained from source directions
estimated from different observation positions in a way of
triangulation. Yoshida and Nakadai [20] integrated the audio,
visual, and active motion functions of a robot to estimate how
the active motion affects the VAD.

If multiple robots are used, the positions of sound sources
can be obtained quickly without moving robots. Martinson
et al. [14] optimized a layout of multiple robots to improve
the performance of sound source localization in a two-
dimensional space. In this work, each robot was equipped
with a single microphone and the optimal layout was deter-
mined such that each robot was distant from both the other
robots and obstacles and close to sound sources.

B. Sound Source Separation

Delay-and-sum beamforming (DSBF) is a basic technique
of microphone-array-based sound source separation [17],
[21]. Sasaki et al. [21] attempted to optimize the layout of a
32-channel microphone array for improving the performance
of DSBF. The optimal layout is determined such that it has
high directivity to all directions.

Independent component analysis (ICA) is an another pop-
ular technique of source separation that aims to discover
statistically independent source signals from given mixed
signals. Although such time-domain ICA can separate convo-
lutionally mixed signals, it requires high computational costs.
Frequency-domain ICA, on the other hand, is more efficient
by performing standard ICA at each frequency band. Since
frequency-domain ICA has a problem about permutation of
frequency bands, many studies have been conducted in an
attempt to solve this problem [8]-[11], [22], [23].

III. PROPOSED METHOD

This section describes a proposed method that optimizes
the layout of multiple mobile robots for cooperative sound
source separation. Each robot is equipped with a standard
microphone array. Multi-channel audio signals are recorded
by regarding a set of the distributed microphone arrays of the
robots as a big microphone array. The method uses delay-
and-sum beamforming (DSBF) for extracting audio signals
coming from a particular direction.

To optimize the layout of the robots, we need to design an
objective function to be maximized with respect to a layout.
In this study we can theoretically predict the performance of
DSBF-based source separation in advance of actually moving
the robots. More specifically, the ratio of a source signal in
the corresponding separated signal (separation performance)
is determined by specifying a mixing process that represents
propagation of source signals to microphones and a filtering
process that represents extraction of source signals from
observed signals. Since it is often difficult to find the best
layout with the highest performance via local search, we use
a genetic algorithm that tends to avoid the local optima.

A. Problem Specification

Our goal is to find a layout of multiple robots that enables
high-quality separation of all sound sources existing in a test
environment. Let M be the total number of microphones over
all robots (the number of channels of the big microphone
array), N the number of sound sources, and R the number
of robots. The optimization problem is defined as follows:

o Input: z(t) = [21(t), -, 2 ()] € RM

M-channel audio signals recorded by using the M-
channel big reconfigurable microphone array

o Output:

D yt) = [y(t), -, yn(@®)]" € RY

N separated signals corresponding to sound sources
(2) A* =la}, -+ ,a}] € RE*2

The optimized positions of multiple mobile robots

o Assumptions:

All microphones are synchronized and the correct po-
sitions of sound sources B=[by,--- ,by] € RV*2 are
already estimated by using a triangulation method [17].

B. Mixing Process

We explain how observed signals x(t) are associated with
source signals s(t) = [s1(t), -, sn(t)], where s, (t) is the
signal of the n-th sound source. Suppose that neither noise
nor reverberation exists and that sound propagation can be
represented as a linear time-invariant system as follows:

z(w) = H(w)s(w), (D

where z(w) = [X1(w),- -+, X (w)]T € CM is the spatial
spectrum of the observed signals at frequency w, s(w) =
[S1(w), -, Sn(w)]T € CV is that of the source signals
at frequency w, and H(w) € CM*VN is a mixing matrix.
X (w) is the Fourier transform of the observed signal z,, (t)
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and S, (w) is that of the source signal s,,(t). The relationship
between X,,(w) and S, (w) is given by

N
1 ;
Xin(w) = 32— Salwe o, @
n—q omm

where d,,,,, is the distance between the n-th sound source and
the m-th microphone and 7, is the delay time of the m-
th observed signal x,,(¢) from the n-th source signal s,,(¢),
e, Tm(t) = $p(t — Tum)- 1/dnm indicates the amplitude
decay (the amplitude of a propagated signal is inversely
proportional to the distance). Note that 7,,,,, can be calculated
in advance according to the positional relationship between
the robot and the source as 7y, = dpm/c (c is the speed of
sound). Comparing Eq. (1) with Eq. (2), we get

1 .
hmn(w) = ——e 79Tmm, 3)

nm
C. Filtering Process

We explain how separated signals y(t) are obtained from
observed signals x(t). As in the mixing process, we assume
that y(¢) can be represented as a linear system as follows:

Yy(w) = Wwz(w), )

where y(w) = [Yi(w),---,Yn(w)]T € CV is the spa-
tial spectrum of the separated signals at frequency w and
W (w) € CN*M g a filtering matrix. Here Eqs. (1) and (4)
indicate that if W (w) = H(w)™!, the separated signals are
equal to the true source signals, i.e., y(w) = H(w) lz(w) =
Hw) 'H(w)s(w) = s(w).

