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Abstract— This paper presents a beat-counting robot that can
count musical beats aloud, i.e., speak “one, two, three, four, one,
two, ...” along music, while listening to music by using its own
ears. Music-understanding robots that interact with humans
should be able not only to recognize music internally, but
also to express their own internal states. To develop our beat-
counting robot, we have tackled three issues: (1) recognition of
hierarchical beat structures, (2) expression of these structures
by counting beats, and (3) suppression of counting voice (self-
generated sound) in sound mixtures recorded by ears. The main
issue is (3) because the interference of counting voice in music
causes the decrease of the beat recognition accuracy. So we
designed the architecture for music-understanding robot that
is capable of dealing with the issue of self-generated sounds. To
solve these issues, we took the following approaches: (1) beat
structure prediction based on musical knowledge on chords and
drums, (2) speed control of counting voice according to music
tempo via a vocoder called STRAIGHT, and (3) semi-blind
separation of sound mixtures into music and counting voice
via an adaptive filter based on ICA (Independent Component
Analysis) that uses the waveform of the counting voice as a
prior knowledge. Experimental result showed that suppressing
robot’s own voice improved music recognition capability.

I. INTRODUCTION

Interaction through music is expected to improve the
quality of symbiosis between robots and people in daily-life
environment. Because human emotions have close relation-
ship to music, music gives another communication channel
besides spoken language. Music understanding robot may
open new possible interactions with people by, for example,
dancing, playing the instruments, or singing together.

We assume that music-understanding of robots consists
of two capabilities: music recognition and music expression.
Music expression is significant for the interaction because
people cannot know the inner state of robots without ob-
serving its expression. In other words, this assumption means
that we evaluate the capability of music understanding only
by the Turing Test [1]. In addition, unbalanced design of
music recognition and music expression should be avoided
for symbiosis between people and robots, although it is not
difficult to implement sophisticated robot behaviors without
recognizing music.

One of critical problems in achieving such music-
understanding robots is the fact that sounds generated by
a robot itself (self-generated sound) interferes in music, for
example, motor noises, musical instrument sounds, or singing
voice. These noises cannot be ignored even if they are not
loud, because their sound sources are very closed to the
robot’s ears. Please note that the power of sounds decreases
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according to the square of the distance. The performance of
music expression usually generates sounds, which cannot be
ignored by robot audition systems. In other words, music-
understanding robot is a challenge toward intelligent robots
in robot audition, because it needs to capture the self auditory
model of its behaviors.

In this paper, we designed the architecture for music-
understanding robot that is capable of dealing with the
problem of self-generated sounds. The architecture integrates
music recognition and expression capabilities, which have
been dealt separately in conventional studies. Based on this
architecture, we developed a beat counting robot. The robot
listens to music with its own ear (one channel microphone)
and counts the beats of 4-beat music by saying “one, two,
three, four, one, two, three four, ...” aloud, as is shown in
Fig. 1. The three main functions are required to build such
a music robot:

(1) recognition of hierarchical beat structures of musical
audio signal in the measure-level,

(2) expression of the beats with counting voice, and
(3) suppressing the robot’s own counting voice
In this paper, we used the real-time beat tracking [6] for

(1), selecting appropriate voices and controlling the timing
of them for (2), and ICA based adaptive filter [7] for (3).
The beat counting robot is considered as the first step
toward singer robots, because the robot should recognize the
hierarchical beat structures in order to align its singing voice
to a music score.

The rest of paper is organized as follows: Section II
introduces related works about music robots. Section III
describes architecture for music-understanding robot. Section
IV, V and VI explains the solutions of three problems
for robot’s capability of music recognition, expression, and
suppressing self-generated sound, respectively. Section VII
shows the experimental result about the capability of music
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TABLE I
CAPABILITIES OF ROBOTS FOR MUSIC UNDERSTANDING IN RELATED WORKS.

