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Abstract—This paper presents a blind multichannel speech en-
hancement method that can deal with the time-varying layout of
microphones and sound sources. Since nonnegative tensor factor-
ization (NTF) separates a multichannel magnitude (or power) spec-
trogram into source spectrograms without phase information, it is
robust against the time-varying mixing system. This method, how-
ever, requires prior information such as the spectral bases (tem-
plates) of each source spectrogram in advance. To solve this prob-
lem, we develop a Bayesian model called robust NTF (Bayesian
RNTF) that decomposes a multichannel magnitude spectrogram
into target speech and noise spectrograms based on their sparse-
ness and low rankness. Bayesian RNTF is applied to the chal-
lenging task of speech enhancement for a microphone array dis-
tributed on a hose-shaped rescue robot. When the robot searches
for victims under collapsed buildings, the layout of the microphones
changes over time and some of them often fail to capture target
speech. Our method robustly works under such situations, thanks
to its characteristic of time-varying mixing system. Experiments
using a 3-m hose-shaped rescue robot with eight microphones
show that the proposed method outperforms conventional blind
methods in enhancement performance by the signal-to-noise ratio
of 1.03 dB.

Index Terms—Multichannel speech enhancement, low-rank and
sparse decomposition, Bayesian signal processing.
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I. INTRODUCTION

S PEECH enhancement has been studied for various applica-
tions such as hearing aids, speech recognition, and speech

telecommunication [2]–[8]. In these applications, it is often dif-
ficult to assume the typical usage situation, such as noise char-
acteristics and the relative layout of sources and microphones.
To enhance noisy speech signals with few assumptions on the
usage situation, blind speech enhancement has been studied by
focusing on some statistical structures of observed signals [6]–
[11]. Single-channel speech enhancement, for example, focuses
on the spectral pattern difference between speech and noise sig-
nals [2], [8]. Multichannel speech enhancement focuses on the
inter-channel correlation difference between them, which de-
pends on the relative layout of sources and microphones [6],
[7], [11].

This study addresses to develop a blind multichannel speech
enhancement method that is robust against the time-varying lay-
out of sources and microphones. While most of the existing blind
speech enhancement (or source separation) methods assume that
the mixing system is time-invariant, this assumption does not
always hold [11]–[14]. A possible way is to enhance speech in
magnitude (or power) spectrogram domain, which is insensitive
to relatively small changes of the layout. Non-negative tensor
factorization (NTF), for example, can separate a multichan-
nel magnitude spectrogram into source spectrograms [15]–[18].
NTF, however, requires prior information such as the spectral
bases (templates) of each source spectrogram, and thus it is not
completely blind.

This paper presents blind multichannel speech enhancement
that works in magnitude spectrogram domain based on low-rank
and sparse decomposition. Low-rank and sparse decomposition,
such as robust non-negative matrix factorization (RNMF), can
decompose a magnitude spectrogram into low-rank and sparse
spectrograms without any prior training [10], [19]–[23]. The
low-rank spectrogram corresponds to a noise spectrogram that
can be represented by a small number of spectral bases (e.g.
motor noises). The sparse spectrogram corresponds to a speech
spectrogram that has harmonic structures. Our method is in-
spired by NTF and RNMF, and decomposes a multichannel
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2329-9290 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3934-0745
https://orcid.org/0000-0002-6826-9722
https://orcid.org/0000-0002-6134-4558
https://orcid.org/0000-0002-8704-4318


216 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 26, NO. 2, FEBRUARY 2018

Fig. 1. Overview of the proposed Bayesian RNTF.

Fig. 2. Hose-shaped rescue robot with an eight-channel microphone array.

magnitude spectrogram into channel-wise low-rank noise spec-
trograms and sparse speech spectrogram common to all the
channels (Fig. 1). It is formulated as a Bayesian generative
model called Bayesian robust NTF (Bayesian RNTF). Since its
mixing system is independently estimated at each time frame, it
is robust against the time-varying layout of sources and micro-
phones.

Bayesian RNTF is applied to speech enhancement with a
microphone array on a hose-shaped rescue robot. This kind
of robots, which are characterized by a thin, long and flexible
body, have been developed for penetrating narrow gaps under
collapsed buildings [24], [25]. The Active Scope Camera (ASC)
robot, for example, moves forward by the vibrating cilia cov-
ering its body [24] (Fig. 2). While a robot operator searches
for survived victims using a microphone array and a tip camera
equipped on the robot, speech signals captured by microphones
on the robot are contaminated by non-stationary ego-noise (e.g.,
motor and friction noise). The naı̈ve “stop-and-listen” strategy
for avoiding the ego-noise prevents a robot operator from finding
survived victims quickly. It is important to check whether the
human voice is included in the captured signal. Speech enhance-
ment is helpful to prevent the operator from failing to detect the
voice and to improve the performance of its automatic detection.

The speech enhancement for a hose-shaped rescue robot im-
poses the following three challenging problems:

1) Environment-dependence of ego-noise: The ego-noise
changes over time depending on the robot’s movements
and surrounding materials.

2) Deformable layout of microphones: The relative positions
of the microphones change over time because of the vi-
bration and deformation of the robot body.

3) Partial occlusion of microphones: Some of the micro-
phones often fail to capture target speech when they are
shaded by rubble around the robot.

These problems make it impossible to use conventional su-
pervised methods [3]–[5], [26]–[28], and degrade the con-
ventional blind methods that assume a time-invariant mixing
system [11]–[14]. On the positive side, since the ego-noise is
generated from the vibration motors, the noise spectrogram has
repetitive structures and is, thus, considered as low rank. The
proposed Bayesian RNTF is based on the low-rank and sparse
decomposition and time-varying mixing system, and thus it is
robust against the first two problems. Moreover, it can deal with
the occlusion problem because it estimates the speech level at
each microphone.

In actual rescue activities searching for victims, real-time
speech enhancement is crucial. Bayesian RNTF is extended to a
state-space model called Bayesian streaming RNTF (Bayesian
SRNTF) that represents the dynamics of the latent variables.
The Bayesian inference of our method is conducted in a mini-
batch manner with a variational Bayesian (VB) framework [29],
[30]. We show that our Bayesian SRNTF works in real time on
a mobile general-purpose graphics processing unit (GPGPU).

The rest of the paper is organized as follows: Section II re-
views related work on multichannel blind source separation
and low-rank and sparse decomposition. Section III explains
the proposed Bayesian RNTF model, and Section IV derives
its Bayesian inference algorithm. Section V reports the experi-
mental evaluations of Bayesian RNTF with simulated data, and
Section VI reports the experimental results obtained using
recorded signals. Finally Section VII summarizes the key
findings.

II. RELATED WORK

This section overviews related work on multichannel blind
source separation and low-rank and sparse decomposition.

A. Multichannel Blind Source Separation

Blind source separation based on the phase differences be-
tween the microphones can be used without prior knowledge
about microphones and sources [7], [11]–[14], [31]. Multichan-
nel non-negative matrix factorization (MNMF) [11], [13], [32],
for example, decomposes given multichannel complex spec-
trograms into multiple low-rank source spectrograms and their
transfer functions. Each of source spectrograms is represented
as a product of spectral basis vectors and their temporal activa-
tion vectors. Kounades-Bastian et al. [32] extended MNMF for
moving sources by assuming a Markov chain of time-varying
transfer functions. Its performance may, however, be degraded
by unexpected moving of sources.

