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Abstract— The paper proposes two modules for a mobile
robot audition system: 1) recognizing surrounding acoustic
event, 2) tracking moving sound sources. We propose nested
infinite Gaussian mixture model (iGMM) for recognizing frame
based feature vectors. The main advantage is that the number
of classes is allowed to increase without bound, if necessary,
to represent unknown audio input. The multiple hypothesis
tracking module provides time-series of separated audio stream
using localized directions and recognition results at each frame.
Not only for continuous sounds, the proposed tracker auto-
matically detects appearing and disappearing point of stream
from multiple hypothesis. These two modules are connected
to microphone array based sound localization and separation,
and the combined robot audition system achieved tracking of
multiple moving sounds including intermittent sound source.

I. INTRODUCTION

Environmental sounds are vital to improve autonomous
tasks of robots. Daily activities involve many auditory cues:
ringing phones, home electronics, barking dogs, passing
trucks, and voices. All these sounds notify an individual of
environmental changes. It is important for autonomous robots
to obtain timely information of the surrounding environment.

Minimizing previous knowledge is an important factor
to understand varied audio signals for practical application,
and dealing with moving sources is required for a mobile
robot. We propose two functions of sound-tracking system
for a mobile robot: 1) recognizing surrounding known and
unknown acoustic signals, 2) multiple hypothesis track-
ing of moving sound sources. These are combined with
microphone-array-based sound localization and separation.

A common approach for recognizing sound is to generate
a fixed model, such as an expanding automatic speech
recognition (ASR) model [1] or a Gaussian mixture model
(GMM) [2][3]. Recognizing daily sounds using a support
vector machine (SVM) has recently been investigated for
robot application [4]. A major barrier to recognizing varied
audio signals in a real environment is the existence of
unknown parameters. It is not always clear how many audio
events there are (number of classes) or how many mixtures
are appropriate to describe a given audio event (model
complexity). Using predefined parameters means that the
model is far from realistic.

The recognition module of the proposed system uses a
frame-based (i.e., instant of time) input signal and works for
frame-based sound localization and separation outputs when

1: Digital Human Research Center, National Institute of Ad-
vanced Industrial Science and Technology, 2-3-26 Aomi, Koto-ku,
Tokyo 135-0064, Japan. {y-sasaki, n.hatao, k.yoshii
s.kagami}@aist.go.jp

the robot or sound sources are moving. The tracked time-
series of the separated audio stream can then be recognized
using the above conventional recognition models. For exam-
ple, a conventional ASR system is useful for a tracked voice
stream.

A particle-filter-based sound tracking system was pro-
posed and enabled multiple continuous sources tracking [5].
Usually, audio signals are not only continuous events. A
signal sometimes stops and new signals appear. Therefore,
the number of sound sources changes by frame and detecting
the stream appearing or disappearing are important for audio
signal tracking.

In Section 2, we explain our moving-sound-tracking sys-
tem for a mobile robot and give a brief explanation of the
microphone-array-based sound localization and separation
module. We propose the audio-event recognition method in
Section 3 and the multiple sound tracking in Section 4.

II. MICROPHONE ARRAY BASED MOBILE AUDITION

The section gives a basic overview of our moving-sound-
tracking system for a mobile robot.

A. System Overview

Fig. 1 shows the system flow and passed variables between
modules.
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Fig. 1. Overview of the proposed moving-sound-tracking system

The moving sound tracking system we propose in the
paper is composed of three parts:

• Microphone array based localization and separation
• Frame based separated sound recognition
• Multiple hypothesis tracking (MHT)

A microphone array is used to localize the sound source
direction of arrival and separate the localized sound sources
from mixed observation signals. We use beamforming based
localization and separation in this paper, but any frame-based
method is usable for remaining recognition and tracking
modules. Separated signals on each frame are then rec-
ognized on our proposed nested infinite Gaussian mixture
model (iGMM) module explained in the next section. The
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module outputs the posterior probability distribution of a
sound event class. The MHT module generates audio streams
from sound directions and recognition results. Section 4
explains this module in detail.

B. Microphone Array
To extract target audio signals, we use a microphone

array embedded in a mobile robot. Using an array of micro-
phones enables accurate and reliable extraction of multiple
sound sources. We previously developed a 32-channel omni-
directional microphone array for a mobile robot [6]. It can
localize which direction sounds come from and separate
localized sound sources.

