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Note Value Recognition for Piano Transcription
Using Markov Random Fields

Eita Nakamura, Member, IEEE, Kazuyoshi Yoshii, Member, IEEE, and Simon Dixon

Abstract—This paper presents a statistical method for use in
music transcription that can estimate score times of note onsets
and offsets from polyphonic MIDI performance signals. Because
performed note durations can deviate largely from score-indicated
values, previous methods had the problem of not being able to
accurately estimate offset score times (or note values) and, thus,
could only output incomplete musical scores. Based on observa-
tions that the pitch context and onset score times are influential
on the configuration of note values, we construct a context-tree
model that provides prior distributions of note values using these
features and combine it with a performance model in the frame-
work of Markov random fields. Evaluation results show that our
method reduces the average error rate by around 40 percent com-
pared to existing/simple methods. We also confirmed that, in our
model, the score model plays a more important role than the per-
formance model, and it automatically captures the voice structure
by unsupervised learning.

Index Terms—Markov random field, model for polyphonic mu-
sical scores, music transcription, statistical music language model,
symbolic music processing.

I. INTRODUCTION

MUSIC transcription is one of the most fundamental and
challenging problems in music information processing

[1], [2]. This problem, which involves conversion of audio sig-
nals into symbolic musical scores, can be divided into two sub-
problems, pitch analysis and rhythm transcription, which are
often studied separately. Pitch analysis aims to convert the audio
signals into the form of a piano roll, which can be represented as
a MIDI signal, and multi-pitch analysis methods for polyphonic
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Fig. 1. An outcome obtained by our method (Mozart: Piano Sonata K576).
While previous rhythm transcription methods could only estimate onset score
times accurately from MIDI performances, our method can also estimate offset
score times, providing a complete representation of polyphonic musical scores.

music have been extensively studied [3]–[6]. Rhythm transcrip-
tion, on the other hand, aims to convert a MIDI signal into a
musical score by locating note onsets and offsets in musical time
(score time) [7]–[16]. In order to track time-varying tempo, beat
tracking is employed to locate beat positions in music audio
signals [17]–[21].

Although most studies on rhythm transcription and beat track-
ing have focused on estimating onset score times, to obtain
complete musical scores it is necessary to locate note offsets,
or equivalently, identify note values defined as the difference
between onset and offset score times. The configuration of
note values is especially important to describe the acoustic and
interpretative nature of polyphonic music where there are mul-
tiple voices and the overlapping of notes produces different
harmonies. Note value recognition has been addressed only in
a few studies [10], [14] and the results of this study reveal that
it is a non-trivial problem.

The difficulty of the problem arises from the fact that observed
note durations in performances deviate largely from the score-
indicated lengths so that the use of a prior (language) model for
musical scores is crucial. Because of its structure with overlap-
ping multiple streams (voices), construction of a language model
for polyphonic music is challenging and gathers increasing at-
tention [6], [14], [16], [22], [23]. In particular, building a model
at the symbolic level of musical notes (as opposed to the frame
level of audio processing) that properly describes the multiple-
voice structure while retaining computational tractability is an
open problem.
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The purpose of this paper is to investigate the problem of
note value recognition using a statistical approach (Fig. 1). We
formulate the problem as a post-processing step of estimating
offset score times given onset score times obtained by rhythm
transcription methods for note onsets. Firstly, we present re-
sults of statistical analyses and point out that the information of
onset score times and the pitch context together with interdepen-
dence between note values provide clues for model construc-
tion. Secondly, we propose a Markov random field model that
integrates a prior model for musical scores and a performance
model that relates note values and actual durations (Section IV).
To determine an optimal set of contexts/features for the score
model from data, we develop a statistical learning method based
on context-tree clustering [24]–[26], which is an adaptation of
statistical decision tree analysis. Finally, results of systematic
evaluations of the proposed method and baseline methods are
presented (Section V).

The contributions of this study are as follows. We formulate a
statistical learning method to construct a highly predictive prior
model for note values and quantitatively demonstrate its impor-
tance for the first time. The discussions cover simple methods
and more sophisticated machine learning techniques and the
evaluation results can serve as a reference for the state-of-the-
art. Our problem is formulated in a general setting following
previous studies on rhythm transcription and the method is ap-
plicable to a wide range of existing methods of onset rhythm
transcription. Results of statistical analyses and learning in
Sections III and IV can also serve as a useful guide for re-
search using other approaches such as rule-based methods and
neural networks. Lastly, source code of our algorithms and eval-
uation tools is available from the accompanying web page [27]
to facilitate future comparisons and applications.

II. RELATED WORK

Before beginning the main discussion, let us review previous
studies related to this paper.

There have been many studies on converting MIDI perfor-
mance signals into a form of musical score. Older studies [7], [8]
used rule-based methods and networks in attempts to model the
process of human perception of musical rhythm. Since around
2000, various statistical models have been proposed to combine
the statistical nature of note sequences in musical scores and that
of temporal fluctuations in music performance. A popular ap-
proach is to use hidden Markov models (HMMs) [9]–[12], [16].
The score is described either as a Markov process on beat posi-
tions (metrical Markov model) [9], [11], [12] or a Markov model
of notes (note Markov model) [10], and the performance model
is often constructed as a state-space model with latent variables
describing locally defined tempos. Recently a merged-output
HMM incorporating the multiple-voice structure has been pro-
posed [16]. Temperley [14] proposed a score model similar to
the metrical Markov model in which the hierarchical metrical
structure is explicitly described. There are also studies that in-
vestigated probabilistic context-free grammar models [15].

A recent study [16] reported results of systematic evalua-
tion of (onset) rhythm transcription methods. Two data sets,
polyrhythmic data and non-polyrhythmic data, were used and it

Fig. 2. Example of (a) a polyphonic piano score (Mozart: Sonata KV570) and
(b) a reduced score represented with one voice. Notes that have different note
values in the two representations are indicated with red note heads.

was shown that HMM-based methods generally performed bet-
ter than others and the merged-output HMM was most effective
for polyrhythmic data. In addition to the accuracy of recognis-
ing onset beat positions, the metrical HMM has the advantage
of being able to estimate metrical structure, i.e. the metre (du-
ple or triple) and bar (or down beat) positions, and to avoid
grammatically incorrect scores that appeared in other HMMs.

As mentioned above, there have been only a few studies that
discussed the recognition of note values in addition to onset
score times. Takeda et al. [10] applied a similar method of
estimating onset score times to estimating note values of mono-
phonic performances and reported that the recognition accuracy
dropped from 97.3% to 59.7% if rests are included. Temperley’s
Melisma Analyzer [14], based on a statistical model, outputs
estimated onset and offset beat positions together with voice
information for polyphonic music. There, offset score times
are chosen from one of the following tactus beats according to
some probabilities, or chosen as the onset position of the next
note of the same voice. The recognition accuracy of note values
has not been reported.

