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Rhythm Transcription of Polyphonic Piano Music
Based on Merged-Output HMM for Multiple Voices

Eita Nakamura, Member, IEEE, Kazuyoshi Yoshii, Member, IEEE, and Shigeki Sagayama, Member, IEEE

Abstract—In a recent conference paper, we have reported a
rhythm transcription method based on a merged-output hidden
Markov model (HMM) that explicitly describes the multiple-voice
structure of polyphonic music. This model solves a major prob-
lem of conventional methods that could not properly describe the
nature of multiple voices as in polyrhythmic scores or in the phe-
nomenon of loose synchrony between voices. In this paper, we
present a complete description of the proposed model and de-
velop an inference technique, which is valid for any merged-output
HMMs, for which output probabilities depend on past events. We
also examine the influence of the architecture and parameters of
the method in terms of accuracies of rhythm transcription and
voice separation and perform comparative evaluations with six
other algorithms. Using MIDI recordings of classical piano pieces,
we found that the proposed model outperformed other methods by
more than 12 points in the accuracy for polyrhythmic performances
and performed almost as good as the best one for non-polyrhythmic
performances. This reveals the state-of-the-art methods of rhythm
transcription for the first time in the literature. Publicly available
source codes are also provided for future comparisons.

Index Terms—Hidden Markov models, model for polyphonic
music scores, music performance model, rhythm transcription, sta-
tistical music language model.

I. INTRODUCTION

MUSIC transcription is one of the most challenging prob-
lems in music information processing. To obtain music

scores, we need to extract pitch information from music au-
dio signals. Recently pitch analysis for polyphonic (e.g. piano)
music has been receiving much attention [1], [2]. To solve the
other part of the transcription problem, many studies have been
devoted to so-called rhythm transcription, that is, the problem
of recognising quantised note lengths (or note values) of the
musical notes in MIDI performances [3]–[19].
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Since early studies in the 1980s, various methods have been
proposed for rhythm transcription. As we explain in detail in
Section II, the general trend has shifted to using machine learn-
ing techniques to capture what natural music scores are and
how music performances fluctuate in time. One of the models
most frequently used in recent studies [8]–[13], [18], [19] is
the hidden Markov model (HMM) [20]. In spite of its impor-
tance and about 30 years of history, however, little comparative
evaluations on rhythm transcription have been reported in the
literature and the state-of-the-art method has not been known.

Rhythm transcription also raises challenging problems of
representing and modelling scores and performances for poly-
phonic music. This is because a polyphonic score has multilayer
structure, where concurrently sounding notes are grouped into
several streams, or voices1. As explained in Section II, a con-
ventional way of representing a polyphonic score as a linear
sequence of chords [10] may not retain sequential regularities
within voices, such as those in polyrhythmic scores, nor it can
capture the loose synchrony between voices [21], [22] in poly-
phonic performances. Therefore solutions to explicitly describe
the multiple-voice structure must be sought.

From this point of view, in a recent conference [19], we
reported a statistical model that can describe the multiple-
voice structure of polyphonic music. The model is based on
the merged-output HMM [23], [24], which describes poly-
phonic performances as merged outputs from multiple com-
ponent HMMs, called voice HMMs, each of which describes
the generative process of music scores and performances of one
voice (Fig. 1). It was confirmed that the model outperformed
conventional HMM-based methods for transcribing polyrhyth-
mic performances.

The purpose of this paper is to discuss in detail the merged-
output HMM and its inference technique. Due to the large size of
the state space and the complex dependencies between variables,
the standard Viterbi algorithm or its refined version [23] cannot
be applied and a new inference technique is necessary. This
problem typically arises when a voice HMM is an autoregressive
HMM, which is commonly used as music score/performance
models where output probabilities of events (e.g. pitch, time,
etc.) depend on past events. Using a trick of introducing an
auxiliary variable to trace the history of output symbols similarly
as in Ref. [24], we develop an inference technique that can work

1In this paper, a ‘voice’ means a unit stream of musical notes that can contain
chords. The score in Fig. 2, for example, has two voices corresponding to the
left and right hands.
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Fig. 1. Overview of the proposed model describing the generation of poly-
phonic performances.

in a practical computer environment and could be applied for
any merged-output HMMs with autoregressive voice HMMs.