Delay and Sum BeamForming (DSBF) is a basic array pro-
cessing method for localization and separation. Aligning the
phase of each microphone amplifies the desired direction’s
signal and attenuates ambient noise, i.e., the microphone
array ”focuses” on the specific direction. Scanning the focus
to all azimuth directions results in obtaining the sound
pressure distribution called the ”spatial spectrum”.

C. FBS Based Multiple Sound Localization and Separation
After beamforming, Frequency Band Selection (FBS) [7]

is used for multiple sound localization and separation. FBS is
a kind of binary mask to filter out a detected sound’s signal to
localize other sources simultaneously, and the filtered signal
is the separated source at each frame.

The sound localization process using DSBF and FBS is
as follows. The first step involves finding the loudest sound
source from the spatial spectrum as the maximum total
power. The second step involves filtering out the first sound
signal using FBS and finding the second strongest sound
source from the spectrum. When the frequency component
of the DSBF-enhanced signal of the first sound direction is
higher than that of any other directions, the FBS module
filters out the spectrum at each frequency. For more than
three sound sources, the module finds the third strongest
sound source, and so on, after filtering out the second
strongest sound signal.

When two sound sources are close (usually about 10 deg),
false positive detections appear between sources because
of wide directivity of DSBF on the spatial spectrum. This
problem can be solved in the tracking phase.

III. NESTED INFINITE GMM FOR RECOGNITION

This section explains the recognition module for separated
sound sources at each frame. We propose a nested iGMM
for recognizing varied sound sources in environment. The
model is based on Bayesian nonparametrics [8] to avoid
the model selection problem. The appropriate number of
mixtures varies by audio event. For example, a monotonous
sound like the sound of a ventilation fan may be described
with just a few Gaussian distributions, but a human voice re-
quires more Gaussian distributions because it contains many
phonemes. The model should thus be able to automatically
adjust the number of distributions to the complexity of the
audio event. In addition, it is important to produce a new
class when a previously unknown audio event is detected.

A. Audio Feature Extraction and Model Generation

From the separated sound source at each frame, the feature
vector is calculated. We use the following 33 dimensional
feature vectors: 12 bands Mel-frequency cepstral coefficients
(MFCC), delta MFCC, log energy (E), delta E, zero cross
rate (zcr), flux, centroid, variance, entropy, skewness, and
kurtosis. Let xn be the n-th frame feature vector.

As for model generation, we use semi-labeled feature vec-
tors. Let X = {xn}Nn=1 be a set of feature vectors (observed
data) and C = {cn}Nn=1 be a set of the corresponding class
labels (cn ∈ {1, · · · ,K}). N is the total number of training
data and K is the number of classes. Because it is semi-
supervised training, a part of C is given as observed data in
advance and the others are unobserved. The model generation
process is summarized in Fig. 2.

voicefootstepcar voice door

3
3

 d
im

.

N frames

Observa!on
Database

n
Separated
sources

Partly
labeled

(2) Prepare semi-labeled feature vectors

(3) train the infiniteGMM 

(1) Separate sound sources

footstepcarvoice

doornew1 new2N
e

st
e

d
 i

G
M

M

feature vector:

class label:

Fig. 2. Model generation process

B. Nested iGMM Formulation

We propose nested Gaussian Mixture Model M, which is
mixture of each class model Mk to generate model using
all training data at once. The proposed modeling method has
two key component:s 1) It trains K GMMs at the same time
by estimating the unobserved class labels, 2) The model has
infinite number of classes(K) and dimensions(M ).

The proposed model is expressed as follows:

M(x) =
∞∑
k=1

πk

∞∑
m=1

τkmN (x | µ′
km,Λ

−1
km). (1)

It is the infinite extension (K → ∞,M → ∞) of following
equations:

Mk(x) =

M∑
m=1

τkmN (x | µkm,Λ
−1
km), (2)

M(x) =
K∑

k=1

πkMk(x), (3)

where τkm, µkm, and Λkm are the mixing ratio, mean vector,
and precision matrix of the m-th Gaussian in the k-th GMM.
Those parameters can be estimated from the observed class
labels in C and the corresponding feature vectors in X by
using the expectation-maximization (EM) algorithm [9]. πk
is a mixing ratio of the k-th GMM. The parameters π, τ , µ,
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Λ are estimated from incomplete data that includes missing
values (unobserved class labels) by using the EM algorithm
as in the case of supervised learning. Note that a feature
vector x is classified into one of the K classes, c, such that
c = argmaxkπkMk(x).