Conventional studies Music recognition Music expression
Recognition target Suppressing self-generated sounds Means for expression Expressed information

Conventional dancing robots None × Previously prepared -
Kozima et al. [2] Power × Random motion Quarter-note level
Kotosaka et al. [3] Power × Playing drum Quarter-note level
Yoshii et al. [4] Beat structure × Keep stepping Quarter-note level
Murata et al. [5] Beat structure × Keep stepping and Humming Half-note level
Our beat-counting robot Beat structure © Counting beats Measure level

recognition and Section VIII summarizes this paper.

II. STATE-OF-THE-ART MUSIC ROBOTS

Let us now introduce robots whose performance is related
to music. From the viewpoint of our concept about under-
standing music, conventional humanoid robots that can dance
or play instruments, such as QRIO or Partner Robot, seem
only to have the capability of expressing music. To achieve
the capability of recognizing music, the easiest strategy is to
extract and predict the rhythm or melody from music that the
robot’s ear (microphone) hears. However, this is not sufficient
for solving music recognition by robots, because they hear
a mixture of music and self-generated sounds.

Some robots have explored the capability of music recog-
nition, although none of them have dealt with this problem.
Kozima et al. developed Keepon that dances while listening
to music [2]. Its recognition failures are not obvious because
Keepon has a small body, low DOFs (degrees of freedom)
and random motion. Suppressing self-generated sounds is not
required but this situation is specific to Keepon. Kotosaka et
al. developed a robot that plays a drum synchronized to the
cycle of periodic input using neural oscillators [3]. Their
purpose was to make a robot that could generate rhythmic
motion. Their robot could achieve synchronized drumming,
although it only heard external sounds for synchronization.
Yoshii et al. implemented a function on Asimo where it
stepped with musical beats by recognizing and predicting
the beat of popular music it heard [4]. Asimo was able to
keep stepping even if the musical tempo changed. Murata
et al. improved this function by adding to hum /zun/ and
/cha/ synchronously according to the musical beats [5]. They
pointed out that interference from the robot’s humming voice
degraded the performance of recognizing music, because the
robot’s voice was closer to the robot’s microphone. The
reason is that real-time beat tracking assumes that the only
input is music. Therefore, self-generated sound has to be
suppressed to improve the performance of beat tracking.

Table I compares the capabilities for recognizing and ex-
pressing music in related work. According to this table, even
if a robot has the same capability for recognizing music, a
different capability to express it makes an enormous different
impression. Therefore, an intelligent music-understanding
robot needs to integrate two capabilities for recognizing and
expressing music. In addition, only our robot has the function
of suppressing self-generated sound.

The aim of this study was for a robot to recognize and
express a hierarchical beat structures (Fig. 1). Yoshii et al.’s,

Murata et al’s and our robot shared the same capability for
recognizing music, but their music expression capabilities
were different. Yoshii et al.’s robot expresses its recognition
by keeping steps, which means it expresses in quarter-
note level. (Fig. 1 (c)) Murata et al.’s robot expresses its
recognition by keeping steps and humming, which means
that its expression is in half-note level. (Fig. 1 (b)) Our robot
expresses it by counting voice, it means that our expression
is in measure level. (Fig. 1 (a)) Thus, people can judge how
the robot understands music by observing its expressions or
behaviors, just like the Turing Test [1].

III. ARCHITECTURE

A. General Architecture
We encountered three issues in developing on music-

understanding robot. These were:
1) its capability of music recognition,
2) its capability of music expression, and
3) suppressing its self-generated sounds.

To solve these problems systematically, we designed an
architecture for our music-understanding robot. In designing
the architecture, we referred to the model of “A Blueprint
for the Speaker” proposed by Levelt [8]. According to this
model, a human speaks through three modules: Conceptual-
izer, Formulator and Articulator. Similarly, a human listens
to his own voice through two modules: Audition and Speech-
Comprehension System.

Fig. 2 outlines the architecture for the music-
understanding robot. It is composed of music-recognition
and music-expression modules.

