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Abstract
This paper describes a method for estimating the room impulse
response (RIR) for a microphone and a sound source located at
arbitrary positions from the 3D mesh data of the room. Simulat-
ing realistic RIRs with pure physics-driven methods often fails
the balance between physical consistency and computational ef-
ficiency, hindering application to real-time speech processing.
Alternatively, one can use MESH2IR, a fast black-box estima-
tor that consists of an encoder extracting latent code from mesh
data with a graph convolutional network (GCN) and a decoder
generating the RIR from the latent code. Combining these two
approaches, we propose a fast yet physically coherent estimator
with interpretable latent code based on differentiable digital sig-
nal processing (DDSP). Specifically, the encoder estimates a vir-
tual shoebox room scene that acoustically approximates the real
scene, accelerating physical simulation with the differentiable
image-source model in the decoder. Our experiments showed
that our method outperformed MESH2IR for real mesh data ob-
tained with the depth scanner of Microsoft HoloLens 2, and can
provide correct spatial consistency for binaural RIRs.
Index Terms: Spatial audio, room acoustics, 3D mesh data,
physical models, DDSP

1. Introduction
The room impulse response (RIR) serves as a cornerstone in

a wide variety of audio signal processing systems, from speech
enhancement for automatic speech recognition [1] to auralization
of dry signals for spatial synthesis [2]. It encodes the propagation
of sound waves in an indoor environment and is affected by
the geometry of the room, the materials lining its surfaces, and
the positions of sources and microphones within the space [3].
Efficient RIR simulation plays a vital role in virtual/mixed reality
systems for enhancing the immersive experience [4, 5]. It must
be able to quickly adapt to highly dynamic environments at real
time, aligning with the visual information of both virtual and real
spaces. RIR simulation has also been used for making realistic
speech datasets expected to improve the robustness of speech
analysis models in various environments [6, 7].

In addition to datasets of RIRs measured in real rooms, one
may artificially generate realistic RIRs using a physics-based
acoustic simulator, such as the image-source method (ISM) [8],
which aims to find the purely specular reflection paths between
a source and a microphone, and its accelerated variants [9–11].
Unfortunately, some acceleration techniques, even ones with
physically motivated assumptions, may violate certain physical
properties that affect the representation of early reflections cru-
cial for maintaining the spatial cues [7, 12].

To bypass computationally intensive physics-based simula-
tion, RIR estimators based on deep learning have recently been

Figure 1: The overview of RIR-in-a-Box, a novel physics-aware
mesh-to-RIR translator trained such that the RIR simulated in
the virtual shoebox scene (explainable latent code) is made close
to the RIR measured in the real complicated scene.

developed [13–15]. These methods tend to work fast at run-time
and are capable of fusing multimodal clues related to the RIR. In
addition to audio signals recorded by microphones, visual infor-
mation such as raw images [16–19] have been effectively used
for RIR estimation. In particular, we focus on MESH2IR [15]
that estimates the RIR from the 3D mesh data of the room be-
cause it is useful for audio rendering in mixed reality applica-
tions using LiDAR scanners (e.g., smart glasses and MR head-
sets). It is based on the encoder-decoder architecture; the en-
coder embeds the 3D mesh data along with source and micro-
phone positions to the latent code with a graph convolutional net-
work (GCN) and the decoder generates the RIR from the latent
code. However, the physical consistency of the estimated RIR is
not guaranteed due to the data-driven nature of the decoder.

To leverage the complementary advantages of the physics-
based simulator and the data-driven estimator, we propose “RIR-
in-a-Box”, an ISM-injected version of MESH2IR based on dif-
ferentiable digital signal processing (DDSP) [20]. As shown in
Fig. 1, the encoder transforms the 3D mesh data into an explain-
able latent vector representing a virtual shoebox room scene that
acoustically approximates the target room scene. This enables
the decoder to efficiently simulate the RIR based on the ISM for
the estimated shoebox room thanks to its simple shape, even if
the ISM-based simulation for the original mesh data is computa-
tionally intensive. Given the ground-truth RIR, the whole net-
work can be trained by backpropagating the loss to the encoder
through the decoder, the differentiable ISM.