Instead of performing the training and prediction steps
independently as described above, we propose to train K
GMMs at the same time by estimating the unobserved class
labels in a semi-supervised manner. To do this, we formulate
a nested GMM that is a weighted mixture of K GMMs. This
enables us to take into account how likely each class is to
occur.

The model consists of infinitely many GMMs (K →
∞) each of which consists of infinitely many Gaussians
(M → ∞). If we have an infinite amount of observed
data (N → ∞), an infinite number of Gaussians would be
required because the data shows infinite variety. In reality,
however, we have only a finite amount of observed data.
Therefore, the necessary parameters are a finite part of the
infinitely many parameters. In other words, the effective
complexity of the model is automatically adjusted according
to the observed data. This enables us to avoid determining
K and M in advance. A technical problem here is how to
design prior distributions over infinite-dimensional vectors π
and τk.

First, let M go to infinity. This prior can generate an
infinite-dimensional vector of mixing weights τk. Most en-
tries of τk take extremely small values because all entries
must sum to unity. On the other hand, infinitely many Gaus-
sians are stochastically drawn from the Gaussian-Wishart
distribution.

This stochastic process is called the Dirichlet process (DP)
[8]. Let DP(β,G0) be a DP with a concentration parameter
β and a base measure G0. In this study G0 is a continuous
distribution (Gaussian-Wishart distribution) over Gaussians
(µ and Λ). A discrete distribution G over Gaussians can
be drawn as G ∼ DP(α,G0), where G0 is an expectation
of G and β controls the inverse variance around G0. More
specifically, G is expressed as follows:

G =

∞∑
m=1

τkmδµkm,Λkm
, (4)

where δ is the Dirac delta function. Therefore, the parameters
of G form an infinite GMM of class k.

One of popular ways to implement the DP is known as the
stick-breaking construction [10]. The set of mixing weights
τk can be explicitly represented as follows:

τkm = υkm

m−1∏
m′=1

(1− υkm′), υkm ∼ Beta(1, β). (5)

The same idea can be used for K approaching infinity:

πk = λk

k−1∏
k′=1

(1− λk′), λk ∼ Beta(1, α). (6)

We then discuss how to determine the concentration pa-

rameters α and β. These unknown parameters control the
numbers of classes and Gaussians required for representing
the observed data. Therefore, non-informative gamma priors
are used with a shape parameter d0 and a rate parameter e0
on α and β as follows:

p(α) = Gamma(α|d0, e0), p(β) = Gamma(β|d0, e0). (7)

The graphical model of the proposed iGMM is summa-
rized in Fig. 3. Some variables are explained in the next
subsection.

Gaussian-Wishart

distribu�on

DP

DP

Gamma

Distribu�on

Gamma

Distribu�on

Gaussian Mixture

Distribu�on

for infinite number of classes

for infinite dimensioned mixture of  class k

Fig. 3. Graphical representation of infinite Gaussian model

C. Variational Bayesian Inference
This section explains Bayesian treatment of the nested

GMM for audio event identification. The Bayesian approach
is more robust to over fitting than the maximum-likelihood
approach. Since the nested GMM is a kind of mixture
models, each observed vector xn is assumed to be drawn
from one of KM Gaussians. Let Z = {zn}Nn=1 be latent
variables that indicate class labels, where zn is a KM -
dimensional vector such that znkm = 1 when xn is generated
from the m-th Gaussian of the k-th GMM and it is otherwise
zero (znk′m′ = 0 if k′ ̸= k,m′ ̸= m). If cn is given as
observed data, one of M elements {zncnm}Mm=1 must be
one.