Let us explain the music-expression module. First, the
Conceptualizer creates a plan about what to express, using
knowledge about expression, e.g., lyrics, musical scores and
a primitive choreography. Second, the Formulator generates
a motion sequence according to the plan and generates motor
instructions (inner expression). Consistency with musical
knowledge is required while generating a motion sequence
and motor instructions.

Next, we will explain the music-recognition module. First,
the robot listens to a mixture of music and self-generated
sound. Second, source separation separates the mixture into
music and self-generated sound using inner expression. The
separated music is sent to the Music recognizer and self-
generated sound is sent to the Conceptualizer for feedback.

The music-expression module sends two sets of informa-
tion to the music-recognition module: self-generated sound
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and inner expression. The music-recognition module sends
two sets of information to the music-expression module:
the results from the music recognizer and the separated
self-generated sound. This interaction achieves cooperation
between music-expression and music-recognition modules.
B. Specific Architecture for Beat-counting Robot

We customized the general architecture for our beat-
counting robot based on four assumptions:

1) The voice is used for music expression
We can generally express music in three ways, i.e.,
(a) Voice, (b) Motion, and (c) Voice and Motion. We
adopted voice (a) because the main purpose of this
study was suppressing the robot’s self-generated sound.
This assumption simplified the problem and enabled
influences to be identified. Therefore, we replaced
“Knowledge for Expression” (Fig. 2) with “Set of
Vocal Waveforms.” (Fig. 3) and “Body” (Fig. 2) with
“Vocal Organ (Speaker) ” (Fig. 3)

2) The voice of the robot is selected
We were able to find two methods of selecting for
the robot. (a) Selecting from a set of voices and (b)
Generating sound using templates on-demand.
We selected (a) because it is the simplest method
observer can judge that our robot has capability of
music recognition. Our strategy: first, generate typical
variation of expression in advance. Second, select them
according to predicted beat. Therefore, we replace “Ex-
pression Planning” (Fig. 2) with “Voice Selection”(Fig.
3)

3) The wave form of self-generated sound is known
Because we decided that the robot would express
music using its voice, this assumption is true. In this
situation, we can use techniques in echo cancellation
problems. This assumption is false when the self-
generated sound is not voice, e.g., when the robot is
playing an instrument.

4) Only the separated music is used
We do not use separated self-generated sound as a
feedback from expression to recognition. This means
that we deal with self-generated sound as noise to

suppress it. Therefore, the feedback loop from the
“Source Separation” to “Conceptualizer” in Fig. 2 was
eliminated.

IV. MUSIC RECOGNITION

Our aim was to recognize the hierarchical beat structure
in music. We need a method that can recognizes this from
a musical audio signal directly. This is because it is not
reasonable to assume that the sounds of musical instruments
in a musical piece are well known.

A. Real-time Beat Tracking
1) Overview: We used the real-time beat-tracking method

proposed by Goto [6]. Fig. 4 provides an overview of
real-time beat-tracking system. The method outputs three
information about beat structure: (1) predicted next beat time,
(2) predicted beat interval and (3) beat type that means the
position of the predicted beat in measure level.

Beat tracking system consists of two stages: the frequency
analysis stage and the beat prediction stage. In the frequency
analysis stage, system obtains onset-time and its reliability
using power spectrum of musical audio signal. In the beat
prediction stage, multiple agents predict next beat time with
different strategy parameters. Reliability of agents are eval-
uated by checking chord-change and drum-pattern. System
selects the most reliable agent, and its prediction is the output
of beat tracking system.

2) Frequency Analysis Stage: At first, the system obtains
the spectrogram of musical audio signal by applying the
short time Fourier transform (STFT). STFT is applied with a
Hanning window of 4096 [points], a shifting interval of 512
[points] and sampling rate of 44.1 [kHz].

Second, system extracts onset components taking into
account factors such as the rapidity of an increase in power.
Onset component is defined as below:

d(t,ω) =







max(p(t,ω), p(t +1,ω))−PrevPow,

if min(p(t,ω), p(t +1,ω)) > PrevPow,

0, otherwise,
(1)

where PrevPow = max(p(t −1,ω), p(t −1,ω ±1)). (2)
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Here, d(t,ω) is the onset component, p(t,ω) is the power of
musical audio signal at time frame t and frequency bin ω .