The main contribution of this study is to develop a DDSP-
based method that can reliably simulate the RIR by approximat-
ing the target scene as a shoebox scene. Another contribution to
the field is to provide a real mesh-audio dataset obtained with
the microphones and LiDAR scanner of Microsoft HoloLens 2
and a Pytorch implementation of the differentiable ISM.

2. Related work
This section reviews related work in terms of individual

techniques used in the proposed method.
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Table 1: RIR-in-a-Box vs baselines.

Model Interpret. Physical Material-blind Fast
ISM (in a Shoebox) ✓ ✓ × ✓
FASTRIR [21] ✓ × × ✓
GWA [22] ✓ ✓ × ×
MESH2IR [15] × × ✓ ✓
RIRBox (proposed) ✓ ✓ ✓ ✓

2.1. Acoustic matching

Acoustic matching techniques aim to reflect the acoustics
of a target environment in audio recordings. This field includes
estimating high-level acoustic parameters such as the direct-to-
reverberant ratio (DRR) and reverberation time (RT60) to the ac-
tual sound field through RIRs (see [17, Sec. 2] for a review). Re-
cent advancements have expanded the scope of acoustic match-
ing, incorporating audio embeddings and even visual elements
to define target acoustic spaces [15, 17]. Notably, the integra-
tion of visual information within deep learning frameworks has
opened new avenues for acoustic matching, enabling the estima-
tion of RIRs through images [19] and leveraging machine learn-
ing models for enhanced spatial audio realism.

2.2. Acoustic simulation

Acoustic simulators can be roughly categorized into two
groups: physics-based and deep generative models (Table 1).
Physics-based simulators (e.g., [22]) use computationally in-
tensive software to model sound propagation. Simplified room
acoustic models (e.g. the ISM) reduce the computation load by
retaining certain physical and perceptual properties. Thanks to
this balance, they are the go-to methods in most applications.
Nevertheless, such simulators typically require prior informa-
tion (e.g., the RT60, the room shape, and wall absorption coeffi-
cients), which may be challenging to obtain in practice.

Thanks to their fast inference and ability to extract knowl-
edge from data, deep generative models (e.g., FASTRIR [21]
and MESH2IR [15]) have been proposed for RIR generation.
FASTRIR is designed for shoebox configurations with known
RT60, room dimensions, and microphone and source positions.
MESH2IR extends it to complex room layouts by relying on
a black-box mesh deep encoder. Interestingly, this approach
demonstrates that acoustic properties (e.g., wall absorption or
RT60) could be inferred blindly from the room mesh. Both algo-
rithms are fast during inference compared to the physics-based
acoustic simulators, but function as opaque, data-driven systems.

To address this issue, we introduce RIRBox, a tool capable
of inferring the acoustic properties of a room from its detailed
mesh, which can nowadays be easily captured by head-mounted
displays (e.g., Hololens2). RIRBox generates RIRs based on
the ISM, aiming to be faster than advanced physics-based sim-
ulators while providing a balance between interpretability and
computational efficiency.

2.3. Differentiable digital signal processing

DDSP enables us to jointly optimize classical acoustic mod-
els in tandem with neural networks. This approach has been re-
cently extended to model reverberation [13, 23, 24]. Besides per-
formance improvements with respect to pure data-driven meth-
ods, these models also gain interpretability. Interestingly, the
work of [24] uses a differentiable implementation of the ISM to
solve acoustic inverse problems. Our work builds upon this in-
novative intersection, utilizing the ISM as a physics-constrained
decoder within the DDSP framework.

Figure 2: Encoder architecture.

3. Proposed method
This section explains the proposed fast yet physically con-

sistent RIR estimator, RIRBox.

3.1. Problem Specification
Given the 3D triangular mesh data of a target room M, we

aim to estimate the time-domain RIR [15] h ∈ RL with respect
to a source position s ∈ R3 and a microphone position p ∈ R3

represented in the Cartesian coordinate system as follows:

h = RIRBox(M, s,p), (1)

where L represents the length of the RIR to be considered. The
mesh data M is given as a graph represented as an adjacency
matrix over nodes.