One way to avoid estimating the time-varying transfer func-
tions of sound sources is to perform source separation over
multichannel magnitude (or power) spectrograms, which are
insensitive to relatively small motions. NTF has been used
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Fig. 3. Speech enhancement by low-rank and sparse decomposition. Speech
signals that have a sparse structure are separated from low-rank noise signals.

for decomposing the multichannel spectrogram into source
spectrograms and their magnitude transfer functions [15]–[18].
Murata et al. [16] proposed an NTF by marginalizing out the
phase term of MNMF. This method, however, requires the ba-
sis vectors for each source in advance. Although another NTF
that does not need information about the basis vectors was pro-
posed [17], it requires the volume level ratio of each source in
the channels in advance. To make NTF be completely blind, it
is necessary to import other separation criteria that can remove
the constraints.

B. Low-Rank and Sparse Decomposition

Low-rank and sparse decomposition is a popular approach
to suppressing non-stationary periodic noise and enhancing tar-
get speech without prior training (Fig. 3) [10], [20]–[23]. Let
Y ∈ RF ×T , L ∈ RF ×T , and S ∈ RF ×T be input, low-rank and
sparse matrices (magnitude spectrograms withF frequency bins
and T time frames), respectively. This decomposition was orig-
inally proposed in robust principal component analysis (RPCA)
and is conducted by solving the following minimization problem
with the augmented Lagrange multiplier framework [23]:

argmin
L∗,S

‖Y‖∗ + λ‖S‖1 s.t.Y = L + S, (1)

where ‖ · ‖∗ is the nuclear norm representing the low-rankness,
‖ · ‖1 is the L1 norm representing the sparsity, and λ represents
a scale parameter controlling the sparseness of S. To reduce the
processing time of RPCA, the following relaxed problem of (1)
is proposed by replacing the equality constraint with a penalty
term [33], [34]:

argmin
L,S

1
2
‖Y − L − S‖2

F + λ1‖L‖∗ + λ2‖S‖1 , (2)

where ‖x‖F is the Frobenius norm and λ1 and λ2 are the scale
parameters. When these scale parameters are small enough, the
solutions to (2) approach the solutions to (1).

Equation (2) can be interpreted as a likelihood function
( 1
2 ‖Y − L − S‖2

F ) with priors for the latent variables (λ1‖L‖∗
and λ2‖S‖1). Bayesian RPCA has been studied for dealing with
uncertainty of latent low-rank and sparse components [29], [35].
Babacan et al. [29] derived a VB algorithm for Bayesian RPCA
(VB-RPCA) to reduce the computational cost. Bayesian RPCA
represents the low-rank matrix L as the product ofK basis vec-
tors W = [w1 , . . . ,wK ] ∈ RF ×K and their coefficient vectors
H ∈ RK×T as follows:

L = WH. (3)

Note that the rank of the low-rank matrix L is constrained to be
K or less. Using this low-rank model, the likelihood function is

defined with a Gaussian distribution (denoted by N ) as follows:

p(Y|W,H,S) =
∏

f ,t

N
(
yf t

∣∣∣∣∣
∑

k

wf khkt + sf t , σ

)

∝ exp
(
− 1
σ
‖Y − WH − S‖2

F

)
, (4)

where σ is a variance parameter and is simultaneously esti-
mated with other parameters. The low-rankness and sparseness
of L and S are controlled by this structural constraint and their
prior distributions. Ding et al. [35] proposed a Bayesian RPCA
whose prior distribution of sparse components has Markovian
constraint. This model was used for separating background and
foreground images from video streams and reduced salt-and-
pepper noise of estimated foreground images. Application of
RPCA to audio or image data, however, is not physically jus-
tified because RPCA allows observation, low-rank, and sparse
spectrograms or images to take negative values.

By constraining the low-rank and sparse matrices to be non-
negative, RNMF was proposed for analyzing audio spectro-
grams or video images [8]–[10], [19], [22]. Since the Frobenius
norm (Euclidean distance) in (2) and (4) often causes over-
emphasis of high-energy components in a magnitude spectro-
gram, Li et al. [8] proposed an RNMF with the Kullback-Leibler
(KL) divergence, which has been widely used in audio source
separation:

argmin
W ,H ,S

KL(Y|WH + S) + λ‖S‖1 , (5)

where KL(·|·) represents the KL divergence. Min et al. [9]
proposed an RNMF with the Itakura-Saito divergence, which
is derived from a statistical generative model of acoustic sig-
nals. Like Bayesian RPCA, Bayesian formulation of RNMF is
expected to allow for further extensions such as multichannel
signal processing.

III. BAYESIAN MODEL OF ROBUST NON-NEGATIVE

TENSOR FACTORIZATION

This section describes the proposed RNTF model that repre-
sents a multichannel magnitude spectrogram by channel-wise
low-rank components and sparse components common to all
the channels as shown in Fig. 1. Since our method does not use
the phase information, the phase differences across channels
do not affect the result. To derive the proposed multichannel
model, we first formulate a Bayesian reformulation of RNMF
(Bayesian RNMF) that is inspired by Bayesian NMF [36] and
Bayesian RPCA [29]. We then formulate its multichannel ex-
tension (Bayesian RNTF) as a statistical generative model, and
finally derive the mini-batch extension called Bayesian SRNTF
by reformulating the batch Bayesian RNTF to a state-space
model.

A. Bayesian RNMF for Single-Channel Enhancement

We first formulate an offline single-channel enhancement
model called Bayesian RNMF. The problem of Bayesian RNMF
is defined as follows:
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Input: Single-channel magnitude spectrogram Y ∈ RF ×T
+

Output: Denoised magnitude spectrogram S ∈ RF ×T
+

Assumption:
The following values are given in advance:
A) Possible maximum rank of noise spectrogram K ∈ N
B) Hyperparameters αw ∈ R+ , βw ∈ R+ , αh ∈ R+ ,
βh ∈ R+ , and αs ∈ R+

where F and T indicate number of frequency bins and time
frame bins, respectively. The magnitude spectrogram is de-
fined as the absolute values of the short-time Fourier transform
(STFT) of a time-domain signal. Interpretations of the hyperpa-
rameters are explained below.

1) Overview: As in existing low-rank and sparse decompo-
sition methods ((2), (4), and (5)), Bayesian RNMF approxi-
mates an input spectrogram Y ∈ RF ×T

+ as the sum of a low-
rank spectrogram L ∈ RF ×T

+ (noise) and a sparse spectrogram
S ∈ RF ×T

+ (target speech) as follows:

Y ≈ L + S. (6)

The low-rank spectrogram is represented by the product of K
spectral basis vectors W = [w1 , . . . ,wK ] ∈ RF ×K

+ and their
temporal activation vectors H = [h1 , . . . ,hT ] ∈ RK×T

+ :

Y ≈ WH + S. (7)

The low-rankness and sparseness of each term can be controlled
in a Bayesian manner as explained below.

2) Likelihood Function: Bayesian RNMF tries to minimize
the approximation error for the input spectrogram by using the
KL divergence. Since the maximization of a Poisson likelihood
corresponds to the minimization of a KL divergence, the likeli-
hood function is defined as follows:

p(Y|W,H,S) =
∏

f t

P
(
yf t

∣∣∣∣∣
∑

k

wf khkt + sf t

)
, (8)

where P(x|λ) ∝ 1
Γ(x+1) λ

xe−λ denotes a Poisson distribution
with a rate parameter λ ∈ R+ . Although the discrete Poisson
distribution can be used by quantizing the observation yf t , it has
been empirically shown that NMF with the continuous Poisson
likelihood performs as well as those of the discrete distribu-
tion [37].