III. PRELIMINARY OBSERVATIONS AND ANALYSES

We explain here basic facts about the structure of polyphonic
piano scores and discuss how it is important and non-trivial
to recognise note values for such music based on observations
and statistical analyses. This provides motivations for the ar-
chitecture of our model. Some terminology and notions used in
this paper are also introduced. We consider the music style of
the common practice period and similar music styles such as
popular and jazz music in this paper.

A. Structure of Polyphonic Musical Scores

To discuss recognition of note values in polyphonic piano
music, we first explain the structure of polyphonic scores. The
left-hand and right-hand parts are usually written in separate
staffs and each staff can contain several voices1, or streams
of notes [Fig. 2(a)]. In piano scores, each voice can contain
chords and the number of voices can vary locally. Hereafter we
use the word chords to indicate those within one voice. Except
for rare cases of partial ties in chords, notes in a chord must
have simultaneous onset and offset score times. This means that
the offset score time of a note must be equal to or earlier than

1Our “voice” corresponds to the voice information defined in music notation
file formats such as MusicXML and Finale file format.
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Fig. 3. Distributions of the ratios of actual duration, (a) key-holding durations
and (b) damper-lifting durations, to the expected duration.

the onset score time of the next note/chord of the same voice.
In the latter case, the note is followed by a rest. Such rests are
rare [14] and thus the configuration of note values and the voice
structure are inter-related.

The importance of voice structure in the description of note
values can also be understood by comparing a polyphonic score
with a reduced score obtained by putting all notes with simulta-
neous onsets into a chord and forming one ‘big voice’ without
any rests as in Fig. 2(b). Since these two scores are the same
in terms of onset score times, the differences are only in offset
score times. One can see that appropriate voice structure is nec-
essary to recover correct note values from the reduced score. It
can also be confirmed that note values are influential to realise
the expected acoustic effect of polyphonic music. As one can
automatically obtain the reduced score given the onset score
times, recovering the polyphonic score as in Fig. 2(a) from the
reduced score as in Fig. 2(b) is the aim of note value recognition.

B. Distribution of Durations in Music Performances

A natural approach to recover note values from MIDI per-
formances is finding those note values that best fit the actual
note durations in the performances. In this paper, duration al-
ways means the time length measured in physical time, and a
score-written note length is called a note value. To relate dura-
tions to note values, one needs the (local) tempo that provides
the conversion ratio. Although estimating tempos from MIDI
performances is a nontrivial problem (see Section IV), let us
suppose here they are given, for simplicity. Given a local tempo
and a note value, one can calculate an expected duration, and
conversely, one can estimate a note value given a local tempo
and actual duration.

Fig. 3 shows distributions of the ratios of actual durations in
performances and the durations expected from note values and
tempos estimated from onset times (used performance data is
described in Section IV-D). Because information of key-press
and key-release times for each note and pedal movements can
be obtained from MIDI signals, one can define the following
two durations. The key-holding duration is the time interval be-
tween key-press and key-release times and the damper-lifting
duration is obtained by extending the offset time as long as
the sustain/sostenuto pedal is held. As can be seen from the
figure, both distributions have large variances and thus pre-
cise prediction of note values is impossible by using only the
observed values. As mentioned previously [12], [14], this makes
note value recognition a difficult problem and it has often
been avoided in previous studies. Additionally, due to the large

Fig. 4. Onset clusters and inter-onset note values (IONVs).

Fig. 5. Distributions of note values. In (a), note values are categorised into
15 types in (1) and another type including all others; in (b), (c), (d), they are
categorised into the first ten IONVs and others. Samples in (c)(d) were selected
by conditions on the pitch context described in the text.

deviations of durations, most tempo estimation methods use
only onset time information.

A similar situation happens in speech recognition where the
presence of acoustic variations and noise makes it difficult to
extract symbolic text information by pure feature extraction.
Similarly to using a prior language model, which was the key to
improve the accuracy of speech recognition [28], a prior model
for musical scores (score model) would be a key to solving our
problem, which we seek in this paper.

C. Hints for Constructing a Score Model

The simplest score model for note value recognition would
be a discrete probability distribution over a set of note values.
For example, one can consider the following 15 types of note
values (e.g. 1/2 = half note, 3/16 = dotted eighth note, etc.):

{ 1
32 , 1

48 , 1
16 , 1

24 , 3
32 , 1

8 , 1
12 , 3

16 , 1
4 , 1

6 , 3
8 , 1

2 , 1
3 , 3

4 , 1
}
. (1)

The distribution taken from a score data set (see Section IV-D)
is shown in Fig. 5(a). Although the distribution has clear tenden-
cies, it is not sufficiently sharp to compensate the large variance
of the duration distributions. We will confirm that this simple
model yields a poor recognition accuracy in Section V-B.

Hints for constructing a score model can be obtained by again
observing the example in Fig. 2. It is observed that most notes
in the reduced score have the same note values as in the original
score, and even when they do not, the offset score times tend to
correspond with one of the onset score times of following notes.
To explain this more precisely in a statistical way, we define an
onset cluster as the set of all notes with simultaneous onsets in
the score and inter-onset note values (IONVs) as the intervals
between onset score times of succeeding onset clusters (Fig. 4).
As in the figure, for later convenience, we define IONVs for each
note, even though they are same for all notes in an onset cluster.
If one counts frequencies that each note value matches one of
the first ten IONVs (or none of them), the result is as shown in
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Fig. 5(b). We see that the distribution has lower entropy than
that in Fig. 5(a) and the probability that note values would be
different from any of the first ten IONVs is small (3.50% in our
data). This suggests that a more efficient search space for note
values can be obtained by using the onset score time information.

Even more predictive distributions of note values can be ob-
tained by using the pitch information. This is because neigh-
bouring notes (either horizontally or vertically) in a voice tend
to have close pitches, as discussed in studies on voice separa-
tion [29]–[31]. For example, if we select notes that have a note
within five semitones in the next onset cluster, the distribution
of note values in the space of IONVs becomes as in Fig. 5(c),
reflecting the fact that inserted rests are rare. On the other hand,
if we impose a condition of having a note with five semitones
in the second next onset cluster but not having any notes within
14 semitones in the next cluster, then the distribution becomes
as in Fig. 5(d), which reflects the fact that this condition implies
that the note has an adjacent note in the same voice in the sec-
ond next onset cluster. These results suggest on one side that
pitch information together with onset score time information
can provide distributions of note values with more predictive
ability and on the other side that those distributions are highly
dependent on the pitch context.