We provide a complete description of the proposed model
and examine the influence of its architecture and parameters.
First, we explain details omitted in the previous paper including
the description of the chord model and a switch of a coupling
parameter between voice HMMs depending on pitch contexts.
The effects are examined in terms of accuracies. Second, the de-
termination of model parameters based on supervised learning
is discussed and the influence of parameters of the performance
model is investigated. Finally, a feature of the proposed method
is its simultaneous voice separation and rhythm recognition.
We examine this effect by evaluating accuracies of both voice
separation and rhythm recognition and comparing with a cas-
cading algorithm that performs voice separation first and then
recognises rhythm.

Another contribution of this paper is to present results of
systematic comparative evaluations to find the state-of-the-art
method. In addition to two HMM-based methods [8], [9], [11],
[12] previously tested in Ref. [19], we tested frequently cited
methods and theoretically important methods whose source
codes were available: Connectionist Quantizer [7], Melisma An-
alyzers (version 1 [6] and version 2 [14]) and two-dimensional
(2D) probabilistic context-free grammar (PCFG) model [16],
[17], [25]. An evaluation measure for rhythm transcription,
which is briefly sketched in Ref. [19], is explained in full detail
together with its calculation algorithm.

We make public the source codes for the best models found
(the proposed model and other two HMMs) as well as the evalu-
ation tool to enable future comparisons [26]. We hope that these
materials would encourage researchers interested in music tran-
scription and symbolic music processing.

II. RELATED WORK

Previous studies on rhythm transcription are reviewed in this
section. The purpose is two-fold: First, we describe the his-
torical development of models for rhythm transcription, some

of which form bases of our model and some are subjects of
our comparative evaluation. Second, we review how polyphony
has been treated in previous studies in rhythm transcription and
related fields and explain in details the motivations for explic-
itly modelling multiple voices. Part of discussions in Secs. II-B
and II-C and the figures are quoted from Ref. [19] to make this
section more informative and self-contained.

A. Early Studies

Until the late 1990s, studies on rhythm transcription used
models describing the process of quantising note durations
and/or recognising the metre structure. Longuet-Higgins [3] de-
veloped a method for estimating the note values and the metre
structure simultaneously by recursively subdividing a time inter-
val into two or three almost equally spaced parts that are likely
to begin at note onsets. A similar method of dividing a time
interval using template grids and an error function of onsets and
inter-onset intervals (IOIs) has also been proposed [4]. Methods
using preference rules for the ratios of quantised note durations
have been developed by Chowning et al. [5] and Temperley and
Sleator [6]. Desain and Honing [7] proposed a connectionist ap-
proach that iteratively converts note durations so that adjacent
durations tend to have simple integral ratios.

Despite some successful results, these methods have limita-
tions in principle. First, they use little or no information about
sequential regularities of note values in music scores. Since there
are many logically possible sequences of note values, such se-
quential regularities are important clues to finding the one that is
most likely to appear in actual music scores. Second, tendencies
of temporal fluctuations in human performances are described
only roughly. In particular, the chord clustering—that is, the
identification of notes whose onsets are exactly simultaneous in
the score—is handled with thresholding or is not treated at all.
Finally, the parameters of most of those algorithms are tuned
manually and optimisation methods have not been developed.
This means that one cannot utilise a data set of music scores
and performances to learn the parameters, or only inefficient
optimisation methods like grid search can be applied.

B. Statistical Methods

Since around the year 2000, it has become popular to use
statistical models, which enable us to utilise the statistical na-
ture of music scores and performances. Usually two models,
one describing the probability of a score (score model) and the
other describing the probability of a performance given a score
(performance model), are combined as a Bayesian model, and
rhythm transcription can be formulated as maximum a posteriori
estimation. Below we review representative models for rhythm
transcription. We here consider only monophonic performances;
polyphonic extensions are described in Section II-C.

In one class of HMMs for rhythm transcription, which we
call note HMMs, a score is represented as a sequence of note
values and described with a Markov model (Fig. 2) [8], [9]. To
describe the temporal fluctuations in performances, one intro-
duces a latent variable corresponding to a (local) tempo that is
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Fig. 2. Two different representations of a music score in previously proposed
HMMs.

also described with a Markov model. An observed duration is
described as a product of the note value and the tempo that is
exposed to noise of onset times.

In another class of HMMs, which we call metrical HMMs,
a different description is used for the score model [11]–[13].
Instead of a Markov model of note values, a Markov process on
a grid space representing beat positions of a unit interval, such
as a bar, is considered (Fig. 2). The note values are given as
differences between successive beat positions. Incorporation of
the metre structure is an advantage of metrical HMMs.