The goal of Bayesian inference is to calculate a pos-
terior distribution over the latent variables and parameters
p(Z,λ,υ,µ,Λ, α, β|X) from the observed data X . Since
the posterior distribution cannot be calculated analytically,
we instead approximate it by using an iterative method called
the variational Bayes (VB). The computational cost of the
VB algorithm is similar to that of the EM algorithm, which
is usually used for the maximum-likelihood estimation of
the GMM. By using VB, variational posterior distribution is
expressed as follows:

q(Z,λ,υ,µ,Λ, α, β) = q(Z)q(λ,υ,µ,Λ)q(α, β). (8)

The updating formulas of the VB algorithm are as follows:

q(Z) ∝ exp(Eq(λ,υ,µ,Λ,α,β)[log p(X,Z,λ,υ,µ,Λ, α, β)]),

q(λ,υ,µ,Λ) ∝ exp(Eq(z,α,β)[log p(X,Z,λ,υ,µ,Λ, α, β)]),

q(α, β) ∝ exp(Eq(z,λ,υ,µ,Λ)[log p(X,Z,λ,υ,µ,Λ, α, β)]).

In practice, we set K and M to sufficiently large numbers
and gradually remove unnecessary classes and Gaussians
whose weights are sufficiently small (πk ≈ 0 and τkm ≈ 0)
at each iteration.
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IV. MULTIPLE HYPOTHESIS TRACKING FOR MOVING
SOUNDS

This section describes MHT [11] module from the sound
localization and recognition results at each frame. MHT
provides tracks hypotheses of multiple dynamic objects. An
audio signal is intermittent information and is important to
detect appearing and disappearing points of sound sources.
The MHT module generates multiple hypotheses of a tracked
audio stream in a time-space model. The advantage is that
it automatically detects the start and end points of a stream
from noisy observation signals.

The audition system provides multiple sound directions
and feature vectors at each frame. We define o(n, j) =
{θ̂(n, j),x(n, j)} for the j-th observation at frame n. θ̂ is the
localized direction and x is the feature vector of separated
sound source. We explain direction only MHT in Section
IV.B, then expand the model for audio feature in Section
IV.C.

A. DOA Transition Model
To explain MHT, let us consider simple directional audio

tracking from observation at each frame. When the estimated
direction and angular velocity of the l-th audio stream
yl(n) = (θl(n), θ̇l(n))

T corresponds to the j-th observed
direction θ̂(n, j) at frame n, state and observation equations
are modeled as follows:

yl(n) = Fyl(n− 1) + ζ(n), (9)

θ̂(n, j) = Hyl(n) + ω(n), (10)

F =

(
1 ∆t
1 0

)
H =

(
1 0

)
, (11)

where ζ(n) is the system noise, which has a mean of 0
and covariance matrix Q, and ω(n) is the observation noise,
which has mean of 0 and covariance matrix R. ∆t is the time
interval between frame n and n − 1. By using the Kalman
filter, the last stream position yl(n) at frame n is estimated
as follows:

yl(n|n− 1) = Fyl(n− 1|n− 1), (12)
Pl(n|n− 1) = FPl(n− 1|n− 1)FT +Q(n), (13)

νl(n) = θ̂(n, j)−Hyl(n|n− 1), (14)
Sl(n) = HPl(n|n− 1)HT +R, (15)
Wl(n) = Pl(n|n− 1)HTSl(n)

−1, (16)
yl(n|n) = yl(n|n− 1)−Wl(n)νl(n), (17)
Pl(n|n) = Pl(n|n− 1)−Wl(n)Sl(n)W

T
l (n),(18)

where | · |T is the transpose index, ν and S are innovation
vector and innovation covariance, W is Kalman gain, P is
the covariance matrix of X , and F and H are the update
and observation (measurement) matrices, respectively.

In the next subsection, we discus the MHT at frame n and
abbreviate ∗(n) to ∗ in all equations.