3.2. Model design
RIRBox is a DDSP-based estimator with the encoder-

decoder architecture consisting of the encoder of MESH2IR [15]
and a decoder based on the differentiable ISM [24].

z = Encoder(M, s,p), (2)
h = Decoder(z), (3)

where z is an explainable latent vector representing a scene of a
shoebox room as follows:

z ≜
[
r̃T, ãT, s̃T, p̃T]T ∈ R12, (4)

where r̃ ∈ R3
≥1 represents the dimensions of the virtual shoebox

room, ã ∈ [0.01, 0.85]3 represents the absorption coefficients of
the walls, the floor, and the ceiling, and s̃, p̃ ∈ [0, 1]3 represent
the positions of the source and microphone normalized with
respect to the room dimensions. Note that s and p are the
positions in the original 3D scene, while s̃ and p̃ are those in the
equivalent virtual shoebox scene.

The key feature of RIRBox is that it estimates the virtual
shoebox scene z in which the RIR h can be simulated efficiently
in a physically faithful manner, instead of directly estimating
h with a blackbox network as in MESH2IR [15]. This calls
for the physics-based decoder implemented as the differentiable
ISM [15] and enables the supervised training of the whole net-
work with backpropagation. The ISM-based simulation for shoe-
box rooms is much faster than that for real rooms represented by
complicated mesh data.

3.2.1. Encoder

As shown in Fig. 2, the encoder internally estimates an in-
termediate representation π required for constructing the virtual
shoebox scene, which is given by

π ≜
[
πT

M, s
T, pT, d(s,p)

]T
∈ [0, 1]15, (5)

where d(s,p) is the distance between the source and microphone
and πM ∈ [0, 1]8 is a latent vector extracted from the mesh data
M with the encoder of MESH2IR based on a graph convolutional
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network (GCN) [15] as follows:

πM = GCN(M) ∈ [0, 1]8. (6)

We propose two variants of the proposed method. RIRBox1
computes the latent vector z directly from the intermediate rep-
resentation π as follows:

z = MLPϕ(π), (7)

where MLPϕ is a multilayer perceptron network with parameters
ϕ. In contrast, RIRBox2 takes two steps; It first estimates the
dimensions of a shoebox room r̃ and its absorption coefficients
ã, which are then used to condition the estimation of the source
position s̃ and microphone position p̃ as follows:[

r̃T, ãT]T = MLPψ(π), (8)[
s̃T, p̃T]T = MLPζ (π, r̃, ã) , (9)

where MLPψ and MLPζ are separate sub-networks parameterized
by ψ and ζ, respectively.

3.2.2. Decoder

The decoder generates the RIR corresponding to the virtual
shoebox scene with the classical yet physics-faithful ISM-based
simulation. Using the idea of DDSP [20], the ISM is imple-
mented in a differentiable manner, making it possible to train
the encoder in a supervised manner by backpropagating the esti-
mation error through the decoder. Since the ISM suffers from
artifacts under 80 Hz for shoebox rooms [6], we finally apply
a high-pass filter with a cutoff frequency of 80 Hz for the RIR
obtained with the ISM as follows:

h← HP80Hz(ISM(z)). (10)

3.3. Parameter optimization
We optimize the network parameters, ϕ of RIRBox1 or ψ

and ζ of RIRBox2, such that the estimated RIR h well approx-
imates the ground-truth RIR ĥ for the given scene in the real
room. In this paper, we propose three loss functions that evalu-
ate the RIR estimation errors.

Multi-resolution short-time Fourier transform (STFT) loss
represents the distance between the magnitude spectrograms
of the estimated and ground-truth RIRs. It is obtained by av-
eraging the sums of the spectral convergence losses and the
log STFT magnitude losses over multiple time-frequency
configurations of STFT [25].

Energy decay relief (EDR) loss LEDR represents the distance
between the EDR of the estimated and ground-truth RIRs. The
energy decay curve (EDC) represents how the total energy
left in a sound signal decreases smoothly over time, which
is crucial for understanding the reverberation time of a room.
The EDR is the generalized version of the EDC for multiple
frequency bands [15].