Although so far we have considered note values as indepen-
dent distributions, their interdependence can also provide clues
in estimating note values. One such interdependence can be in-
ferred from the logical constraint of voice structure described
in Section III-A. As chordal notes have the same note values
and they also tend to have close pitches, notes with simultane-
ous onset score times and close pitches tend to have identical
note values. This is another case where pitch information has
influence on the distribution of note values.

D. Summary of the Section

Here we summarise the findings in this section:
� The voice structure and the configuration of note values are

inter-related and the logical constraints for musical scores
induce interdependence between note values.

� Performed durations contain large deviations from those
implied by the score and a score model is crucial to accu-
rately estimate note values from performance signals.

� Information about onset score times provides an efficient
search space for note values through the use of IONVs. In
particular, the probability that a note value falls into one
of the first ten IONVs is quite high.

� The distribution of note values is highly dependent on the
pitch context, which would be useful for improving their
predictability.

In the rest of this paper, we construct a computational model
to incorporate these findings and examine by numerical exper-
iments how they quantitatively influence the accuracy of note
value recognition.

IV. PROPOSED METHOD

A. Problem Statement

For rhythm transcription, the input is a MIDI performance
signal, represented as a sequence of pitches, onset times and

TABLE I
LIST OF FREQUENTLY USED MATHEMATICAL SYMBOLS

Variable Notation

Index for note n
Pitch pn

Onset time tn
Key-release [Damper-drop] (offset) time toff

n [t̄off
n ]

Key-holding [Damper-lifting] duration dn [d̄n ]
Onset [offset] score time τn [τ off

n ]
Note value rn

Local tempo vn

Sequence of variables p = (pn )N
n =1 etc.

offset times (pn , tn , toff
n , t̄off

n )N
n=1 where n is an index for

notes and N is the number of notes. As explained in Section
III-B, we can define two offset time, the key-release time and
damper-drop time, denoted by toff

n and t̄off
n . The corresponding

key-holding and damper-lifting duration will be denoted by
dn = toff

n − tn and d̄n = t̄off
n − tn . The aim is to recognise

the score times of the note onsets and offsets, which are
denoted by (τn , τ off

n )N
n=1 . In general, τn and τ off

n take values
in the set of rational numbers in units of a beat unit, say,
the whole-note length. For example, τ1 = 0 and τ off

1 = 1/4
means that the first note is at the beginning of the score and
has a quarter-note length. We use the following notations for
sequences: d = (dn )N

n=1 , τ off = (τ off
n )N

n=1 , etc. We call the
difference rn = τ off

n − τn the note value. Frequently used
mathematical symbols are listed in Table I.

In this paper, we consider the situation that the onset score
times τ are given as estimations from conventional onset rhythm
transcription algorithms. In addition, we assume that a local
tempo vn , which gives a smoothed ratio of the time interval and
score time interval at each note n, is given. Local tempos v =
(vn )N

n=1 can be obtained from the sequences t and τ by applying
some smoothing methods such as Kalman smoothing and local
averaging, and typically they can be obtained as outputs of onset
rhythm transcription algorithms.

In summary, we set up the problem of note value recognition
as estimating the sequence τ off (or r) with inputs p,d, d̄, τ
and v. For concreteness, in this paper, we mainly use as τ
and v the outputs from a method based on a metrical HMM
(Section IV-B), but our method is applicable as a post-processing
step for any rhythm transcription method that outputs τ .

B. Estimation of Onset Score Times and Local Tempos

To estimate onset score times τ and local tempos v from
a MIDI performance (p, t, toff , t̄

off ), we use a metrical HMM
[9], which is one of the most accurate onset rhythm transcription
methods (Section II). Here we briefly review the model.

In the metrical HMM, the probability P (τ ) of the score is
generated from a Markov process on periodically defined beat
positions denoted by (sn )N

n=1 with sn ∈ {1, . . . , G} (G is a
period of beats such as a bar). The sequence s is generated with
the initial and transition probabilities as

P (s) = P (s1)
N∏

n=2

P (sn |sn−1). (2)
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We interpret sn as τn modulo G, or more explicitly, we obtain
τ incrementally as follows:

τ1 = s1 , (3)

τn+1 = τn +

{
sn+1 − sn , if sn+1 > sn ;

G + sn+1 − sn , if sn+1 ≤ sn .
(4)

That is, if sn+1 ≤ sn , we interpret that sn+1 indicates the beat
position in the next bar. With this understood, P (τ ) is equivalent
to P (s) as long as rn ≤ G for all n. An extension is possible to
allow note onset intervals larger than G [32].

In constructing the performance model, local tempo variables
v are introduced to describe the indeterminacy and temporal
variations of tempos. The probability P (t,v|τ ) is decomposed
as P (t|τ ,v)P (v) and each factor is described with the follow-
ing Gaussian Markov process:

P (vn |vn−1) = N(vn ; vn−1 , σ
2
v ), (5)

P (tn+1 |tn , τn+1 , τn , vn ) = N
(
tn+1; tn + (τn+1 − τn )vn , σ2

t

)

(6)

where N( · ;μ,Σ) denotes a normal distribution with mean μ
and variance Σ, and σv and σt are standard deviations represent-
ing the degree of tempo variations and onset time fluctuations,
respectively. An initial distribution for v1 is described similarly
as a Gaussian N(v1 ; vini, σ

2
v ,ini).

An algorithm to estimate onset score times and local tem-
pos can be obtained by maximising the posterior probability
P (τ ,v|t) ∝ P (t,v|τ )P (τ ). This can be done by a standard
Viterbi algorithm after discretisation of the tempo variables [20],
[32]. Note that this method does not use the pitch and offset
information, which is typical in conventional onset rhythm tran-
scription methods. Since the period G and rhythmic properties
encoded in P (sn |sn−1) are dependent on the metre, in practice
it is effective to consider multiple metrical HMMs correspond-
ing to different metres, such as duple metre and triple metre,
and choose the one with the maximum posterior probability in
the stage of inference.

C. Markov Random Field Model

Here we describe our main model. As explained in Section III,
it is essential to combine a score model that enables predic-
tion of note values given the input information of onset score
times and pitches and a performance model that relates note
values to actual durations realised in music performances. To
enable tractable inference and efficient parameter estimation,
one should typically decompose each model into component
models that involve a smaller number of stochastic variables.