Third, onset-time finder in the system finds onset-time and
onset-reliability from onset component d(t,ω). The onset
reliability has seven frequency ranges in each time frame
(0-125 [Hz], 125-250[Hz], 250-500[Hz], 500-1000[Hz], 1-
2[kHz], 2-4[kHz] and 4-11[kHz]). In each range, sum of
onset component Dω(t) = ∑ω d(t,ω) is calculated. Where,
ω is the limited frequency range. The onset times each range
are roughly detected by picking the peak of Dω(t). If onset
time found, its reliability is given by Dω(t), otherwise it
is set to zero. Finally, onset-time vectorizer in the system
vectorizes onset-time reliabilities into onset-time vectors with
different sets of frequency weights. The set is one of the
parameters of the strategy of agents in multiple agent system.

3) Beat Prediction Stage: Multiple agent system predicts
beats with different strategies. The strategy consists of three
parameters:

1) Frequency focus type:
The parameter defines the set of weights for onset
vectorizers. It means the frequency focus of an agent.
The value is taken from three types: all-type, law-type
and mid-type.

2) Auto-correlation period:
The parameter defines a window size to calculate the
vector auto-correlation. The value is taken from two
periods: 1000 and 500 [frames].

3) Initial peak selection:
The parameter takes two values: primary or secondary.
If the value is primary, the agent selects the largest
peak for beat prediction. Otherwise, the second-largest
peak is selected.

Each of multiple agents calculates auto-correlation of
onset-time vectors respectively to determine the beat interval.
The method assumes that beat interval is between 43 [frames]
(120 M.M; Melzel’s Metronome) and 85 [frames] (61 M.M).
To evaluate reliabilities of agent the system uses two com-
ponents: (1) the chord-change checker and (2) drum-pattern
checker. (1) The chord-change checker slices the spectrogram
into stripes at the agent’s provisional beat interval. The sys-
tem assumes that chord-change between stripes is large at the
onset-time. (2) The drum-pattern checker has typical drum
patterns in advance. First, it finds onset-time of snare and
bass drums. Next, it compares drum pattern and onset-time
of drums. An agent’s reliability increases if its provincial beat
interval is consistent with chord-change or drum-pattern.

Beat predictions of the system are obtained by integrating
multiple agents. Integration is achieved by selecting the agent
that has the highest reliability.

V. MUSIC EXPRESSION

A. Design of Vocal Content

We used four vocal-content items of “one, two, three, four”
to express the musical-beat structure. Each number describes
the position of the beat in a measure. By this expression,
people can identify that the robot recognizes music in the
measure level. The vocal content was recorded in advance
with sampling frequency 16 [kHz]. We changed the speed of
the vocal content to express the musical tempo. We slowed
down the voice speed when musical tempo was slow and
speed it up when it was fast. We used STRAIGHT to nat-
urally synthesize different voice speeds [9]. We synthesized
two kinds of speeds: half and twice the speed. We achieved
musical tempo expression by selecting the speed based on
the predicted beat interval.

B. Control of Vocal Timing

The timing of a robot’s voice is basically consistent with
the predicted beat time that is fed from real-time beat
tracking. However, true timing depends on the characteristics
of vocal content, e.g., accent. Therefore, we have to control
the timing of the voice based on vocal content. We adopted
the onset-detecting algorithm used for real-time beat tracking
described Eqs. (1) and (2). To apply the algorithm, there
is a problem that multiple onset is detected because whole
peaks of onset component is assumed the onset. To solve
this problem, we selected the first onset whose reliability
was more than threshold θ . Here, we used θ = 0.5. In this
way, we can find the onset time more accurately than just
by calculating the power spectrum and taking its peak.