3) Prior Distributions on Low-Rank Components: Our low-
rank modeling is inspired by Bayesian NMF [36] that has
been studied for low-rank decomposition of audio spectrograms.
Since the gamma distribution is a conjugate prior for the Poisson
distribution, gamma priors are put on the basis and activation
matrices of the low-rank components as follows:

p(W|αw , βw ) =
∏

f ,k

G(wfk |αw , βw ), (9)

p(H|αh, βh) =
∏

k,t

G(hkt |αh, βh), (10)

where G(x|α, β) denotes a gamma distribution with a shape
parameter α and a rate parameter β; αw ∈ R+ , βw ∈ R+ , αh ∈

Fig. 4. Graphical models for Bayesian RNMF and RNTF. (a) Bayesian RNMF.
(b) Bayesian RNTF.

R+ , and βh ∈ R+ are the hyperparameters which should be
appropriately set in advance. Setting the shape parameters αw

and αh to 1.0 or less forces the basis and activation matrices
to be sparse [36], which means that the low-rank component
L is forced to be low-rank. These prior distributions enhance
the low-rankness of this component compared to the original
RNMF.

4) Prior Distributions on Sparse Components: In Bayesian
RPCA, Gaussian priors with the Jeffreys hyperpriors are put
on sparse components [29]. To force the sparse components to
take non-negative values, gamma priors are put on the sparse
components as follows:

p(S|αs,βs) =
∏

f ,t

G(sf t |αs, βsf t), (11)

where αs ∈ R+ and βsf t ∈ R+ represent the shape and rate
hyperparameters of the gamma distributions, respectively. To
estimate the rate hyperparameters, the Jeffreys hyperpriors are
put on them as follows:

p(βsf t) ∝ (βsf t)
−1 . (12)

The rate hyperparameters are independently defined at indi-
vidual time-frequency bins. The significance of each time-
frequency bin is automatically estimated by optimizing the rate
hyperparameter as in Bayesian RPCA [29]. The shape hyper-
parameter αs , on the other hand, controls the sparseness of
the sparse component S and should be set appropriately in
advance. The complete graphical model that represents the
probabilistic dependency of the latent variables is shown in
Fig. 4(a).

B. Bayesian RNTF for Multichannel Enhancement

We then formulate a multichannel extension of Bayesian
RNMF called Bayesian RNTF. The problem in this section is
defined as follows:
wherem represents the microphone index. Interpretations of the
hyperparameters are explained below. Our method is designed
for enhancing speech sounds coming from one direction at each
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Input: M -channel magnitude spectrograms Ym ∈ RF ×T
+

Output: Denoised magnitude spectrogram S ∈ RF ×T
+

Assumption:
The following values are given in advance:
A) Possible maximum rank of noise spectrogram K ∈ N
B) Hyperparameters αw ∈ R+ , βw ∈ R+ , αh ∈ R+ ,
βh ∈ R+ , αg ∈ R+ , and αs ∈ R+

time frame. This is considered to be reasonable because multi-
ple speakers located at different directions may not talk simul-
taneously in disaster situations. Even when a few people speak
simultaneously from the same direction, the overlapping speech
sounds could be enhanced because those sounds still have sparse
harmonic structures and the fine time-frequency fluctuations of
speech spectrograms violate the low-rank assumption.

1) Overview: Bayesian RNTF approximates an input spec-
trogram at each channel Ym ∈ RF ×T

+ as the sum of channel-
wise low-rank spectrogram and channel-wise sparse spectro-
gram S′

m ∈ RF ×T
+ :

Ym ≈ WmHm + S′
m , (13)

where Wm ∈ RF ×K
+ and Hm ∈ RK×T

+ are channel-wise basis
and activation matrices for the low-rank spectrogram, respec-
tively.

The relationship between the target speech signal S ∈ RF ×T
+

and its observation at each microphone S′
m is assumed to be a

time-variant and frequency-invariant linear system:

s′mf t ≈ gmtsf t , (14)

where gmt ∈ R+ represents a gain of the target speech signal at
microphonem and time t. According to (13) and (14), Bayesian
RNTF decomposes the input spectrogramYm into the following
four components:

ymf t ≈
∑

k

wmf khmkt + gmtsf t . (15)

where gm = [gm1 , . . . , gmT ] is a gain vector. Although mag-
nitude spectrograms are insensitive to relatively small mo-
tions [16], the gain gmt depends on the motion of microphones
and target speech. The gain gmt is, therefore, independently
estimated at each time frame to deal with the movement of
microphones and sources.

2) Likelihood Function and Prior Distributions: The like-
lihood function and prior distributions except for those on the
gain parameters gmt are formulated in the same manner as in
Bayesian RNMF ((8)–(12)). A gamma prior is put on gmt as-
suming that its mean is 1:

p(gmt |αg ) = G(gmt |αg , αg ), (16)

where αg ∈ R+ is a hyperparameter controlling the variance of
the gain parameters. The complete graphical model is shown in
Fig. 4(b).

Fig. 5. Mini-batch processing flow of Bayesian SRNTF.

C. Bayesian Streaming RNTF for Real-Time Enhancement

This section describes the Bayesian SRNTF. It is formulated
as a state-space model representing the latent variable as time-
varying latent variables.

1) Overview: Bayesian SRNTF sequentially enhances target
speech for T frames of mini-batch audio inputs (Fig. 5). The
problem in this section is defined as follows:

Input:
1. M -channel magnitude spectrograms Y(n)

m ∈ RF ×T
+

2. Posterior distribution at the previous (n− 1) mini-batch.
Assumption:
The following values are given in advance:
A) Possible maximum rank of noise spectrogram K ∈ N
B) Hyperparameters αw ∈ R+ , βw ∈ R+ , αh ∈ R+ ,
βh ∈ R+ , αg ∈ R+ , αs ∈ R+ , and γ ∈ R+

where n indicates the mini-batch index (n = 1, 2, 3, . . .). As
explained below, the posterior distribution at the prevous mini-
batch is used for the prior information of the current latent
variables. Interpretations of the hyperparameters are explained
below.

Bayesian SRNTF decomposes the mini-batch audio spectro-
gram y

(n)
mf t into low-rank and sparse components in the same

manner as in Bayesian RNTF:

y
(n)
mf t ≈

∑

k

w
(n)
mfkh

(n)
mkt + g

(n)
mt s

(n)
f t . (17)

where W(n)
m ∈ RF ×K

+ , H(n)
m ∈ RK×T

+ , g
(n)
m ∈ R1×T

+ , and
S(n) ∈ RF ×T

+ are the latent variables for the basis and ac-
tivation matrices, gain, and sparse matrix notated in the
same manner as in Bayesian RNTF, respectively. Let Θ(n)

be a set of all the latent variables at the n-th mini-
batch {W(n)

1:M ,H
(n)
1:M , g

(n)
1:M ,S

(n) ,βs(n)}. We formulate an ob-

servation model p(Y(n)
1:M |Θ(n)) and a state update model

p(Θ(n) |Θ(n−1)) for a state-space model (Fig. 6) that represents
the relationship between the observation and latent variables
and the dynamics of the latent variables.