B. Multiple Hypothesis Tracking
The hypothesis in MHT is a set of association events at

each frame. It is a tree structure in which the parent is the

last frame’s hypothesis. The h-th hypothesis Ωn
h is expressed

as follows:
Ωn

h = {ψi,Ω
n−1
p(h)}, (19)

where ψi is the i-th association event, and Ωn−1
p(h) is the parent

hypothesis of Ωn
h . The likelihood of the stream is calculated

on each hypothesis.
The stream has the following three states when we think

about patterns of an association event.
• Matched: correctly connected to new observation
• Wrong Connection: present stream when it is not cor-

rectly connected
• Terminated: audio signal that disappeared

The observation (localized sound directions) has the follow-
ing three states :

• Matched: correctly connected to estimated stream
• False Detection: present observation when it does not

exist
• New Stream: newly appeared audio signal
From observations Θ̂n = {θ̂(0), θ̂(1), · · · , θ̂(n)}, the like-

lihood of each hypothesis p(Ωn
h|θ̂n) is calculated as follows:

p(Ωn
h|Θ̂n) = p(ψi,Ω

n−1
p(h)|θ̂, Θ̂

n−1)

= ηp(θ̂|ψi,Ω
n−1
p(h)) · p(ψi,Ω

n−1
p(h)|Θ̂

n−1)

= ηp(θ̂|ψi,Ω
n−1
p(h)) · p(ψi|Ωn−1

p(h), Θ̂
n−1) · p(Ωn−1

p(h)|Θ̂
n−1),

(20)

where η is a normalization parameter. We assume that θ̂ and
Θ̂n−1 are independent. The first term in Eq (20) is expressed
as follows.

p(θ̂|ψi,Ω
n−1
p(h)) = V −(NF+NN ) ·

J∏
j=1

(L[θ̂(j)])τj . (21)

where NF and NN are the number of False Detection and
New Stream, and V is the size of the search space. When
False Detection and New Stream observations are equally
distributed in the search space, V −1 is the probabilistic
density function of the False Detection and New Stream.
The term V = 2π is for azimuth only tracking. τj = 1
when the j-th observation is matched; otherwise, τj = 0.
J is the number of observations at a frame. From Eq (14)
and Eq (15), the likelihood function for the Kalman filter is
described as L[θ̂(j)] = N (νlj |0, Slj). ∗lj means combination
of stream l and observation j.

The second term in Eq (20) is expressed as follows:

p(ψi|Ωn−1
p(h), Θ̂

n−1) =

(IM )NM (IW )NW (IT )
NT (λFV )NF (λNV )NN , (22)

where IM , IW and IT are the probability of Matched, Wrong
Connection and Terminated, and their sum is 1. NM , NT

and NN are the number of Matched, Terminated and New
Stream in the hypothesis. λF and λN are the incidence of
False Detection and New Stream.

The third term in Eq (20) is the likelihood of the parent
hypothesis. It is derived from Eq (21) and Eq (22) assigned
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to Eq (20).
If a hypothesis that selects the observation θ̂(j) is assigned

to a new stream, the Kalman filter is initialized as yl(0|0) =
(θ̂(j), 0), Pl(0|0) = P0. The parameter P0 is initially defined
as a 2x2 covariance matrix.

The image of MHT and some variables in this section
are summarized in Fig. 4. The bottom stream yl has four
options for next frame, which is called “association event”
ψ (i.e., connecting to one of two observations at n-th frame,
terminated at the n−1 frame or n-th observation is missing).
From two streams at (n− 1)-th frame and two observations
at n-th frame, h hypotheses Ω are generated as combinations
of association events.
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Fig. 4. Image and variables of MHT

C. Model Extension for Audition System

In this section, we introduce two extensions for the pro-
posed MHT module. They can be applied to the tracking
model simultaneously.

1) Error detection between two close streams: As shown
in Section II-C, our mobile audition system tends to detect
false positive observations between sources, when two sound
sources are close. The tendency is constant regardless of
changes in the environment. Therefore, these error obser-
vations can be removed in MHT module including the
intermediate noise model.

By using the estimated state of a stream yl(n|n − 1) =
(θl(n|n− 1), θ̇l(n|n− 1)), the estimated position difference
between a pair of streams ρ = {l1, l2} is expressed as
follows:

∆θρ = |θl1(n|n− 1)− θl2(n|n− 1)|. (23)

We assume noise appears when ∆θp is smaller than
threshold. and the noise observations are distributed as a
Gaussian distribution : θ̂ρ ∼ N (θ̂ρ|θ̄ρ,∆θρ/6) where θ̄ρ is
the mean of θ(n|n − 1). Let IF ′ be the probability of the
appearance of intermediate noise, Eq (21) and Eq (22) are
updated as follows:

p(θ̂|ψi,Ω
n−1
p(h)) =

V −(NF+NN ) ·
J∏

j=1

(L[θ̂(j)])τj ·
J′∏
ρ=1

N (θ̂ρ|θρ,∆θρ/6) (24)

p(ψi|Ωn−1
p(h),Θ

n−1) =

(IM )NM (IW )NW (IT )
NT (λFV )NF (λNV )NN · (IF ′)J

′
.