VI. SUPPRESSING SELF-GENERATED SOUND

A. ICA based Adaptive Filter

We used the ICA based adaptive filter [7] because we
can assume that the waveform of self-generated sound is
known. The reason why this assumption is true is that robot
expresses music with only counting voice. Therefore, this is
similar to the echo canceling problem. A typical solution for
echo cancellation is using a Normalized Least Mean Square
(NLMS) filter [10]. However, the NLMS filter does not solve
our problem. It needs a double-talk detector to sense noise
sections and stop updating filter coefficients while there is
noise, because NLMS is not robust against noise. As noise
was music in this study, it existed in on all sections. In
contrast, a ICA based adaptive filter [7] is double-talk free
because it has a nonlinear function in its learning rule. Thus,
even if noise power is high, estimation error reflected filter
coefficients is saturated by the nonlinear function. We will
explain the principle underlying the ICA based adaptive filter
in the following subsections.
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1) Modeling of Mixing and Unmixing Process: We used
the time-frequency (T-F) model proposed by Takeda et al.
[7]. The reasons for this was that it would be easy to integrate
with other source separation methods in future, such as
microphone-array processing.

All signals in the time domain were analyzed by STFT
with a window of size T , and shift U . We assumed that
the original source spectrum S(ω, f ) at time frame f and
frequency ω would affect the succeeding M frames of ob-
served sound. Thus, S(ω, f −1),S(ω, f −2), · · · ,S(ω , f −M)
were treated as virtual sound sources. The observed spectrum
X(ω , f ) at the microphone is expressed as ,

X(ω, f ) = N(ω , f )+
M
∑

m=0
H(ω,m)S(ω, f −m), (3)

where N(ω , f ) is the noise spectrum and H(ω,m) is the mth
delay’s transfer function in the T-F domain.

The unmixing process for ICA separation is represented
as:

(

N̂(ω, f )
S(ω , f )

)

=

(

1 −wT (ω)
0 I

)(

X(ω, f )
S(ω, f )

)

, (4)

S(ω, f )= [S(ω , f ),S(ω, f−1), . . . ,S(ω, f−M)]T , (5)
w(ω)= [w0(ω),w1(ω), . . . ,wM(ω)]T , (6)

where S is a source spectrum vector and N̂(ω, f ) is an
estimated noise spectrum. w is an unmixing filter vector.
Therefore, the unmixing process is described as a linear
system with ICA.

2) Online Learning Algorithm for Unmixing Filter Vector:
An algorithm based on minimizing Kullback-Leibler diver-
gence (KLD) is commonly used to estimate the unmixing
filter, w(ω), in Eq. (4). Based on KLD, we applied the
following iterative equations with non-holonomic constraints
[11] to our model because of their fast convergence,

w(ω , f+1)=w(ω , f )+ µ1φN̂(ω)

(

N̂(ω, f )
)

S̄(ω, f ), (7)

φx(x)=−
dlog px(x)

dx , (8)

where µ1 is a step-size parameter that controls the speed of
convergence, and ȳ represents the conjugate of y. px(x) is
defined as the probability distribution of x.

The online algorithms for the ICA based adaptive filter
are summarized as follows (ω has been omitted for the sake
of readability),

N̂( f )=Y ( f )−S( f )T w( f ), (9)
N̂n( f )=α( f )N̂( f ), (10)

w( f+1)=w( f )+ µ1φNn(N̂n( f ))S̄n( f ), (11)
α( f+1)=α( f )+ µ2[1−φNn(N̂n( f )) ¯̂Nn( f )]α( f ), (12)

where α( f ) is the positive normalizing factor of N̂.
φ(x) = tanh(|x|)e jθ(x) is often used for a normalized super-
Gaussian distribution such as a speech signal [12].

Music
Robot

Speaker

Speaker

140 [cm]

40
 [c

m
]

Microphone

Robot’s voice

�

�

�

Fig. 5. Set up for sound sources and microphone

VII. EXPERIMENTS

We evaluated our system in real environment by compar-
ing predicted beat intervals by suppressing and not suppress-
ing self-generated sound.