As a framework to combine such component models, we
consider the following Markov random field (MRF):

P (r|p,d, d̄, τ ,v)

∝ exp
[
−

N∑

n=1

H1(rn ; τ ,p) −
∑

(n,m )∈N

H2(rn , rm )

−
N∑

n=1

H3(rn ; dn , d̄n , vn )
]
. (7)

Here H1 (called the context model) represents the prior model
for each note value that depends on the onset score times and
pitches, H2 (the interdependence model) represents the interde-
pendence of neighbouring pairs of note values (N denotes the
set of neighbouring note pairs specified later) and H3 (the per-
formance model) represents the likelihood model. Each term can
be interpreted as an energy function that has small values when
the arguments have higher probabilities. The explicit forms of
these functions are given as follows:

H1 = −β1 lnP (rn ; τ ,p), (8)

H2 = −β2 lnP (rn , rm ), (9)

H3 = −β31 ln P (dn ; rn , vn ) − β32 ln P (d̄n ; rn , vn ). (10)

Each energy function is constructed with a negative log proba-
bility function multiplied by a positive weight. These weights
β1 , β2 , β31 and β32 are introduced to represent the relative im-
portance of the component models. For example, if we take
β1 = β31 = β32 = 1 and β2 = 0, the model reduces to a Naive
Bayes model with the durations considered as features. For other
values of β s, the model is no longer a generative model for the
durations but still a generative model for the note values, which
are the only unknown variables in our problem. In the following
we explain the component models in detail. Learning parameters
including β s is discussed in Section IV-D.

1) Context Model: The context model H1 describes a prior
distribution for note values that is conditionally dependent on
given onset score times and pitches. To construct this model,
one should first specify the sample space of rn , or, the set of
possible values that each rn can take. Based on the observations
in Section III, we consider the first ten IONVs as possible values
of rn . Since rn can take other values in reality, we also consider a
formally defined value ‘other’, which represents all other values
of rn . Let

Ωr (n) = {IONV(n, 1), . . . , IONV(n, 10),other}
denote the sample space. Therefore P (rn ; τ ,p) is considered
as an 11-dimensional discrete distribution.

As we saw in Section III, the distribution P (rn ; τ ,p) depends
heavily on the pitch context. Based on our intuition that for
each note n the succeeding notes with a close pitch are most
influential on the voice structure, in this paper we use the feature
vector cn = (cn (1), . . . , cn (10)) as a context of note n, where
cn (k) denotes the unsigned pitch interval between note n and
the closest pitch in its k-th next onset cluster. An example of the
context is given in Fig. 6. Thus we have

P (rn ; τ ,p) = P
(
rn ; cn (1), . . . , cn (10)

)
. (11)

We remark that in general we can additionally consider different
features (for example, metrical features) and our formulation in
this section and in Section IV-D is valid independently of our
particular choice of features.

Due to the huge number of different contexts for notes, it is
not practical to use (11) directly. With 88 pitches on a piano
keyboard, each cn (k) can take 87 values and thus the right-
hand side (RHS) of (11) has 11 · 8710 parameters (or slightly
less free parameters after normalisation), which is computation-
ally infeasible. (If one uses additional features, the number of
parameters increases further.) To solve this problem, we use a
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Fig. 6. Statistical dependencies in the Markov random field model.

Fig. 7. In a context-tree model, the distribution of a quantity r is categorised
with a set of criteria on the context c.

context-tree model [24], [25], in which contexts are categorised
according to a set of criteria that are represented as a tree (as in
decision tree analysis) and all contexts in one category have the
same probability distribution.

Formally, a context-tree model is defined as follows. Here we
consider a general context c = (c(1), . . . , c(F )), which is an F -
dimensional feature vector. We assume that the set of possible
values for c(f) is an ordered set for all f = 1, . . . , F and denote
it by Rf . Let us denote the leaf nodes of a binary tree T by ∂T .
Each node ν ∈ T is associated with a set of contexts denoted
by Cν . In particular, for the root node 0 ∈ T , C0 is the set of
all contexts (R1 × · · · × RF ). Each internal node ν ∈ T \∂T is
associated with a criterion γ(ν) for selecting a subset of Cν . A
criterion γ = (fγ , κγ ) is defined as a pair of a feature dimension
fγ ∈ {1, . . . , F} and a cut κγ ∈ Rfγ

. The criterion divides a set
of contexts C into two subsets as

CL (γ) = {c ∈ C | c(fγ ) ≤ κγ }, (12)

CR (γ) = {c ∈ C | c(fγ ) > κγ }, (13)

so that CL (γ) ∩ CR (γ) = φ and CL (γ) ∪ CR (γ) = C. Now
denoting the left and right child of ν ∈ T \∂T by νL and νR,
their sets of contexts are defined as CνL = Cν ∩ CL

0 (γ(ν)) and
CνR = Cν ∩ CR

0 (γ(ν)), which recursively defines a context
tree (T, f, κ) (Fig. 7). By definition, a context is associated to

a unique leaf node: for all c ∈ C0 there exists a unique λ ∈ ∂T
such that c ∈ Cλ. We denote such a leaf by λ(c). Finally, for each
node ν ∈ T , a probability distribution Qν ( · ) is associated. Now
we can define the probability PT ( · ; c) as

PT ( · ; c) = Qλ(c)( · ). (14)

The tuple T = (T, f, κ,Q) defines a context-tree model.
For a context-tree model with L leaves, the number of param-

eters for the distribution of note values is now reduced to 11L.
In general a model with a larger tree size has more ability to
approximate (11) at the cost of an increasing number of model
parameters. The next problem is to find the optimal tree size and
the optimal criterion for each internal node. We will explain this
in Section IV-D1.

2) Interdependence Model: Although the distribution of
note values in the context model is dependent on the pitch
context, it is independently defined for each note value. As
explained in Section III, interdependence of note values is also
important since it arises from logical constraint on the voice
structure. Such interdependence can be described with a joint
probability of note values of a pair of notes in H2 . As in the
context model, we consider the set Ωr as a sample space for
note values so that the joint probability P (rn , rm ) for notes n
and m has 112 parameters.

The choice of the set of neighbouring note pairs N in (7)
is most important for the interdependence model. In order to
capture the voice structure we define N as

N = {(n,m) | τn = τm , |pn − pm | ≤ δnbh} (15)

where δnbh is a parameter to define the vicinity of the pitch. The
value of δnbh is determined from data (see Section IV-D4).