2) Observation Model: The observation model of Bayesian
SRNTF p(Y(n)

1:M |Θ(n)) is formulated with a Poisson distribution
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Fig. 6. Graphical model for Bayesian SRNTF.

in the same manner as in Bayesian RNTF:

p
(
Y(n)

1:m

∣∣∣Θ(n)
)

=
∏

m,f,t

P
(
y

(n)
mf t

∣∣∣∣∣
∑

k

w
(n)
mfkh

(n)
mkt + g

(n)
mt s

(n)
f t

)
. (18)

3) State Update Model: Since the latent variables for the
sparse component (g(n)

1:M ,S(n) , and βs(n)) and the activation ma-

trix for the low-rank component (H(n)
1:M ) are time-independent,

only the basis matrix W(n)
m depends on the previous state

W(n−1)
m in our state update model:

p
(
Θ(n)

∣∣∣Θ(n−1)
)

= p
(
W(n)

1:M

∣∣∣W(n−1)
1:M

)
p
(
H(n)

1:M

)

× p
(
g

(n)
1:M

)
p
(
S(n)

)
p
(
βs(n)

)
. (19)

The priors for H(n)
m , g(n)

m , S(n) , and βs(n) are formulated in the
same way as in the batch Bayesian RNTF (Section III-B-2).

In this study, the state update model for W(n)
1:M is indepen-

dently formulated on each of its elements w(n)
mfk :

p
(
W(n)

m

∣∣∣W(n−1)
m

)
=
∏

m,f,k

p
(
w

(n)
mfk

∣∣∣w(n−1)
mfk

)
. (20)

The state update model p(w(n)
mfk |w(n−1)

mfk ) represents how w
(n)
mfk

varies from the previous statew(n−1)
mfk . It has the following prop-

erties. The mean of w(n)
mfk should not be changed from that of

w
(n−1)
mfk because we assume no bias on the update. The vari-

ance of w(n)
mfk , on the other hand, should be increased from that

of w(n−1)
mfk because its uncertainty increases over time. As pro-

posed in [38], such an update model can be formulated with a
multiplicative process noise v(n)

mfk ∈ R+ as follows:

w
(n)
mfk = v

(n)
mfkw

(n−1)
mfk . (21)

A beta prior distribution is put on v(n)
mfk as follows:

p
(
v

(n)
mfk |α(n−1)

mfk , γ
)

=B
(
v

(n)
mfkγ

∣∣∣γα(n−1)
mfk , (1 − γ)α(n−1)

mfk

)
,

(22)

where B(α, β) represents a beta distribution with two shape
parameters α and β, and γ ∈ R+ is a rate parameter controlling
the variance of w(n)

mfk . From (21) and (22), the update model

p(w(n)
mfk |w(n−1)

mfk ) can be derived as follows:

p
(
w

(n)
mfk

∣∣∣w(n−1)
mfk

)
=B

(
γ
w

(n)
mfk

w
(n−1)
mfk

∣∣∣∣∣ γα̂
(n−1)
mfk , (1 − γ)β̂(n−1)

mfk

)
.

(23)

As shown later (Section IV), the posterior p(w(n−1)
mfk |Y(1:n−1))

is a gamma distribution G(w(n−1)
mfk |α̂(n−1)

mfk , β̂
(n−1)
mfk ) with a shape

parameter α̂(n−1)
mfk ∈ R+ and a rate parameter β̂(n−1)

mfk ∈ R+ . As

proven in [38], the predictive distribution p(w(n)
mfk |Y(1:n−1)) is

calculated from p(w(n−1)
mfk |Y(1:n−1)) as follows:

p(w(n)
mfk |Y(1:n−1)) =

∫
p
(
w

(n)
mfk |w(n−1)

mfk

)

× p
(
w

(n−1)
mfk |Y(1:n−1)

)
dw

(n−1)
mfk

= G
(
γα̂

(n−1)
mfk , γβ̂

(n−1)
mfk

)
. (24)

Note that the mean of this distribution is the same as that of the
one in the previous state and its variance is γ−1 times larger than
that of the one in the previous state.

IV. SPEECH ENHANCEMENT BASED ON BAYESIAN ROBUST

NON-NEGATIVE TENSOR FACTORIZATION

This section derives Bayesian inferences of the proposed
Bayesian RNMF, RNTF, and SRNTF, and describes the pro-
cessing flow of speech enhancement based on Bayesian RNTF.
The inferences of these models are derived with the VB frame-
work. In summary, the enhancement methods we propose are
VB-RNMF, VB-RNTF, and VB-SRNTF collectively.

A. Variational Inference

Our goal is to calculate the full posterior distributions of
the proposed models. Since the true posterior is analytically
intractable, we approximate it by using a VB algorithm [29],
[36]. This section describes the main update rules. The detailed
derivations of them are summarized in Appendix.

1) VB-RNMF: The target full posterior distribution of
Bayesian RNMF is p(W,H,S,β|Y). Let Θ be a set of all
the parameters and q(x) be a variational posterior distribution
of x. Then, the true posterior distribution is approximated as
follows:

p(Θ|Y) ≈ q(W)q(H)q(S)q(βs). (25)

The VB algorithm estimates the parameters of each variational
distribution by minimizing the KL divergence between the true
and approximated distributions.
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Each variational posterior distribution is alternately and iter-
atively updated by fixing the other distributions as follows:

q(wfk ) = G
(
αw +

∑

t

yf tφf tk , β
w +

∑

t

〈hkt〉
)
, (26)

q(hkt) = G
⎛

⎝αh +
∑

f

yf tφf tk , β
h +

∑

f

〈wfk 〉
⎞

⎠ , (27)

q(sf t) = G (αs + yf tψf t ,
〈
βsf t
〉

+ 1
)
, (28)

q(βsf t) = G(αs, 〈sf t〉), (29)

φf tk =
G[wfk ]G[hkt ]∑

k G[wfk ]G[wkt ] + G[sf t ]
, (30)

ψf t =
G[sf t ]∑

k G[wfk ]G[hkt ] + G[sf t ]
, (31)

where φmf tk and ψmf t are auxiliary variables and G[x] =
exp(〈log x〉) represents the geometric expectation.

2) VB-RNTF: The target full posterior distribution of
Bayesian RNTF, p(W1:m ,H1:m , g1:m ,S,β|Y1:m ), is approx-
imated in the same manner as that of Bayesian RNMF. The true
posterior distribution is approximated as:

p(Θ|Y1:M ) ≈
{
∏

m

q(Wm )q(Hm )q(gm )

}
q(S)q(βs).

(32)

The variational posterior distributions are calculated in the same
way as in Bayesian RNMF, and each of them is alternately and
iteratively updated as follows:

q(wmfk ) = G
(
αw +

∑

t

ymf tφmf tk , β
w +

∑

t

〈hmkt〉
)
,

(33)

q(hmkt) = G
⎛

⎝αh +
∑

f

ymf tφmf tk , β
h +

∑

f

〈wmfk 〉
⎞

⎠ ,

(34)

q(gmt) = G
⎛

⎝αg +
∑

f

ymf tψmf t , α
g +

∑

f

〈sf t〉
⎞

⎠ ,

(35)

q(sf t) = G
(
αs +

∑

m

ymf tψmf t ,
〈
βsf t
〉

+
∑

m

〈gmt〉
)
,

(36)

q(βsf t) = G(αs, 〈sf t〉), (37)

φmf tk =
G[wmfk ]G[hmkt ]∑

k G[wmfk ]G[hmkt ] + G[gmt ]G[sf t ]
, (38)

ψmf t =
G[gmt ]G[sf t ]∑

k G[hmf k ]G[hmkt ] + G[gmt ]G[sf t ]
. (39)

where φmf tk and ψmf t are auxiliary variables.

Fig. 7. Processing flow of the proposed speech enhancement.