(25)

where J ′ is the amount of intermediate noises and it is the
noise appearance probability.

2) Using Recognition Output: The proposed audition sys-
tem provides categories of audio events of detected sound
sources. We apply this information for tracking. This exten-
sion not only improves the performance of the tracker, but
also makes sound source estimation possible in the MHT
framework.

When a new stream is assigned with K categories of audio
K different child hypotheses are generated. k-th hypothesis
in them suppose that the new stream is corresponding to the
k-th category.
Cj means the most probable category of the j-th sound.

Using the assumption that direction of sound θ̂j and Cj are
independent, Eq (21) is updated as follows:

p(x|ψi,Ω
n−1
p(h)) = V −(NF+NN ) ·

J∏
j=1

(L[θ̂(j)] · P (Cj |Clj))
τj ,

(26)
where Ctj is the category of the tj-th stream. Each
P (Cj |Ctj ) is calculated using the evaluation results of the
sound recognition method. Eq (22) is not changed in the
extension described in this section.

3) Hypothesis Pruning: The pruning function is necessary
for online application because MHT provides a huge number
of hypotheses. We use following rules to remove unwanted
hypotheses.

• K-best pruning: L streams are registered at most and
others are removed.

• Threshold pruning: pruned when the likelihood is
smaller than the threshold.

• N-scan back: At frame n, if a pair of hypotheses has
the same association events between frames n−N and
N and both differences of the initialized frames and
positions are within the thresholds, these hypotheses
are integrated with weighted averaging. The hypotheses
likelihoods are used as weights.

V. EXPERIMENT

The section evaluates the performance of the proposed two
modules; nested iGMM recognition and MHT tracking. The
experiment is conducted on 32 channel microphone array [6].
It can localize multiple sound sources within 6 deg error even
when two sources are within a 20 deg interval. On the other
hand, small sounds are missing when two sources are very
close.

A. Nested iGMM Recognition Performance

This section describes semi-supervised training. Nine au-
dio recordings (seven percussion instruments, hand clapping,
and human voice) were used as sources of audio events. Each
was recorded for 13 minutes using a robot embedded with a
microphone array [6] with 16 bit and 16 kHz sampling. The
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first 10 minutes of each source were used for training the
nested iGMM, and the remaining 3 minutes of each source
were used to evaluate recognition.

We evaluated the recognition performance of our proposed
system using the following two conditions for the training
data:

expA all nine sounds are included with (partially) given
class labels

expB same as expA, but one class was completely unla-
beled

In expA, the model was trained using all nine audio events,
each with the correct label, and the rate of correct recogni-
tions for the test data was calculated. In expB, the model was
trained using all 9 audio events, but one class was unlabeled,
i.e., the model learned a previously unknown audio input. For
different training experiments, we masked (30, 50, or 70%)
of the correct labels.

Fig. 5 shows the results for expA and expB. The input test
data were determined to be correct if they were ascribed to
the class for which they had the maximum likelihood from
a K-dimensional probability distribution. For expB, it was
correct when the test data of the unlabeled audio event were
identified as belonging to a new class.

Fig. 5. Correct recognition rates of expA and expB

As in the conventional method, we mixed a fixed number
of GMMs, based on the EM algorithm. The Hidden Markov
Model Toolkit (HTK) [12] is used for building the GMM.
As a result, the proposed method performed better than the
HTK, since our proposed method can automatically select an
effective number of mixtures for each class. The results of
expA show a higher rate of correct classifications regardless
of the masking level. The rate of correct classifications was
98% for the 70 %-masked model, compared to expB, which
had a rate of 73.5% correct rate for the 100%-labeled model
and 65% correct for the 70%-masked model.

Fig. 6 shows a result of expB. It is the posterior distri-
butions of 3× 9 classes test data for unlabeled Bell model.
Bell was identified to new class and others were identified
correctly.