We use a standard source separation method called delay-
and-sum beamforming (DSBF) for estimating the filtering
matrix H (w). It focuses on the time differences of arrivals
(TDOASs) of a source signal at the microphones (Fig. 2). To
obtain the separated signal y,,(t) corresponding to the n-th
source, each observed signal x,,(t) is time-shifted by the
corresponding TDOA 7, and then all the shifted signals
are summed up. The shifting operation aligns the phases of
the target source signal and cancels out the phases of other
sounds. This emphasizes only the target source signal and
suppresses other sounds. The equivalent frequency-domain
representation of DSBF is given by

1 )
Yo(w) =" T X (w)e? T, (5)

x [m] i ’ i x[om]
Fig. 3. The examples of the objective function at each position. Circles
indicate the sound source positions. The position with the high function
value is good.

where 1/d,,,, is a weighting coefficient. We put more em-
phasis on the observed signal recorded by a microphone that
is closer to the target sound source.

In order to take advantage of using multiple mobile robots,
a set of the distributed microphone arrays is regarded as
one big microphone array. This means that all the observed
signals recorded by the robots are used for cooperative sound
source separation. Comparing Eq. (4) with Eq. (5), we get

1

—— T, (6)

Whm (W) = 7

D. Objective Function

We define the objective function that should be maximized
for layout optimization as the harmonic mean of the gains
obtained by DSBF. Let A = [ay, - ,ag] be a set of the
positions of R robots. The objective function f(A) w.r.t. A
is defined as follows:

FlA) = = ™

2on—1 7oA

where g,,(A) is the gain of the n-th sound source signal in
the n-th separated signal. A reason why the harmonic mean
is used instead of the standard average is that we aim to find
the layout that enables high-quality source separation such
that the gains are balanced over all sound sources. If one
of the source signals is poorly estimated, the value of the
objective function is significantly decreased.

Using Egs. (1) and (4), the relationship between the sepa-
rated signals y(t) and the source signals s(t) is represented
in the frequency domain as follows:

Y(w) = A(w)s(w), (®)

where A(w) € CV*¥ is a gain matrix obtained by A(w) =
W (w)H (w). If A(w) = I is achieved, the separated signals
are equal to the true source signals (perfect separation). In
reality, A(w) has off-diagonal elements that represent the
crosstalks between the source signals. Therefore, the gain of
the n-th source signal at frequency w is given by

ann (W)

AV 9
Sk Gk (@) ®

In(A,w) =
where @, (w) and ani(w) represent the weight of the n-th
source signal and that of the k-th source signal in the n-
th separated signal, respectively. In this paper, we take the
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Fig. 4. The layout of an 8-channel microphone array on
each mobile robot.

average of the gains over all frequency bands and define
gn(A) as follows:

Zw Unn (W)
Zn;&k > Ank(w) ’

When DSBF is used for sound source separation, a,x(w)
is obtained by using Eqs. (3) and (6) as follows:

gn(A) = (10)

M
1 .
ang(w) = Z I exp(Jw(Tnm — Tem))| - (11)
m=1 nm m

The frequency bins from 1 [Hz] to 8000 [Hz] (L bins) are
taken into account as the range of w. Figure 3 shows the
values of the objective function in a 6 [m] square room when
a single robot with an 8-channel microphone array is used
for separating three sound sources. The function takes small
values in several cases. If multiple sound sources are in the
same direction (the robot and the sound sources get into line),
the TDOAs at the microphones are close to each other and
non-target sound sources are scarcely suppressed. If the robot
is excessively close to sound sources, the separation perfor-
mance of the other sources is critically degraded although
the close sources can be accurately separated. The objective
function thus takes a small value because it is defined as the
harmonic mean of the gains over all sources.

E. Layout Optimization

We use a genetic algorithm (GA) for optimizing the layout
of multiple mobile robots. This is because if a grid search
algorithm is used, the computational cost exponentially in-
creases as the number of robots increases. In the context
of GA, candidate layouts are often called creatures. There
are two types of creation of next-generation creatures: small
modification of the current generation with a high probability
(crossover) and drastic change from the current generation
with a low probability (mutation). After creating a certain
number of creatures, the objective function is calculated for
each creature and creatures are selected with a probability
based on the function values. This process is repeated until
a certain termination condition is met.