3) VB-SRNTF: VB-SRNTF estimates the current posterior
distribution recurrently in prediction and correction steps. The
prediction step calculates p(Θ(n) |Y(1:n−1)) from the previous
posterior distribution p(Θ(n−1) |Y(1:n−1)). The correction step,
on the other hand, estimates the current posterior distribution
p(Θ(n) |Y(1:n)) from the observation Y(n) and the predictive
distribution p(Θ(n) |Y(1:n−1)). In the prediction step, the fol-
lowing predictive distribution is calculated:

p
(
Θ(n)

∣∣∣Y(1:n−1)
)

=
∏

m,f,k

G
(
w

(n)
mfk

∣∣∣γα̂(n−1)
mfk , γβ̂

(n−1)
mfk

)

× p
(
H(n)

)
p
(
g(n)
m

)
p
(
S(n)

)
p
(
βs(n)

)
, (40)

where α̂(n−1)
mfk and β̂(n−1)

mfk are the shape and rate parameters of

the gamma distribution p(w(n−1)
mfk |Y(1:n−1)), respectively. In the

correction step, the current posterior distribution is estimated in
the same manner as in (33)–(39) by replacing the prior distribu-
tion of Bayesian RNTF with the predictive distribution. For the
initial correction step (n = 1), we use the prior distribution of
Bayesian RNTF (Section III-B-2) as the predictive distribution.

B. Speech Enhancement Based on VB-SRNTF

Fig. 7 shows the overall processing flow for the speech en-
hancement using VB-SRNTF. Our framework first takes the
STFT of each microphone recording and obtains a multichan-
nel magnitude spectrogram. Since each noisy input magnitude
spectrogram includes fine fluctuations, the input spectrogram is
smoothed for stable low-rank and sparse decomposition. Let
Y′(n)
m ∈ RF ×T

+ be the raw magnitude spectrogram obtained
with the STFT, this smoothing pre-processing is conducted as
follows:

y
(n)
mf t =

1
9

f+1∑

f ′=f−1

t+1∑

t ′=t−1

y
′(n)
mf ′t ′ . (41)

After conducting VB-SRNTF, our framework reconstructs the
target speech signal at each microphone with Wiener filtering
because VB-SRNTF cannot estimate the absolute scale of the
target signal. Finally, the time-domain output signal is obtained
by taking the inverse STFT of the selected spectrogram.

V. EXPERIMENTAL EVALUATION WITH SIMULATED DATA

To analyze the performance of the proposed enhancement
methods, and compare them with existing methods, we first
evaluated them using simulated audio signals.
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Fig. 8. Four conditions of robot and loudspeaker in experimental evaluation.

A. Common Experimental Conditions

As shown in Fig. 2, the body of the hose shaped robot used
in this evaluation was made from a corrugated tube of 38 mm
in diameter and 3 m long. The entire surface of the robot was
covered by cilia and seven vibrators used for moving forward
by vibrating the cilia. This robot had an 8-ch synchronized
microphone array whose microphones were distributed on its
body at 40-cm intervals. The audio signals of these microphones
were captured at 16 kHz and with 24-bit sampling.

The input signals were generated by mixing target speech
and ego-noise signals at signal-to-noise ratios (SNRs) varying
from −20 dB to +5 dB. As shown in Fig. 8, there were four
conditions differing in the relative positions of the robot and the
loudspeaker (target speech).

1) Open-Front: The robot was in an experimental room with
no obstacles. The loudspeaker was in front of the robot.
The reverberation time (RT60) of the room was 750 ms.

2) Open-Right: Same as Open-Front except that the loud-
speaker was to the right of the robot.

3) Door-4ch: The robot was caught by a door, the loud-
speaker was in front of the robot, and four of the micro-
phones were behind the door. The reverberation time was
990 ms.

4) Door-2ch: Same as Door-4ch except that six microphones
were behind the door.

The ego-noise was recorded for 60 seconds under each con-
dition while sliding the robot left and right by using vibrators
and a hand. The loudspeaker was used for recording the im-
pulse response. Multichannel speech signals were generated by
convoluting clean speech signals and the impulse response, and
then they were mixed with 20 seconds of the ego-noise record-
ings. The clean speech data consisted of 24 recordings of three
male and three female speech, which were included in the JNAS
phonetically balanced Japanese utterances database [39]. In this
setting, we assume that the location of the target speech does not
change as the target speech signal was generated with a single
impulse response at each condition.

The enhancement performance was evaluated by using the
source-to-distortion ratio (SDR) [40], [41]. The SDR measures
the power ratio of the target speech and distortion component
included in the output signals. Since VB-RNTF and VB-SRNTF
outputs are obtained by applying Wiener filtering to one of the
microphones, we simply evaluated the enhanced signals at the
tip (8th) microphone.

TABLE I
CONFIGURATIONS AND RESULTS OF BAYESIAN OPTIMIZATION

Parameters αw αh αg αs γ K

Search range min 0.01 0.01 0.01 0.01 0.01 1
max 1.0 1.0 10.0 2.0 1.0 10

VB-RNMF 0.71 0.19 – 0.53 – 7
VB-RNTF 0.30 0.35 6.3 2.0 – 6

VB-SRNTF (T=200) 0.88 0.38 7.8 1.6 0.76 5

The parameters for VB-RNMF, VB-RNTF, and VB-SRNTF
were as follows. The shifting interval and window lengths of
the STFT were set to 160 and 1024 samples, respectively. The
hyperparameters αw , αh , αg , αs , γ and the number of basesK,
which control the low-rankness and sparseness, were decided
by using a Bayesian optimization method [42]. This method
regards a target method as a black-box function that takes
hyperparameters as input and outputs the value of average SDR.
Assuming the function to follow a Gaussian process, the method
searches for optimal hyperparameters that maximize the output
of the function. We used noisy signals with SNRs of −10 dB
and −5 dB and with the layout conditions of Open-Front and
Door-4ch. Note that these signals were included in the data set
of noisy signals used for the evaluation. We used 12 signals
in the 24 noisy test signals at each SNR and layout condition.
The search range and optimization results were summarized in
Table I. The rate hyperparameters βw and βh were set to αw

and αhK, respectively. In this paper we iterated VB-RNMF and
VB-RNTF 200 times and iterated VB-SRNTF 100 times. The
latent variables were initialized randomly.

B. Evaluation of Batch VB-RNTF and VB-RNMF

VB-RNTF and VB-RNMF were compared with existing
phase-based blind source separation methods [7], [13] and low-
rank and sparse decomposition methods [8], [20], [29], [43]. The
phase-based blind source separation methods we compared were
MNMF [13] and independent vector analysis (IVA) [7]. The
number of sources was set to eight for MNMF and IVA because
seven vibrators generated noise and one target speech existed.
This value corresponds to the maximum value tractable in these
methods because they cannot perform under-determined source
separation. Since these methods cannot distinguish the target
speech source and other noise sources, the performance was
determined by taking a maximum SDR value from all eight sep-
aration results. The low-rank and sparse decomposition methods
we compared were conventional RPCA [20], [23], RNMF [8]
and VB-RPCA [29]. The results of them were obtained by us-
ing the tip (8th) microphone signals. We also evaluated extended
RPCA results that were obtained by taking median values of all
the microphone results (Med-RPCA) [43], [44]. As a baseline,
we evaluated an adaptive spectral subtraction (SS) method [45]
that is applied to the tip microphone signals.