3) Performance Model: The performance model is con-
structed with the probability of actual durations in perfor-
mances given a note value and a local tempo. Since we can
use two durations dn and d̄n , two distributions, P (dn ; rn , vn )
and P (d̄n ; rn , vn ), are considered for each note as in the RHS
of (10). To regulate the effect of varying tempos and avoid the
increase in the complexity of the model to handle possibly many
types of note values, we consider distributions over normalised
durations, d′n = dn/(rnvn ) and d̄′n = d̄n/(rnvn ), as we did in
Section III. We therefore assume

P (dn ; rn , vn ) = g(d′n ) and P (d̄n ; rn , vn ) = ḡ(d̄′n ) (16)

where g and ḡ are one-dimensional probability distributions
supported on positive real numbers.

The histograms corresponding to g and ḡ taken from perfor-
mance data described in Section IV-D are illustrated in Fig. 3.
One can recognise two (one) peak(s) for the distribution of
normalised key-holding (damper-lifting) durations. Since theo-
retical forms of these distributions are unknown, we use as phe-
nomenologically fitting distributions the following generalised
inverse-Gaussian (GIG) distribution:

GIG(x; a, b, h) =
(a/b)h/2

2Kh(2
√

ab)
xh−1e−(ax+b/x) (17)

where a, b > 0 and h ∈ R are parameters and Kh denotes the
modified Bessel function of the second kind. The GIG distri-
butions are supported on positive real numbers and include the
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gamma (a → 0), inverse-gamma (b → 0) and inverse-Gaussian
(h = −1/2) distributions as special cases. Since a GIG distri-
bution has only one peak, we use a mixture of GIG distributions
to represent g. We parameterise g and ḡ as

g(x) = w1GIG(x; a1 , b1 , h1) + w2GIG(x; a2 , b2 , h2),
(18)

ḡ(x) = GIG(x; a3 , b3 , h3) (19)

where w1 and w2 = 1 − w1 are mixture weights. Parameter
values obtained from data are given in Section IV-D3.

D. Model Learning

Similarly as the language model and the acoustic model for
a speech recognition system are generally trained separately
with different data, our three component models can be trained
separately and combined afterwards to determine the optimal
weights (the β s). The context model and the interdependence
model can be learned with musical score data and we used a
dataset of 148 classical piano pieces (with 3.4 × 106 notes) by
various composers2. On the other hand, the performance model
requires performance data aligned with reference scores. The
used data consisted of 180 performances (60 phrases × 3 dif-
ferent players) by various composers and various performers
that are mostly collected from publicly available MIDI perfor-
mances recorded in international piano competitions [33]. Due
to the lack of abundant data, we used the same performance data
for training and evaluation. Because the number of parameters
for the performance model is small (ten independent param-
eters in g and ḡ and two weight parameters) and they are not
fine-tunable, there should be little concern about overfitting here
and most comparative evaluations in Section V are done with
equal conditions. (See also the discussion in Sections IV-D3 and
V-C.) To avoid overfitting, the score data and the performance
data contained no overlapping musical pieces (at least in units of
movements). Learning methods for the component models are
described in the following sections and Section IV-D4 describes
the optimisation of the β s.

1) Learning the Context Model: The context-tree model can
be learned by growing the tree based on the maximum likelihood
(ML) principle, which is called context-tree clustering. This is
usually done by recursively splitting a node that minimises the
likelihood [24]. Although it is not essentially new, we describe
the learning method here for the readers’ convenience because
context-tree clustering is not commonly used in the field of
music informatics and in articles for speech processing (where
it is widely used) the notations are adapted for the case with
Gaussian distributions, which is not ours.

Let xi = (ri, ci) denote a sample extracted from score data,
where i denotes a note in the score data, ri denotes an element in
Ωr (i) and ci denotes the context of note i. The set of all samples
will be denoted by x = (xi)I

i=1 . The log likelihood LT (x) of

2The lists of used pieces for the score data and the performance data are
available at the accompanying web page [27].

a context-tree model T = (T, f, κ,Q) is given as

LT (x) =
I∑

i=1

ln PT (xi) =
I∑

i=1

ln Qλ(ci )(xi)

=
∑

λ∈∂T

∑

i: ci ∈Cλ

qλ(xi) (20)

where in the second line we decomposed the samples according
to the criteria of the leaves and hereafter we denote qν ( · ) =
ln Qν ( · ) for each node ν. The parameters for each distribution
Qν for node ν ∈ T are learned from the samples {xi |ci ∈ Cν }
according to the ML method. We implicitly understand that all
Q s are already learned in this way.

Given a context tree T (m ) (one begins with a tree T (0)

containing only the root node and proceeds m = 0, 1, 2, . . . as
follows), one of the leaves λ ∈ ∂T (m ) is split according to some
additional criterion γ(λ). Let us denote the expanded context-
tree model by T

(m )
λ . Since T

(m )
λ is same as T (m ) except for

the new leaves λL and λR, the difference of log likelihoods
ΔL(λ) = L

T
(m )

λ

(x) − LT (m ) (x) is given as

∑

i: ci ∈CλL

qλL (xi) +
∑

i: ci ∈CλR

qλR (xi) −
∑

i: ci ∈Cλ

qλ(xi). (21)

Note that ΔL(λ) ≥ 0 since QλL and QλR have the ML. Now
the leaf λ∗ and the criterion γ(λ∗) that maximise ΔL(λ) are
selected for growing the context tree: T (m+1) = T

(m )
λ∗ .

According to the above ML criterion, the context tree can
be expanded to the point where all samples are completely
separated by contexts, for which the model often suffers from
overfitting. To avoid this and find an optimal tree size according
to the data, the minimal description length (MDL) criterion for
model selection can be used [26], [34]. The MDL �M(x) for a
model M with parameters θM is given as

�M(x) = −log2P (x; θ̂M) +
|M|
2

log2I (22)

where I is the length of x, |M| is the number of free parameters
of model M and θ̂M denotes the ML estimate of θM according
to data x. Here, the first term in the RHS is the negative log
likelihood, which in general decreases when the model’s com-
plexity increases. On the other hand, the second term increases
when the number of model parameters increases. Thus a model
that minimises the MDL is chosen by a trade off of the model’s
precision and complexity. The MDL criterion is justified by an
information-theoretic argument [34].

For our context-tree model, each Q is an 11-dimensional dis-
crete distribution and has ten free parameters, and therefore the
increase of parameters by expanding a node is ten. Substituting
this into (22), we find

Δ�(λ∗) = �T (m + 1 ) (x) − �T (m ) (x)

= −ΔL(λ∗)/(ln 2) + (10/2)log2I. (23)

In summary, the context tree is expanded by splitting the optimal
leaf λ∗, up to a step where Δ�(λ∗) becomes positive.