In this paper, crossover is achieved by randomly moving
robots to nearby positions and turning the robots to random
directions. Mutation is achieved by randomly choosing the

Average
Sound source layout

Fig. 5. The harmonic mean of SDRs for each layout of sound sources in a simulated room.
f means the objective function value.
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(a) Sound source layout 3
Fig. 6. Example of robot layout optimization. Red and green circles

indicate the positions obtained by the proposed method and the ground
truth positions, respectively.

(b) Sound source layout 8

positions and directions of robots from a test environment.
The objective function is defined as the harmonic mean of the
gains obtained by simulating delay-and-sum beamforming
from a possible layout. The creatures of a new generation
are selected according to elitist selection or roulette-wheel
selection. In elitist selection, creatures with larger function
values are selected from the top of the ranking. In roulette-
wheel selection, the creatures are selected with probabilities
proportional to the values of the objective function, and
hence the creatures with lower function values are selected
with low probabilities. If a fixed number of generations is
reached, a creature with the highest function value is selected
as the optimal creature (optimal layout of the robots).

IV. EXPERIMENTAL EVALUATION

This section reports experiments conducted to evaluate the
improvement of source separation performance in simulated
and real rooms. If the number of robots is more than that
of sound sources, the optimal layout is trivial, i.e., the best
performance can be achieved by moving a robot to each
sound source. We therefore assume that the number of robots
is less than that of sound sources.

A. Experiment in a Simulated Room

We conducted an experiment in a simulated room to
evaluate the effectiveness of the proposed method.

1) Experimental Conditions: We supposed that there were
three sound sources and two robots, each of which had an 8-
channel microphone array (Fig. 4), in a room of 6 m? (M =
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Fig. 7. The results of robot layout optimization for three source layouts. Circles and squares indicate the positions Fig. 8.
of robots and sound sources, respectively. Arrows indicate the directions of robots and sound sources.

16, N = 3, and R = 2). Eight layouts of sound sources
were tested. In the layouts 1 and 2, the three sound sources
got into line. In the layouts 3, 4, and 5, two sound sources
were close to each other and the remainder was distant. In
the layouts 6, 7, and 8, the three sound sources were distant
from each other. Source signals were randomly selected from
JNAS phonetically-balanced Japanese utterances [24]. The
observed signal of each microphone was synthesized by
convoluting an geometrically-calculated impulse response.

We compared the proposed method that uses the GA for
layout optimization with a random method that randomly
chooses the layout of the robots and a grid search method
that finds the layout that maximizes the objective function by
using a grid search algorithm, and calculated a ground truth
layout that maximizes the harmonic mean of SDRs by using
a grid search algorithm under a condition that sound source
signals are known. The configuration of the GA was that the
number of creatures of each generation was 1000 and the GA
stopped when the 200th generation was reached. In the grid
search algorithm, the interval of grid points was 0.2 [m] and
the direction of each robot was selected from 0°,45°,90°,
and 135°, because the layout of an 8-ch microphone array
we used was symmetric.

The separation performance was measured with the har-
monic mean of the signal-to-distortion ratios (SDRs) for the
separated signals corresponding to the three sound sources.
The SDR is the ratio of a target signal to the other sounds in
a separated signal. A higher SDR means better separation
performance [25], [26]. Since the proposed and random
methods involve randomness, we ran 30 trials and calculated
the average of the harmonic mean of SDRs.

2) Experimental Results: Figure 5 shows the experimental
results indicating the harmonic mean of SDRs for the eight
layouts of sound sources and f means the objective function
value. In all cases, the SDRs obtained by the proposed
method were superior to those obtained by the random
method by 6.0 dB on average. Comparing the proposed
method with the grid search method, in all cases, the
objective function values obtained by the GA were almost
the same or larger than those obtained by the grid search,
though the computational cost of the GA (1000 creatures
x 200 generations = 0.2 million layouts) is smaller than

3 =)

x [m] x[m]

(c) Sound source layout 3

Randomly chosen candidate
positions of the robots.

that of the grid search algorithm ( (31 grid points x 31
x 4 directions)? ~ 14 million layouts). This was because
the grid search algorithm calculates the objective function at
only grid points and cannot calculate all the possible layouts
and directions of robots. This indicates that GA is suited for
the layout optimization.

Figure 6 shows an example of the results of the robots
layout optimization. As shown in Fig. 6(a) (the case of the
sound source layout 3), the robot layout obtained by the
proposed method was close to the ground truth layout and
the source separation performance at the layout obtained by
the proposed method was as high as that at the ground truth
layout. Fig. 6(b) (the case of the sound source layout 8),
on the other hand, shows that the layout obtained by the
proposed method was significantly different from the ground
truth one, and the harmonic mean of SDRs of the proposed
method was lower than that of the ground truth by 2.7 [dB].
In addition, comparing the proposed method with the grid
search method, though the objective function values were
almost the same, the harmonic mean of SDRs of the proposed
method was higher than that of the grid search method. A
main reason was that although the amplitudes of the source
signals varied according to frequency bands, the proposed
method put the same emphasis on all frequency bands.
To improve the source separation performance, we plan to
consider the frequency characteristics of sound sources.