A. Conditions
We used Robovie-R2 which has a one-channel microphone

on its nose. To prepare a 3-min input musical audio signal,
we selected three songs (No. 52, No. 94 and No. 56) from
th RWC music database (RWC-MDB-P-2001) developed by
Goto et al. [13]. We used 1 minute respectively. These
included vocals and instruments. These three pieces had
different tempos of, 70, 81 and 75[bpm]. We could evaluate
the tracking performance when the musical tempo changed.

Fig. 5 outlines the setup for the experiment. Distance
between the microphone and the speaker which plays the
robot’s voice is 40 [cm] and the microphone and the speaker
which plays the music is 140 [cm], respectively.

We experimented under two conditions to evaluate what
effect suppressing self-generated sound would have.

1) Periodic counting: Count the beats according to the
prediction and

2) Non-periodic counting: Count the beats at random
intervals.

B. Results and Discussion
1) Periodic Counting: Fig. 6 plots the results. At the

beginning of the first and third songs, beat prediction fails
because the robot’s voice did not suppressed. Thus, this con-
firmed that the robot’s voice interfered to music recognizing
on beat prediction and suppressing robot’s voice can improve
beat prediction.

At the beginning of the second song, it took about 10 [sec]
to adjust the beat interval. The reason for this is the latency,
until the appropriate agent in real-time beat tracking changes
become reliable. Suppressing self-generated sound will not
reduce this latency, so we need to improve real-time beat
tracking itself to deal with this problem.

2) Non-periodic Counting: According to the results in
Fig. 7, beat prediction failed three times without the robot’s
voice begin suppressed. In contrast, when it was suppressed,
the stability of beat prediction was improved. However, the
difference the between predicted and correct intervals is
larger than that between periodic voice and it. We think that
this phenomenon is caused by remnant components of robot’s
voice which the adaptive filter could not suppress.
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According to our architecture (Fig. 3), we know when
robot counts the beat accurately. Therefore, it is possible
to solve this problem by masking the spectrogram in beat-
tracking system when robot is counting.

3) offline evaluation: In this experiment, we evaluated
only the capability of music recognition, and the capability
of music expression was not considered. We evaluated only
music recognition in two reasons: (1) our main issue is sup-
pressing robot’s own counting voice so the evaluation of the
capability of music recognition is the most important, (2) our
beat-counting expression is preliminary in two reasons: (a)
expression is simple. Although the beat-counting expression
have a structure and capable of changing its speed, there
is essentially just one pattern. (b) The timing of counting
voice is heavily depend on the result of music recognition
although it is adjusted using onset in advance. Therefore,
to evaluate the capability of music expression, we need to
improve expression, for example, singing or dancing.

VIII. CONCLUSION

Our aim was to achieve a robot that could understand
music. The capability to understood music involves two
capabilities: its recognition and expression. We designed an
architecture for a robot that could understand music and
developed a robot that could count beats according to our
architecture. We pointed out the inevitable problem that
self-generated sounds mix into music, and solved it by a
ICA based adaptive filter. The experimental results indicated
suppressing the robot’s voice reduced the beat prediction
error regardless of periodic or non-periodic voice. However,

our method had less effect on non-periodic counting. To
improve this, we need to deal with not only mixed sounds,
but also separated music.

In future work, we intend to improve the music expression
capability of the robot to extend its appeal. For example,
singing a song with listening to music or expressing by
motion behavior. To achieve singing, we need to align music
score with beats in measure level more strictly. Moreover,
predicting basic frequency will needed to sing in appropriate
pitch. Expressing motion behaviors is achieved by Yoshii et
al. in quarter-note level. To extend it to higher level, it is
necessary to prepare motion pattern and align it to music.
We also intend to suppress self-generating sound in case its
waveform is unknown. If it is achieved, robots will be able
to play instruments, or dance with active motion.

When the improved expression is achieved, we will be
able to evaluate the music expression capability. For example,
interaction with a human, rating of a human or Turing Test.
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