As shown in Fig. 9, in the Open-Front and Open-Right con-
ditions, the proposed VB-RNTF performed the best of all the
evaluated methods. Fig. 9(a) shows the performances for all the
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Fig. 9. Speech enhancement performances of VB-RNTF, VB-RNMF, and existing methods. Each lines indicates average SDR at the specified condition. Error
bars for VB-RNMF and the input signal span the maximum and minimum SDRs in all the microphones. (a) Average SDRs for all the noisy test signals. (b) Average
SDRs for the different set of noisy signals that were not used for the parameter optimization.

Fig. 10. Speech enhancement performances of VB-RNMF and existing low-rank and sparse decomposition methods. The SDR of the input signal (gray line) is
that of the recordings of the tip microphone.

noisy signals. Fig. 9(b) shows those for a different set of noisy
signals whose ego-noise and speech signals were not used for
the parameter optimization. Compared with Fig. 9(a), Fig. 9(b)
shows that our VB-RNTF and VB-RNMF can generalize to
new data that were not used for the parameter optimization. The
low-rank and sparse decomposition methods (VB-RNTF, VB-
RNMF, RPCA, and Med-RPCA) significantly outperformed
conventional phase-based methods (MNMF and IVA). In the
Door-4ch and Door-2ch conditions where some of the micro-
phones were shaded, Med-RPCA significantly degraded from
the Open-Front and Open-Right conditions. VB-RNTF, on the
other hand, outperformed other multichannel methods. Al-
though VB-RNTF was also degraded in both of the Door condi-
tions, its performance was comparable to those of single-channel
VB-RNMF and RPCA in these condition except when the SNR
was less than −10 dB.

The performances of single-channel VB-RNMF and the exist-
ing low-rank and sparse decomposition methods are compared
in Fig. 10; where we see that VB-RNMF was comparable to the
existing methods. This shows that VB-RNMF provides exten-
sibility of RNMF in a Bayesian manner without performance
degradation.

Fig. 11 illustrates excerpts of enhancement results by VB-
RNTF and VB-RNMF in the Door-4ch condition. While the

Fig. 11. Excerpts of enhancement results obtained by VB-RNTF and VB-
RNMF when the robot layout was the Door-4ch condition and the SNR was
−5 dB. VB-RNMF results on both the tip (8th) microphone and shaded (1st)
microphone signals are shown.

VB-RNMF result applied to the tip (8th) microphone success-
fully enhanced the target speech, the result on the shaded (1st)
microphone failed due to the low-SNR input. On the other
hand, VB-RNTF using all the microphones robustly enhanced
speech in this condition. Fig. 12 shows time-varying gains
of the sparse spectrogram at each microphone gmt estimated



224 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 26, NO. 2, FEBRUARY 2018

Fig. 12. Examples of time-varying gain of sparse spectrogram gm t obtained
by VB-RNTF at each microphone when SNR was −5 dB. Female speech was
emitted between 8 s and 12 s. Microphones shaded in Door-4ch and Door-2ch
conditions are highlighted in red.

Fig. 13. Excerpts of estimated sparse and low-rank components (m = 8)
obtained by VB-RNTF when the robot layout was the Door-4ch condition and
the SNR was 0 dB.

by VB-RNTF. In the Door-4ch and Door-2ch conditions, the
gains of the microphones that were separated from the sound
source (highlighted in red) got significantly smaller. This shows
that the estimated gain can be used as a reliability of each
microphone.

VB-RNTF outperformed the existing methods under high re-
verberation (RT60 ≥ 750 ms). Fig. 13 shows that our method
estimated the reverberant speech as the sparse component and
separated a part of late reverberations into the low-rank compo-
nent. This result shows that VB-RNTF deals with the reverber-
ations by estimating the most prominent reverberant speech as
a speech signal and separating other residuals into the low-rank
components.

C. Evaluation of Mini-Batch VB-SRNTF

The performance of VB-SRNTF was evaluated with vari-
ous mini-batch sizes. We tested the mini-batch sizes T of 300,
200, 100, 50, and 10 frames. VB-SRNTF was compared with
batch VB-RNTF and the following two existing mini-batch in-
ferences: Ind-VB-RNTF and SVI-RNTF. Ind-VB-RNTF simply
and independently conducts VB-RNTF at each mini-batch ob-
servation. SVI-RNTF is based on the conventional mini-batch
VB inference [46] of VB-RNTF. It corresponds to VB-SRNTF
whose γ is set to 1.0. We also compared VB-SRNTF with a
variant of VB-SRNTF (VB-SRNTF-Raw) that takes a raw mag-
nitude spectrogram without smoothing as input.

As shown in Fig. 14, the enhancement performance became
higher as the mini-batch size was increased except when the
SNR was −15 dB or less. Fig. 14(b) shows that VB-SRNTF is
also robust against the new data that were not used for the pa-
rameter optimization. When the mini-batch size was 200 frames

or more, the SDR performances tended to be saturated. On the
other hand, when the mini-batch size was 10 frames, the SDR
performances were significantly degraded. Since a large mini-
batch size leads to a large latency, there is a trade-off between
performance and latency. These results show that a 2.0 -second
mini-batch (T = 200) was needed for adequate performance.

Fig. 15 compares the proposed VB-SRNTF results and other
mini-batch inference results. Compared with Ind-VB-RNTF,
which did not consider the relationship between adjacent mini-
batches, VB-SRNTF improved SDRs in the Door-4ch and
Door-2ch conditions. Compared with SVI-RNTF, which did
not consider the process noise of the basis vectors, the proposed
VB-SRNTF improved SDRs when the SNR was less than−5 dB
in the Open-Front and Open-Right conditions. Compared with
VB-SRNTF-Raw, which did not smooth the input spectrogram,
the proposed VB-SRNTF improved SDRs in all the conditions.

Fig. 16 shows the performances of VB-SRNTF with different
values ofK. The SDR degradation in the Open-Front and Open-
Right conditions was less than 1.0 dB when K was 5 or more
and 8 or less. On the other hand, K has to be set to 5 or 6 in
the Door-2ch condition and only 5 in Door-4ch condition. The
performance of our method was sensitive to the number of bases
K when some of the microphones were shaded. We confirmed
that the SDR degradation was less than 1 dB even when the
hyperparameters αw , αh , and αg were changed by 20% from
the values of Table I. The αs and γ had robustness against 10%
and 5% changes, respectively.

D. Investigation of Gain Parameter Modeling

The gain parameter g(n)
mt of VB-SRNTF (14) ignores a fre-

quency dependency and a temporal continuity. Since our for-
mulation has only one gain parameter shared by frequency bins,
the frequency characteristics are not considered. Our model also
does not take into account the temporal continuity of the gains
as shown in Fig. 12.

We investigated the gain parameter modeling by evaluating
variants of VB-SRNTF with frequency-dependent gains and
temporal-continuous gains. The following two variants with the
frequency-dependent gains were evaluated:

1) VB-SRNTF-g(n)
mf t : The gain g(n)

mf t is both frequency and
time dependent.

2) VB-SRNTF-g(n)
mf : The gain g(n)

mf is frequency dependent
but time independent.

On the other hand, the following two variants with the
temporal-continuous gains were evaluated:

3) VB-SRNTF-EV: The prior distribution of the current state
is given with the expected value of the previous posterior
distribution 〈g(n−1)

m 〉 as follows:

p
(
g

(n)
mt

∣∣∣αg ,
〈
g(n−1)
m

〉)
=G

⎛

⎝g(n)
mt

∣∣∣∣∣∣
αg ,

αgT
∑

t

〈
g

(n−1)
mt

〉

⎞

⎠,

(42)
where αg ∈ R+ is a hyperparameter that controls the
strength of the dependencies.
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Fig. 14. SDR performances of VB-SRNTFs with different mini-batch sizes. (a) Average SDRs for all the noisy test signals (b) Average SDRs for the different
set of noisy signals that were not used for the parameter optimization.