With our score data of 3.4 × 106 musical notes, the learned
context tree had 132 leaves. A subtree is illustrated in Fig. 8
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Fig. 8. A subtree of the obtained context-tree model. Above each node are
indicated the node ID, number of samples and their proportion in the whole data
and the green number indicates the highest probability in each distribution. See
text for explanation of the labels for each distribution.

Fig. 9. Joint probability distribution of note values obtained for the interde-
pendence model for δnbh = 12. See text for explanation of the labels.

where the node ID is shown in square brackets and the labels
1, . . . , 10 in the distribution show those probabilities correspond
to IONV(1), . . . , IONV(10) and the label 0 is assigned to the
‘other’. For example, one finds a distribution with a sharp peak
at IONV(1) in node 2 whose contexts satisfy c(1) ≤ 2. This can
be interpreted as follows: if note n has a pitch within 2 semitones
in the next onset cluster, then it is highly probable that they are
in the same voice and note n has rn = IONV(n, 1). On the
other hand, the IONV(2) has the largest probability in node 7
[the distribution is the same one as in Fig. 5(d)] with contexts
satisfying c(2) ≤ 5 and c(1) > 14, whose interpretation was
explained in Section III-C. Similar interpretations can be made
for node 11 and other nodes. These results show that the context
tree tries to capture the voice structure through the pitch context.
As this is induced from data in an unsupervised way, it serves as
an information-scientific confirmation that the voice structure
has a strong influence on the configuration of note values.

2) Learning the Interdependence Model: The interdepen-
dence model for each δnbh can be directly learned from score
data: for all note pairs defined by (15), one obtains the joint prob-
ability of their note values. The obtained results for δnbh = 12 is
shown in Fig. 9 where the same labels are used as in Fig. 8. The
diagonal elements, which have the largest probability in each
row and column, clearly reflect the constraint of chordal notes
having the same note values.

Fig. 10. Distributions used for the performance model for (a) key-holding
durations and (b) damper-lifting durations. In each figure, the background his-
togram is the one obtained from the whole training data (same as Fig. 3) and
the superposed histograms are obtained from 10-fold training datasets.

Since the interdependence model is by itself not as precise a
generative model as the context model and these models are not
independent, we optimise δnbh in combination with the context
model. This is described in Section IV-D4, together with the
optimisation of the weights. In preparation for this, we learned
the joint probability for each of δnbh = 0, 1, . . . , 15.

3) Learning the Performance Model: The parameters for the
performance model in (18) and (19) are learned from the distri-
butions given in Fig. 3. We performed a grid search for minimis-
ing the squared fitting error for each distribution. The obtained
values are the following:

a1 = 2.24 ± 0.02, b1 = 0.24 ± 0.01, h1 = 0.69 ± 0.01,

a2 = 13.8 ± 0.1, b2 = 15.2 ± 0.1, h2 = −1.22 ± 0.04,

w1 = 0.814 ± 0.004, w2 = 0.186 ± 0.004,

a3 = 0.94 ± 0.01, b3 = 0.51 ± 0.01, h3 = 0.80 ± 0.01.

The fitting curves are illustrated in Fig. 10. In the figure, we
also show histograms of normalised durations obtained from
ten different subsets of the training data that are constructed
similarly as the 10-fold cross-validation method: i.e. we split
the training data into ten separate sets (each containing 10% of
the performances) and the remaining 90% of the data were used
as one of the 10-fold training datasets. We can see in Fig. 10 that
the differences among these histograms are not large. Two other
parameter sets for g and ḡ were chosen as trial distributions
shown in the figure, which deviate from the best fit distribution
more than the differences among the 10-fold histograms. These
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distributions are used in Section V-C3 to examine the influence
of the parameter values for the performance model.

4) Optimisation of the Weights: Since the three component
models for the MRF model in (7) are not independent, the
weights β should be obtained by simultaneous optimisation
using performance data in general. However, since the amount
of score data at hand is significantly larger than that of the
performance data, we optimise the weights in a more efficient
way. Namely, we first optimise β1 and β2 with the score data
and then optimise β31 and β32 with the performance data (with
fixed β1 and β2). When examining the influence of varying these
weights in Section V-C, we will discuss that the influence of this
sub-optimisation procedure is seemingly small.

We obtained the first two weights simultaneously with δnbh
by the ML principle with the following results:

β̂1 = 0.965 ± 0.005, β̂2 = 0.03 ± 0.005, δ̂nbh = 12.
(24)

The result β̂2 � β̂1 indicates that the interdependence model
has little influence in the score model. Although it seems some-
what contradictory to the results in Section IV-D2 at first sight,
we can understand this by noticing that both the context model
and interdependence model make use of pitch proximity to cap-
ture the voice structure. The former model uses pitch proximity
in the horizontal (time) direction and the latter model does so in
the vertical (pitch) direction, and they have overlapping effects
since whenever a note pair (say, note n and n′) in an onset cluster
have close pitches, they tend to share notes in succeeding onset
clusters with close pitches (see e.g. the chords in the left-hand
part in the score in Fig. 16). Thus note n and n′ tend to obey
similar distributions in the context model. Since the interdepen-
dence model is weaker in terms of predictive ability, this results
in small β̂2 .

We optimised β31 and β32 according to the accuracy of note
value recognition (more precisely, the average error rate defined
in Section V-A) and the obtained values are as follows:

β̂31 = 0.21 ± 0.01, β̂32 = 0.003 ± 0.001. (25)

One can notice that β̂32 � β̂31 , which can be explained by the
significantly larger variance of the distribution of damper-lifting
durations than that of key-holding durations in Fig. 3. On the
other hand, the result that β̂31 is considerably smaller than β̂1
can be interpreted as that the score model has more importance
for estimating note values (in our model). The effect of varying
weights is examined in Section V-C.

E. Inference Algorithm and Implementation

We can develop a note value recognition algorithm based on
the maximisation of the probability in (7) with respect to r.
As a search space, we consider Ωr (n)\{other} for each rn .
Without H2 , the probability is independent for each rn and the
optimisation is straightforward. With H2 , we should optimise
those rn s connected in N simultaneously. Since there are only
vertical interdependencies in our model, the optimisation can
be done independently for each onset cluster. With J notes in
an onset cluster, the set of candidate note values has size 10J .
Typically J ≤ 6 for piano scores and the global search can be
done directly. Occasionally, however, J can be ten or more and

Fig. 11. Piece-wise average error rates and scale errors of note value recog-
nition. Each red cross corresponds to one performance. The circle indicates the
average (AVE), the blue box the range from the first to third quartiles, STD the
standard deviation, and STE the standard error.

the computation time can be too large. To reduce the size of
search space in this case, cutoffs are placed on the order of
IONVs when J > 6 in our implementation: instead of the first
ten IONVs, we use the first (14 − J) IONVs for 6 < J ≤ 10
and two IONVs for J > 10. Although with this approximation
we lose a certain proportion of possible solutions, we know that
this proportion is small from the small probability of r having
higher IONVs in Fig. 5(b).