B. Evaluation on Tracking

We evaluate 3 patterns of motion (static, cross, balance)
as shown in Fig. 7. For each motion pattern, we tested 21
patterns of sound sources: randomly selected 13 pairs of
continuous sources and 8 pairs of intermittent sources. In

Fig. 6. Posterior for unlabeled bell model

TABLE I
SPECIFICATION OF TEST DATA

#recordings #streams #close #cross
single 14 42 – –
static 21 98 0 0
cross 21 98 42 42

balance 21 98 42 42

addition to these 3 × 21 = 63 patterns recordings of two
sound sources, we evaluate 14 patterns of single source data
including continuous and intermittent sounds.

Microphone Array

90deg

sta!c

180deg 

sta!c
2m

Microphone Array
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2m

Microphone Array

90deg
sta!c

2m

a) static b) cross c) balance

Fig. 7. Motion patterns of the experiment

The specification of data is summarized in Table I. It
indicates the data size of each pattern; from the left side,
number of recordings, number of streams, number of closing
and crossing point. Each recording is 30 [sec] and the length
of a stream in recordings is 4 to 27 [sec].

Start error missing

split
switch

false 
detec!on

True streams Es!mated streams

Fig. 8. The illustrative examples of errors

For evaluation of the tracking performance, we count
following four errors:

• start/end error: start or end frame is wrong
• split/merge: divided single stream or merged two

streams
• f.d./missing: false detection or missing streams
• switch: reversely connected crossing or close streams

Redundant errors are eliminated. For example, a split point
has an end error of the first stream and a start error of the
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a) ground truth b) nearest neighbor c) direction only MHT d) proposed MHT

Fig. 9. Tracking results for crossing motion of intermittent sources

second stream, but this point is counted as “1 split error”.
Fig. 8 shows the illustrative examples of errors above.

Fig. 9 shows a result of crossing motion of two intermittent
sources. Cross marks are localized directions and colored
lines are tracked streams. A static hand bell sound at 90
[deg], and a moving shaker sound are crossing at 12 and 23
[sec]. Compared to (a)correct streams, (b)nearest neighbor
[13] has false positive streams at false positive observations
in the localization module. (c)Direction only MHT tracked
existing streams, but the second bell stream switched to
crossing shaker stream and the fourth bell stream is split
at the second crossing point. These errors are corrected on
the proposed MHT using recognition result.

TABLE II
TRACKING ERROR EVALUATION

start/end split/merge f.d./missing switch
nn doa all nn doa all nn doa all nn doa all

single 9 1 0 0 0 0 51 4 2 –
static 10 1 0 1 0 0 31 2 1 0 0 0
cross 9 6 3 37 31 11 79 6 3 24 10 7

balance 10 5 5 18 5 4 76 6 2 25 28 8

The evaluation results are summarized in Table II. We
compare three algorithms; 1) nearest neighbor(nn) 2) di-
rection only MHT(doa) 3) MHT including recognition re-
sult(all). Compared to MHT, nearest neighbor has many false
detections and merged error of two intermittent streams.
Direction only MHT can track existing streams, but some
split or switch errors occur especially at closing or crossing
positions. These errors are reduced by using recognition
results, and the MHT including recognition shows the best
performance.

VI. CONCLUSIONS

The paper proposed two functions for mobile robot audi-
tion; 1) frame based sound recognition using nested iGMM,
2) multiple hypothesis tracking (MHT) of moving sound
sources. These functions are connected to existing micro-
phone array based sound localization and separation, and the
combined system can track multiple sound sources including
crossing motion or intermittent signals.

Nested iGMM can adaptively change the needed dimen-
sion of the GMM for each class and increase the number
of classes to recognize new audio signals. The experimental
results show that our model learned unknown classes, and its

performance was better than that of the conventional fixed-
dimensional model. From localized directions and recogni-
tion results, MHT module generates time-series of audio
streams. The proposed MHT can detect start and end point
of intermittent streams. By using recognition results, MHT
can reduce tracking error especially at crossing point.

In this paper, we show multiple sound tracking using frame
based observation, but its recognition performance is limited.
For example, footstep has characteristic rhythm but its sound
is varied depending on the combination of shoe sole and floor
material. Future research is needed for understanding time-
temporal audio signals.
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