Fig. 15. Comparison of VB-SRNTF (T = 200) and existing mini-batch inferences of Bayesian RNTF.

Fig. 16. VB-SRNTF performances with different values of K in SDR difference from that with the values in Table I.

4) VB-SRNTF-GMC: Markov dependencies between adja-
cent time frames are introduced with a gamma Markov
chain prior [47] as follows:

p
(
g

(n)
mt

∣∣∣ η, z(n)
mt

)
= G

(
g

(n)
mt

∣∣∣η, ηz(n)
mt

)
, (43)

p
(
z

(n)
mt

∣∣∣ η, g(n)
m (t−1)

)
= G

(
z

(n)
mt

∣∣∣η, ηg(n)
m (t−1)

)
, (44)

p
(
z

(n)
m1

∣∣∣ η, g(n−1)
mT

)
= G

(
z

(n)
m1

∣∣∣η, ηg(n−1)
mT

)
, (45)

where z
(n)
mt is an auxiliary latent variable that makes

Markov dependencies between g
(n)
mt and g

(n)
m (t−1) in a

conjugate manner and η ∈ R+ is a hyperparameter that
controls the strength of the dependencies.

The hyperparameters of these models were determined by us-
ing the Bayesian optimization method in the same way as in
Section V-A.

Fig. 17 compares the SDR performances of the original VB-
SRNTF and the variants of VB-SRNTF with the frequency-
dependent gains and the temporal-continuous gains. The per-
formance of the original VB-SRNTF was comparable to that
of VB-SRNTF-g(n)

mt although small differences were found de-
pending on experimental conditions. On the other hand, the
SDR performance was degraded in the Door-2ch condition
by VB-SRNTF-g(n)

mf t whose gain has both frequency and time
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Fig. 17. Comparison of VB-SRNTF (T = 200) proposed in Section III-C and the variants of VB-SRNTF with the frequency-dependent gains and the
temporal-continuous gains.

Fig. 18. Average magnitude spectrum of a speech spectrogram at each micro-
phone. A female speech spectrum with the condition of Open-Front is shown.
Note that scale differences over microphones are normalized.

dependencies. These results show that the performance did not
deteriorate even if the frequency differences were ignored. We
also see that the performance of VB-SRNTF was comparable
to those of VB-SRNTF-EV and -GMC. Although the temporal
continuity is one of the essential clues for blind source separa-
tion, the original VB-SRNTF is adequate in our task.

Although our gain model (14) ignores the differences of the
magnitude spectral pattern across channels, the original VB-
SRNTF was not degraded compared to VB-SRNTF-g(n)

mf t and

-g(n)
mf . As shown in Fig. 18, this is because the differences were

small enough to ignore them. The possible reason for the degra-
dation of VB-SRNTF-g(n)

mf t is VB-SRNTF-g(n)
mf t has so many

free parameters that it is difficult to estimate them properly.
The performance of VB-SRNTF-g(n)

mf , on the other hand, was
comparable to VB-SRNTF because the speech source locations
were stable over time in this evaluation. VB-SRNTF has an ad-
vantage over VB-SRNTF-g(n)

mf in the sense that it can deal with
moving sound sources.

VI. EXPERIMENTS WITH RECORDED DATA

This section reports experimental results obtained using data
recorded in an environment with simulated rubble.

A. Experimental Conditions

We evaluated VB-RNTF and VB-SRNTF in the condition
that the robot moved under simulated rubble. To simulate rubble
disturbing sound propagation, styrene foam boxes and wooden
plates were piled up (Fig. 19(a)). A loudspeaker for playing
back target speech signals was put 2 m away from this rubble
(Fig. 19(b)). The target signals were four male and female speech

Fig. 19. Condition of rubble and target speech in experiments reported in
Section VI. (a) Pile of rubble. (b) Condition of rubble and target speech.

recordings screaming for rescue in Japanese (e.g., “Tasukete
kudasai (Help me)” and “Kokoniimasu (I’m here)”) and the
loudspeaker was calibrated so that its sound pressure level for
each utterance was 80 dB. The robot was inserted from behind
the rubble and captured eight-channel audio signals (mixtures
of ego-noise and each target speech) for 10 seconds during the
insertion. In this experiment, the relative layout of the micro-
phones and target speech source changed over time due to the
insertion and vibration. The parameters of the proposed VB-
RNMF, VB-RNTF, and VB-SRNTF were the same values as in
Section V.

Since it was impossible to obtain clean speech signals cap-
tured by the robot microphones, we used the following SNR as
an evaluation criterion in this experiment:

SNR(Ŝ,S, a) = 10 log10

∑
f ,t a

2s2
f t∑

f ,t(ŝf t − asf t)2 , (46)

where S ∈ RF ×T
+ and Ŝ ∈ RF ×T

+ represent the magnitude spec-
trograms of reference and estimated target speech signals, re-
spectively, and a represents a gain parameter compensating for
the level difference between S and Ŝ. This gain parameter
was determined with minimum mean-square error estimation
(MMSE) between aS and Ŝ.

B. Experimental Results

Fig. 20 shows that VB-RNTF and VB-SRNTF outperformed
all of the other methods. VB-SRNTF improved the SNR by
1.0 dB more than VB-RNMF, which had the second-best perfor-
mance. Fig. 21 shows the magnitude spectrogram of an observed
signal (at the tip microphone) and the enhanced speech signals
obtained by VB-RNTF and VB-SRNTF. These results showed
that VB-RNTF and VB-SRNTF suppressed the time-varying
ego-noise.
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Fig. 20. Speech enhancement performances in terms of SNR improvement
from the input signal (at the tip microphone). Error bars indicate the standard
deviation of the results. The average SNR of the input signals was −19.7 dB.

Fig. 21. Examples of enhancement results obtained in experiments reported
in Section VI.

To realize a real-time mobile enhancement system, our en-
hancement system was implemented on an embedded GPGPU
board (NVIDIA Jetson TX1) and a standard laptop computer
(Dell XPS13). The proposed VB-SRNTF was implemented on
the TX1 with GPGPU programming using C++ and CUDA 8.0.
The elapsed time for VB-SRNTF with a 20.0 s input signal was
12.3 s when the batch size T was 200 frames. Since this value
was small enough compared with the whole signal length, our
method could work in real time.

VII. CONCLUSION

This paper presented a multichannel blind speech enhance-
ment method based on low-rank and sparse decomposition. Our
method is formulated as a Bayesian model called Bayesian
RNTF. It separates a multichannel magnitude spectrogram into
sparse and low-rank spectrograms (target speech and noise)
without any prior training. Since Bayesian RNTF works with-
out phase information, it can deal with the time-varying layout
of microphones and sound sources. For real-time speech en-
hancement, Bayesian RNTF is extended to a state-space model
called Bayesian SRNTF that represents the dynamics of the
latent variables in a mini-batch manner. The Bayesian infer-
ences of these models were derived with a VB framework, so
the decomposition methods are abbreviated as VB-RNTF and
VB-SRNTF.