B. Experiment in a Real Room

We conducted an experiment using real recordings to
evaluate the effectiveness of the proposed method.

1) Experimental Conditions: Three sound sources and
two robots, each of which had an 8-channel microphone
array (Fig. 4), were put in a wide room with a reverberation
time (RTgg) of 800 ms (M = 16, N = 3, and R = 2).
The source signals used in this experiment were the same
as those used in the simulated experiment (Section IV-A).
Three layouts of sound sources were tested (Fig. 7). In this
experiment, the directions of speakers were set as shown in
Fig. 7 because speakers actually have directivity. To adjust
the height of each microphone array to the sound sources, the
microphone array was attached to a pole (Fig. 9). An impulse
response was actually measured for each microphone. The
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Fig. 10. The harmonic mean of SDRs for each layout of sound sources
in an experimental room.

observed signals were synthesized by convoluting the real
impulse responses of the corresponding positions with the
source signals. Note that those synthesized signals can be
considered to be quite similar to real recordings. The mi-
crophone array equipped on the robot was synchronized by
using a multichannel A/D converter (RASP-24 manufactured
by Systems In Frontier Corp) with a sampling rate of 16 kHz
and a quantization of 16 bits (Fig. 4).

We compared the proposed method with a random method
that randomly chooses two positions from six candidate po-
sitions. These candidates in the room were chosen randomly,
as shown in Fig. 8. The source separation performance was
evaluated as in the simulated experiment (Section IV-A).

2) Experimental Results: Figure 10 shows the experimen-
tal results obtained by the random method and those obtained
by the proposed method. In all sound source layouts, the pro-
posed method achieved better SDRs by 5.7 dB on average.
The proposed method scored particularly well in the sound
source layout 2 with an improvement of 8.2 dB. This is
because, taking advantage of using two robots, the robot on
the right mainly recorded the two right-side sound sources
and the robot on the left mainly recorded the left-side sound
source. Therefore, the separation performance of all sound
sources was significantly improved.

In comparison with the experiment in the simulated room,
the harmonic means of SDRs were significantly degraded
in both methods. There are two main reasons. Since delay-
and-sum beamforming is formulated in an ideal condition,
the separation performance was strongly influenced by rever-
beration and by errors related to the positions of the sound
sources and the robots. In addition, the directivity of a sound

source matters. In the experiment in the simulated room,
we assumed that sound sources had no directivity. In fact,
however, real sound sources did have directivity, and the time
differences of arrivals differed according to the directions of
sound sources.

A main limitation of the proposed method is that an objec-
tive function cannot be defined appropriately if sophisticated
methods such as ICA, IVA, and GHDSS [7]-[9] are used for
source separation. These methods aim to estimate a separa-
tion matrix W (w) such that it is as close as possible to the
inverse of a mixing matrix H(w) (i.e., W (w)H (w) = I),
and theoretically the gain then becomes infinite in any layout.
Nonetheless, the optimal layout obtained by the proposed
method based on the DSBF-based objective function could
be expected to improve the performance of sophisticated
separation methods. As the error of sound source localization
has an influence on the source separation performance, the
objective function could be improved by focusing on the
ambiguity of sound source localization.

In order to solve the directivity problem, robots should
move to the front side of a sound source. This is because the
TDOA is different from the expected TDOAs at the sides and
rear of a sound source due to diffraction and reverberation. A
promising solution here would be to estimate the directions
of sound sources by audio-visual integration and to use an
objective function that takes directivity into account.

V. CONCLUSION

This paper presented an active-audition method that opti-
mizes the layout of multiple mobile robots for cooperative
sound source separation in an environment with multiple
sound sources. To take advantage of using multiple mobile
robots, when robots separate the recorded signals, multiple
microphones are regarded as one big microphone array, and
each recorded signal is given a weight inversely proportional
to the distance between a sound source and the microphone.
The optimal layout is determined by theoretically predicting
the performance of source separation (gain) based on delay-
and-sum beamforming from a possible layout. We conducted
two experiments to evaluate the performance of the proposed
method in simulations and in a real environment. Compared
with a random method that randomly chooses the positions of
robots, the source separation performance was improved by
6.0 dB on average in simulations and by 5.7 dB on average
in a real environment.

We plan to make the proposed method applicable to more
sophisticated source separation methods, since in the current
method, in theory the gain of each source signal becomes
infinite for any robot layout if those separation methods are
used. To solve this problem, the objective function needs
to consider the error of sound source localization. We also
plan to estimate sound source positions, robot positions, and
optimal positions simultaneously via reinforcement learning
in order to remove the assumption that robots and sound
source positions are given.
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