Our implementation of the MRF model and the metrical
HMM for onset rhythm transcription and tempo estimation is
available [27]. A tempo estimation algorithm based on a Kalman
smoother is also provided for applying our method to results of
other onset rhythm transcriptions that do not include tempo
information as output.

V. EVALUATION

A. Evaluation Measures

We first define evaluation measures used in our study. For each
note n = 1, . . . , N , let rc

n and re
n be the correct and estimated

note values. Then the error rate E is defined as

E =
1
N

N∑

n=1

I(re
n 
= rc

n ) (26)

where I(C) is 1 if condition C is true and 0 otherwise. This mea-
sure does not take into account how close the estimation is to the
correct value when they are not exactly equal. Alternatively one
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can consider the averaged ‘distance’ between the estimated and
correct note values. As such a measure we define the following
scale error S:

S = exp
[

1
N

∑

n

∣
∣ln(re

n/rc
n )

∣
∣
]
. (27)

The difference and average is defined in the logarithmic domain
to avoid bias for larger note values. S is unity if all note values
are correctly estimated, and for example,S = 2 if all estimations
are doubled or halved from the correct values.

Because of the ambiguity of defining the beat unit, score times
estimated by rhythm transcription methods often have doubled,
halved or other scaled values [16], [35], which should not be
treated as complete errors. To handle such scaling ambiguity,
we normalise note values with the first IONV as

r′en = re
n/IONVe(n, 1), (28)

r′cn = rc
n/IONVc(n, 1) (29)

where IONVe(n, 1) and IONVc(n, 1) is the first IONV defined
for the estimated and correct score, respectively. Scale-invariant
evaluation measures can be obtained by applying (26) and (27)
for r′en and r′cn .

B. Comparative Evaluations

In this section, we evaluate the proposed method, a previously
studied method [14] and a simple model discussed in Section III
on our data set and compare them in terms of the accuracy of
note value recognition.

1) Setup: To study the contribution of the component models
of our MRF model, we evaluated the full model, a model with-
out the interdependence model (β2 = 0), a model without the
performance model (β31 = β32 = 0) and an MRF model with a
context model having no (or a trivial) context tree, all applied to
the result of onset rhythm transcription by the metrical HMM.
For the metrical HMM, we use the parameter values taken from
a previous study [16]. These parameters were learned with the
same score data and different performance data.

In addition, we evaluated a method based on a simple prior
distribution on note values [Fig. 5(a)] combined with an output
probability P (dn ; rn , vn ) in (16), which uses no information of
onset score times. For comparison, we evaluated the Melisma
Analyzer (version 2) [14], which is to our knowledge the only
major method that can estimate onset and offset score times, and
we also applied post-processing by the proposed method on the
onset score times obtained by the Melisma Analyzer. The used
data is described in Section IV-D.

2) Results: The piece-wise average error rates and scale er-
rors are shown in Fig. 11 where the mean (AVE) over all pieces
and the standard error for the mean (corresponding to 1σ devi-
ation in the t-test) are also given. Out of the 180 performances,
only 115 performances were properly processed by the Melisma
Analyzer and are depicted in the figure. In addition, 30.0% of
the note values estimated by the method were zero and scale er-
rors were calculated without these values. One can see that the
Melisma Analyzer and the simple model without using the onset
score time information have high error rates and the proposed
methods clearly outperformed them.

Fig. 12. Distributions of note-wise scale errors r′e/r′c for notes with
r′e/r′c 
=1.

The distributions of note-wise scale errors r′e/r′c for incorrect
estimations (r′e/r′c 
= 1) in Fig. 12 show that the Melisma An-
alyzer (simple model) more often estimates note values shorter
(longer) than the correct ones. For the simple model, this is
because it mostly relies on, other than a relatively weak prior
distribution in Fig. 5(a), the distribution of key-holding durations
in Fig. 3(a), which has the highest peak position lower than its
mean. For the Melisma Analyzer, the short and zero note values
arise because the method quantises the onset and (key-release)
offset times into analysis frames of 50 ms. Whereas the com-
parison is not fair in that the Melisma Analyzer can potentially
identify grace notes with zero note values, which our data did
not contain and our method cannot recognise, the rate (30.0%) is
considerably higher than their typical frequency in piano scores.

Among the different conditions for the proposed method, the
full model had the best accuracy and the case with no context
tree had significantly worse results, showing a clear effect of the
context model. Compared to the full model, the average error
rate for the model without the performance model was worse but
within 1σ deviation and the average scale error was significantly
worse, indicating that the performance model has an effect in
approximating the estimated note values to the correct ones.
Results without the interdependence model were slightly worse
but almost the same as the full model, which is because of the
small β̂2 . The last result indicates that one can remove the inter-
dependence model without much increase of estimation errors,
which simplifies the inference algorithm as the distributions of
note values become independent for each note.

C. Examining the Proposed Model

Here we examine the proposed model in greater depth.
1) Error Analyses: To examine the effect of the component

models, let us look at the distribution of the estimated note val-
ues in the space of IONVs (Fig. 13). Note that the distribution
for the ground truth is essentially the same as that in Fig. 5(b)
but slightly different because the data is different and the on-
set clusters here are defined with the result of onset rhythm
transcription by the metrical HMM.

Firstly, the model without a context tree assigns the first IONV
to note values with a high probability (>98%), indicating that
estimated results by the model are almost the same as for the
one-voice representation in Fig. 2(b). This is consistent with the



1856 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 25, NO. 9, SEPTEMBER 2017

Fig. 13. Distributions of true and estimated note values relative to IONVs.

Fig. 14. Average error rates and scale errors for various sizes of the context
tree. The figure close to each point indicates the number of leaves. 132 is the
optimal number predicted by the MDL criterion. All data points have statistical
errors of order 1% for error rate and order 0.01 for scale error.

results in Fig. 12 that this model tends to estimate note values
shorter than the correct values. Secondly, one can notice that the
model without the performance model has a higher probability
for the first IONV and smaller probabilities for most of the later
IONVs compared with the full model. This suggests that the
performance model uses the information of actual durations to
correct (or better approximate) the estimated note values more
frequently to larger values, leading to decreased scale errors.
Finally, the proportion of errors corresponding to note values
that are larger than IONV(10) is about 0.8%, indicating that the
effect of enlarging the search space of note values by including
higher IONVs is limited.