Distance loss Ld represents the distance between the estimated
microphone-source distance in the virtual shoebox room and
the ground-truth distance in the real room:

Ld(s,p, r̃, s̃, p̃) ≜ ∥d(s,p)− d(r̃⊙ s̃, r̃⊙ p̃)∥22, (11)

where ⊙ denotes the element-wise multiplication.

The total loss L is given by

L ≜ LMRSTFT + λ1LEDR + λ2Ld, (12)

where λ1, λ2 ∈ R+ are the weighting coefficients of LEDR and
Ld. The whole network is trained in a supervised manner such
that the total loss function L is minimized.

4. Evaluation
This section reports experiments conducted to evaluate the

RIRs generated by the proposed method in terms of accuracy
and spatial consistency.

4.1. Experimental conditions
The baseline models, including MESH2IR [15], were trained

on synthetic RIRs from the GWA dataset [22] and tested on sep-
arate synthetic RIRs and real RIRs recorded using a Microsoft
HoloLens 2 (HL2) in real environments1.

4.1.1. Synthetic dataset

The proposed model was trained on a subset of the GWA
dataset [22], which originally includes 2 million synthetic RIRs
computed with a high-quality hybrid wave-geometric simulation
in 6.8k hand-crafted 3D rooms of the 3D-FRONT dataset [26].
This training subset contained 3D scenes where a direct path is
likely to be present between the microphone and the source since
that situation is the one our shoebox model will best represent.
In those scenes, the first peak of the computed IR was within
20 samples of the onset of an unblocked direct path and the first
peak amplitude was within 30% of the amplitude of an unblocked
direct path. This training subset contained 9005 RIRs (scenes)
in 4297 rooms. Using the same procedure, we also created a test
subset that contains 520 RIRs (scenes) in 236 rooms.

Following [22], we downsampled the RIRs to 16 kHz and
used only the first 3968 samples. Although, since our physics-
based model innately models the energy, we did not perform
the standard deviation normalization and, in contrast, tried to
recover the correct RIR scale from the downscaled audio files
in the GWA dataset. We also performed mesh simplification
preprocessing, as in [22], to have a consistent number of mesh
faces (i.e., 2000) from any input with a varying number of faces.

4.1.2. Real dataset

In addition to the synthetic test dataset above, we also con-
structed a real test dataset consisting of 481 scenes in total. It
includes 30 room meshes of two connecting rooms: a meeting
room with a size of 6.3×3.5×3.1 m and a small office room with
a size of 2.5×3.5×3.1 m. Both rooms have walls that are rela-
tively reflective due to whiteboards, windows, or flat concrete
walls. The floors are covered with carpet, while the ceilings have
lighting and air conditioning installations. The dataset also in-
cludes 27 RIRs from different combinations of microphone and
source positions in those rooms.

The RIRs were estimated from real audio signals of expo-
nential sine sweeps [27] emitted by a high-fidelity directional
loudspeaker (Genelec 8030C) and recorded by HL2 worn on a
human head. The source and microphone positions were manu-
ally measured, so they are approximate. The room meshes were
also captured using HL2 worn on a human head by utilizing the
functionalities of the Windows Device Portal for HL2. In prac-
tice, the quality of the mesh increases in terms of accuracy and
coverage as the user explores the room. We captured this effect
by iteratively acquiring the room mesh following three different
protocols: a progressive scan while sitting down in the meeting
room and looking around, a progressive scan walking through-
out the meeting room first and then into the small office, and a
progressive scan walking throughout both rooms at once. We
applied the same mesh simplification preprocessing as for the
training dataset.

1Code and data: https://github.com/liam-kelley/RIR-in-a-Box
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Figure 3: Metric performance on GWA held-out validation set.

Figure 4: Metric performance on HL2 validation set.

Table 2: Average AOA errors with the standard deviations.