VB-RNTF and VB-SRNTF are applied to speech enhance-
ment for a microphone array distributed on a hose-shaped res-
cue robot. This speech enhancement needs to address three
main problems: the environment-dependence of ego-noise, de-
formable layout of microphones, and partial occlusion of mi-
crophones. Since our method is based on the low-rank and

sparse decomposition and time-varying mixing system, it is
robust against the first two problems. In addition, it can deal
with the shaded microphones because it estimates the speech
level at each microphone. Experiments using a 3-m hose-shaped
rescue robot with eight microphones showed that VB-SRNTF
improves the SNR of a speech signal 1.03 dB more than conven-
tional blind methods do. Using an embedded GPGPU board, we
also confirmed that the proposed mini-batch VB-SRNTF was
fast enough to work in real time.

Our methods based on the low-rank noise and sparse speech
assumptions have the following limitations. Experimental re-
sults showed that the possible maximum rank of the low-rank
component K should be given appropriately in advance. Our
sparseness assumption, on the other hand, may cause our method
to enhance not only speech signals but also other sparse noise
signals. For example, if an input signal includes impact noise
sounds caused by rubble-removal operations, our method ex-
tracts the noise as a speech signal. To relax the low-rank lim-
itation, future work includes the estimation of K based on the
non-parametric Bayesian framework [36]. We also plan to in-
troduce speech-specific structures as prior information of the
sparse component. Spectrograms of speech signals have de-
pendencies between frequency bins (e.g. harmonic structures)
and time frames (e.g. temporal continuity). A Bayesian RPCA
model whose sparse component has time and frequency depen-
dence [35] would be useful for this extension. In addition, for
search-and-rescue activities, we will extend our method to local-
ize a victim by using the estimated speech gains at microphones.
VB-SRNTF also calculates a simple distribution of estimated
speech gain at each microphone. It would be able to roughly
estimate the location of a victim by using the gain differences
across microphones.

APPENDIX

DERIVATIONS OF VB INFERENCE ALGORITHMS

This appendix shows the derivations of VB inference algo-
rithms for Bayesian RNMF, RNTF, and SRNTF. VB framework
approximately estimates the analytically intractable posterior
distribution of the target latent variables [29], [36].

We first show a brief description of the VB inference frame-
work. Let Y be an observation variable, Zi (i = 1, . . . , I) be
parameters whose posterior distributions are estimated, and
Θ = {Z1 , . . . ,ZI } be a set of all the parameters. Then, the true
posterior distribution p(Θ|Y) is approximated by the product
of variational posterior distributions q(Zi) as follows:

p(Θ|Y) ≈
∏

i

q(Zi). (47)

VB algorithm estimates the variational distributions q(Zi) by
maximizing the following lower bound L(q) of log p(Θ):

log p(Y) = log
∫
p(Y,Θ)dΘ (48)

≥
∫
q(Θ) log

p(Y,Θ)
q(Θ)

dΘ (49)

= 〈log p(Y,Θ)〉 − 〈log q(Θ)〉 def= L(q), (50)
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where 〈x〉 is the expectation operation. This maximization cor-
responds to the minimization of the KL divergence between
the true and approximated distributions. L(q) is maximized by
alternately and iteratively updating each of q(Zi) as follows:

q(Zi) = exp 〈log p(Y,Θ)〉Θ\Z i
, (51)

where Θ \ Zi represents a subset of Θ obtained by removing
Zi from Θ.

A. VB-RNMF

The target full posterior distribution of Bayesian RNMF is
p(W,H,S,β[Y]). Let Θ be a set of all the parameters, the true
posterior distribution is approximated as follows:

p(Θ[Y]) ≈ q(W)q(H)q(S)q(βs). (52)

We take a lower bound of log p(Y) and estimate the variational
posterior distributions by maximizing it.

Since the expectation of log p(Y|W,H,S) includes the fol-
lowing intractable expectations:

〈log p(Y|W,H,S)〉 =
∑

f ,t

yf t

〈
log

(
∑

k

wf khkt + sf t

)〉

−
∑

f ,t,k

〈wfkhkt〉 −
∑

f ,t

〈sf t〉 + const., (53)

this Poisson log-likelihood is lower-bounded by using Jensen’s
inequality [36]:

〈log p(Y|W,H,S)〉 ≥
∑

f ,t,k

yf tφf tk

〈
log
(
wfkhkt
φf tk

)〉
+
∑

f ,t

yf tψf t

〈
log
(
sf t
ψf t

)〉

−
∑

f ,t,k

〈wfkhkt〉 −
∑

f ,t

〈sf t〉 + const. (54)

def= 〈p′(Y|W,H,S)〉 (55)

where φf tk ∈ R+ and ψf t ∈ R+ (
∑

k φf tk + ψf t = 1) are the
auxiliary variables. Using 〈p′(Y|W,H,S)〉, log p(Y) is lower-
bounded as follows:

log p(Y) ≥ 〈log p′(Y|W,H,S)〉 + 〈log p(W)〉 + 〈log p(H)〉
+ 〈log p(S|βs)〉 + 〈log p(βs)〉
− 〈log q(W)〉 − 〈log q(H)〉

− 〈log q(S)〉 − 〈log q(βs)〉 def= L(q). (56)

The optimal φf tk and ψf t (30) and (31) are obtained by maxi-
mizing L(q) with the Lagrange multiplier method.

The update rules in (26)–(29) are obtained such that L(q) is
maximized. The update rule for q(W) is derived as follows:

log q(W)=〈log p′(Y|W,H,S)〉 + 〈log p(W)〉 + 〈log p(H)〉
+ 〈log p(S|βs)〉 + 〈log p(βs)〉 (57)

= 〈log p′(Y|W,H,S)〉 + 〈log p(W)〉 + const. (58)

=
∑

f ,t,k

{yf tφf tk logwfk + wfk 〈hkt〉}

+
∑

f ,k

{(αw − 1) logwfk − βwwfk} + const. (59)

=
∑

f ,k

(
αw +

∑

t

yf tφf tk − 1

)
logwfk

−
∑

f ,k

(
βw +

∑

t

〈hkt〉
)
wfk + const. (60)

=
∑

f ,k

log G
(
wfk

∣∣∣∣∣α
w +

∑

t

yf tφf tk , β
w +

∑

t

〈hkt〉
)
,

(61)

where 〈·〉 represents 〈·〉Θ\W . The update rules for q(H), q(S),
and q(βs) can be derived in the same way.

B. VB-RNTF

The variational posterior distributions are calculated in the
same way as in VB-RNMF. The update rules for the variational
posterior distributions and the auxiliary variables are summa-
rized in (33)–(39).

C. VB-SRNTF

VB-SRNTF estimates the current posterior distribution re-
currently in prediction and correction steps. The prediction step
calculates p(Θ(n) |Y(1:n−1)) from the previous posterior distri-
bution p(Θ(n−1) |Y(1:n−1)):

p
(
Θ(n)

∣∣∣Y(1:n−1)
)

=
∫
p
(
Θ(n)

∣∣∣Θ(n−1)
)
p
(
Θ(n−1)

∣∣∣Y(1:n−1)
)
dΘ(n−1) .

(62)

According to (19) and (20), the predictive distribution is calcu-
lated as (40). The correction step estimates the current posterior
distribution p(Θ(n) |Y(1:n)) from the observation Y(n) and the
predictive distribution p(Θ(n) |Y(1:n−1)) as follows:

p
(
Θ(n)

∣∣∣Y(1:n)
)
∝ p

(
Y(n)

∣∣∣Θ(n)
)
p
(
Θ(n)

∣∣∣Y(1:n−1)
)
.

(63)

In the same way as in VB-RNMF and VB-RNTF, this posterior
distribution can be estimated with the VB algorithm.
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