2) Influence of the Context-Tree Size and Weights: Fig. 14
shows the average error rates and scale errors for various sizes
of the context tree. The case with only one leaf (not shown
in the figure) is the same as the case without a context tree
explained above. The errors rapidly decreased as the tree size
increased for small numbers of leaves and but changed only
slightly above 50 leaves. There was a gap between the error
rates for the cases with 50 and 75 leaves, which we confirmed
is caused by a discontinuity of results for 52 and 53 leaves. We
have not succeeded in finding a good explanation for this gap.
Far above the predicted value (132 leaves) by the MDL criterion,
the errors tended to increase slightly, confirming that it is close
to the optimal choice.

Fig. 15 shows the average error rate and scale error when vary-
ing the weights from the values in (24) and (25). The context tree
had 132 leaves. First, variations by increasing and decreasing

Fig. 15. Average error rates and scale errors with (a) varying β1 and β2 and
(b) varying β31 and β32 . The β s are scaled in logarithmically equally spaced
scaling factors, which are partly indicated by numbers, and the centre values
(indicated by ‘1’) are given in (24) and (25). All data points have statistical
errors of order 1% for error rate and order 0.01 for scale error.

the weights by 50% are within 1σ statistical significance, show-
ing that the error rates are not very sensitive to these parameters.
Second, the values β̂1 and β̂2 , which were optimised based on
ML using the score data, are found to be optimal with respect
to the error rate. Finally, the similar shapes of the curves when
fixing β1/β2 and fixing β31/β32 show that their relative val-
ues influences the results more than their absolute values in the
examined region. The results together with the large-variance
nature of the distributions of durations in Fig. 3 suggest that
it is likely that more elaborate fitting functions for the perfor-
mance model would not improve the results significantly and
also that the sub-optimisation procedure for β s described in
Section IV-D4 did not deteriorate the results much.

3) Influence of the Parameters of the Performance Model:
To examine the influence of the parameter values of the per-
formance model in (18) and (19), we run the proposed model
for each of three distributions shown in Fig. 10(a) and (b). The
other parameters were set to the optimal values and the size of
the context tree was 132. Results in Table II show that despite
the differences among distributions, the average scale error was
almost constant and the variation of the average error rate is
also smaller than the standard error. More precisely, the influ-
ence of the choice of parameters for ḡ is negligible, which can
be explained by the small value of β32 . This confirms that the
influence of the performance model is small and there is little
effect of overfitting in using the test data for learning.

4) Example Result: Let us discuss an example3 in Fig. 16,
which has a typical texture of piano music with the left-hand

3Sound files are available at the accompanying web page [27].
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TABLE II
AVERAGE ERROR RATES AND SCALE ERRORS FOR DIFFERENT DISTRIBUTIONS

FOR THE PERFORMANCE MODEL

Key-holding g Damper-lifting ḡ Error rate E (%) Scale error S

Best fit Best fit 25.66 1.225
Best fit Trial 1 25.67 1.225
Best fit Trial 2 25.67 1.225
Trial 1 Best fit 25.97 1.225
Trial 1 Trial 1 25.98 1.225
Trial 1 Trial 2 25.97 1.225
Trial 2 Best fit 25.46 1.225
Trial 2 Trial 1 25.46 1.225
Trial 2 Trial 2 25.46 1.225

The best fit and trial distributions are shown in Fig. 10.

Fig. 16. Example result of rhythm transcription by the metrical HMM and the
proposed MRF model (Beethoven: Waldstein sonata 1st mov.). Voice, staff and
time signature are added manually to the estimated result for the purpose of this
illustration.

part having harmonising chords and the right-hand part having
melodic notes, both of which have multiple voices inside. By
comparing the performed durations to the score, we can see
that overall the damper-lifting durations are closer to the score-
indicated durations for the left-hand notes and the key-holding
durations are closer for the right-hand notes. This is because
pianists tend to lift the pedal when harmonising chords change.
This example shows that the two types of durations provide
complementary information and one should not rely on one of
them. On the other hand, for most notes, the offset score time
matches to the onset score time of a succeeding note with a close
pitch, which is what our context model describes.

The result by the MRF model shows that the model uses
the score and performance models complementarily to find
the optimal estimation. The correctly estimated half notes (as
IONV(6)), A4 in the first bar and E5 in the second bar, have a
close pitch in the next onset cluster and the incorrect estimates

as IONV(1) are avoided by using the duration (and perhaps
because of the existence of very close pitches at the sixth next
onset clusters). On the other hand, the quarter-note F#4 and D#4
in the left-hand part in the second bar could not be correctly esti-
mated probably because the voice makes a big leap here, closer
notes in the right-hand part succeed them and the key-holding
durations are short.

VI. CONCLUSION AND DISCUSSION

We discussed note value recognition of polyphonic piano
music based on an MRF model combining the score model
and the performance model. As suggested in the discussion
in Section III and confirmed by evaluation results, performed
durations can deviate greatly from the score-indicated lengths
and thus the performance model aline has little predictive ability.
The construction of the score model is then the key to solve the
problem. We formulated a context-tree model that can learn
highly predictive distributions of note values from data, using
onset score times and the pitch context. It was demonstrated
that this score model brings significant improvements on the
recognition accuracy.

Refinement of the score model is possible in a number of
ways. Using more features for the context-tree model could
improve the results. Using other feature-based model learning
schemes such as deep neural networks are similarly possible.
The refinement and extension of the search space for note values
is another issue since the set of the first ten IONVs used in this
study loses a certain proportion of solutions. The result that
the context-tree model learned to capture the voice structure
suggests that building a model with explicit voice structure is
also interesting for creating generative models to reduce reliance
on arbitrarily chosen features.

Remaining issues to obtain musical scores in a fully automatic
way include the assignment of voice and staff to the transcribed
notes. Voice separation methods and staff estimation methods
exist (e.g. [29]–[31]) and the information of transcribed note
values can be useful to identify chordal notes within each voice.
Another issue is the recognition of time signature. Using multi-
ple metrical HMMs learned with score data for each metres is
one possibility and we could also apply other metre detection
methods (e.g. [36]) to the transcribed result.

To apply this work, the construction of a complete polyphonic
music transcription system from audio signals to musical scores
is attractive. The framework developed in this study can be
combined with existing multi-pitch analysers [3]–[6] for this
purpose. It is worth mentioning that the performance model
should be trained on piano rolls obtained with these methods
since the distribution of durations would differ from that of
recorded MIDI signals. Extension of the model to correct audio
transcription errors such as note insertions and deletions would
also be of great importance.
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