MESH2IR RIRBox1 RIRBox2
45.1° ± 26.1° 36.0° ± 22.6° 24.8° ± 19.3°

4.2. Implementation details

RIRBox1 and RIRBox2 used the pre-trained mesh encoder
of MESH2IR [15], and MLPϕ, MLPψ , and MLPζ had three hid-
den layers with rectified linear units (ReLU) and an output layer
that applies the softplus activation function for r̃, and the sig-
moid activation function for p̃, s̃, and ã. The decoder used the
differentiable ISM [24] with a lower order of reflections at train-
ing time (10) than at test time (18). In preliminary experiments,
we observed that during training the benefits of a larger batch
size outweighed the inaccuracies of having fewer reflections.
Our models were trained on the synthetic dataset (Section 4.1.1)
with a batch size of 28 for 12 epochs using the Adam optimizer
with an initial learning rate of 10−3 scheduled to decrease 70%
every 4 epochs. The weighting coefficients were set to λ1 = 0.5
and λ2 = 2.0.

4.3. Experimental results

We discuss the performance of the proposed method in the
RIR estimation and the downstream task.

4.3.1. RIR estimation

We compared RIRBox with MESH2IR [15] on the GWA
held-out-validation set and the real-life HoloLens2 validation
dataset in terms of EDR, MRSTFT, Reverberation Time (RT60),
Direct to Reverberant Ratio (DRR), and difference in RIR on-
set time (IR Onset). As shown in Figs. 3 and 4, RIRBox2
was more robust in the HL2 validation set, and RIRBox1 esti-
mated RT60 best on the GWA held-out validation set. An ex-
ample inference on the HL2 validation set is shown in Fig. 5.
MESH2IR’s RIR is very degraded on real data, while RIRBox2
is more robust, even though they use the same latent mesh en-
coding πM . The virtual room dimensions inferred by RIRBox2
(4.0×2.5×1.9m) are off by about 35% from the meeting room
dimensions (6.3×3.5×3.1m) although proportions are consis-
tent, and the virtual mic-source distance 1.9m is off by 13.5%
from the ground truth 2.2m.

Figure 5: Example of RIR generation for a HL2-sampled mesh.

Figure 6: Example AOA vs azimuth for a GWA validation mesh.

4.3.2. RIR spatial consistency
By calculating the time difference of arrival of sound for

2 microphones imitating an HL2 headset (at a distance of 22.5
cm), we can estimate the angle of arrival (AOA) of a sound
source. We compared the MESH2IR [15] and RIRBox methods’
generated RIR spatial consistency through their AOA estimation
performance. We used the GWA held-out-validation set meshes,
put the microphone array at a random position within each mesh,
and simulated sound originating from different azimuth angles.
We computed the AOA for sound reaching the microphones using
GCC-PHAT [28]. We compared the results with the theoretical
AOA based on the geometry of the setup. The performance
of each model against theoretical values is listed in Table 2.
Fig. 6 showed that MESH2IR [15] outputs a constant AOA.
Further inspection showed that MESH2IR’s RIRs for the two
microphones slightly differ in amplitudes but usually not in the
direct path location, resulting in a constant AOA. Meanwhile,
RIRBox struggles with extreme angles but accurately maintains
spatial cues near the frontal direction.

5. Conclusion
We have presented a DDSP-based method to estimate room

impulse responses (RIRs) from complex 3D scenes. Specifically,
we extended the existing neural estimator MESH2IR to produce
more physically consistent RIRs by incorporating a differen-
tiable implementation of the image source model. Experimental
results on real mesh data given by Microsoft HoloLens 2 showed
that the proposed method outperformed MESH2IR in both RIR
estimation and RIR spatial consistency. In future work, we aim
to apply our method to other downstream tasks in mixed real-
ity applications, e.g., speech enhancement and dereverberation.
Including a statistical model for late reverberation, along with
training the mesh encoder end-to-end will also be investigated.

3258



6. Acknowledgment
This work was supported by ANR Project SAROUMANE

(ANR-22-CE23-0011) and Hi! Paris Project MASTER-AI,
JST PRESTO no. JPMJPR20CB, and JSPS KAKENHI
nos. JP20H00602, JP21H03572, JP23K16912, JP23K16913.

7. References
[1] E. Vincent, T. Virtanen, and S. Gannot, Eds., Audio Source Separa-

tion and Speech Enhancement. John Wiley & Sons, 2018.
[2] S. Liu and D. Manocha, Sound Synthesis, Propagation, and Ren-

dering. Springer, 2022.
[3] H. Kuttruff, Room Acoustics, 6th ed. CRC Press, 2016.
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