PCFG models have also been proposed [15], [16]. As in [3],
a time interval in a score is recursively divided into shorter
intervals until those corresponding to note values are obtained,
and probabilities describe what particular divisions are likely. As
an advantage, modifications of rhythms by inserting (splitting)
notes can be naturally described with these models.

C. Polyphonic Extensions

The note HMM has been extended to handle polyphonic per-
formances [10]. This is done by representing a polyphonic score
as a linear sequence of chords or, more precisely, note clusters
consisting of one or more notes. Such score representation is also
familiarly used for music analysis [27] and score-performance
matching [28], [29]. Chordal notes can be represented as self-
transitions in the score model (Fig. 2) and their IOIs can be
described with a probability distribution with a peak at zero.
Polyphonic extension of metrical HMMs is possible in the same
way.

Although this simplified representation of polyphonic scores
is logically possible, there are instances in which score and per-
formance models based on this representation cannot describe
the nature of polyphonic music appropriately. First, complex
polyphonic scores such as polyrhythmic scores are forced to
have unrealistically small probabilities. This is because such
scores consist of rare rhythms in the simplified representation
even if the component voices have common rhythms (Fig. 3).
Second, the phenomenon of loose synchrony between voices
(e.g. two hands in piano performances [21]), called voice asyn-
chrony, cannot be described. For example, the importance of in-
corporating the multiple-voice structure in the presence of voice
asynchrony is well investigated in studies on score-performance
matching [21], [22].

Fig. 3. A 3 against 4 polyrhythmic passage (top; Chopin’s Fantaisie Im-
promptu) represented as a sequence of note clusters (bottom).

Fig. 4. A schematic illustration of the merged-output HMM. The symbols

i
(1)
0 and i

(2)
0 represent auxiliary states to define the initial transitions.

To describe the multiple-voice structure of polyphonic scores,
an extension of the PCFG model called 2D PCFG model has
been proposed [16], [25]. This model describes, in addition to
the divisions of a time interval, duplications of intervals into
two voices. Unfortunately, a tractable inference algorithm could
not be obtained for the model, and the correct voice information
had to be provided for evaluations. In a recent report, Takamune
et al. [17] state that this problem is solved using a generalised LR
parser. However, as we shall see in Section IV-B, their algorithm
often fails to output results and the computational cost is quite
high.

D. Merged-Output HMM

Based on the fact that HMM is effective for monophonic mu-
sic [8]–[13], an HMM-based model that can describe multiple-
voice structure of symbolic music, called merged-output HMM,
has been proposed [23], [24]. In the model, each voice is de-
scribed with an HMM, called a voice HMM, and the total poly-
phonic music signal is represented as merged outputs from mul-
tiple voice HMMs (Fig. 4).

Mathematically the model is described as follows. Let us con-
sider the case of two voices indexed by a variable s = 1, 2, and
let i(s) denote the state variable, let πs(i′, i) = P (i|i′, s) denote
the transition probability and let φs(x; i) = P (x|i, s) denote
the output probability of each voice HMM (for some output
symbol x). For each instance n, one voice sn is chosen by
a Bernoulli process as sn ∼ Ber (α1 , α2) where Ber is the
Bernoulli distribution and its probability parameter αsn

rep-
resents how likely the n-th output is generated from the HMM
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of voice sn . The chosen voice HMM then makes a state tran-
sition and outputs xn while the other voice HMM stays at the
current state. The whole process is described as an HMM with a
state space indexed by k = (s, i(1) , i(2)) and the transition and
output probabilities (in the non-interacting case [23]) are given
as

P (kn = k|kn−1 = k′)

= αsπs(i′(s) , i(s))
(
δs1δi ′( 2 ) i( 2 ) + δs2δi ′( 1 ) i( 1 )

)
, (1)

P (xn |kn = k) = φs(xn ; i(s)) (2)

where δ is Kronecker’s delta. A merged-output HMM with more
than two voices can be constructed similarly.

As discussed in Ref. [19], the merged-output HMM can be
seen as a variant of factorial HMM [30] in its most general
sense. Unlike the standard factorial HMM, only one of the voice
HMMs makes a state transition and outputs a symbol at each
instant. Owing to this property the sequential regularity within
each voice can be described efficiently in the merged-output
HMM, even when notes in one voice are interrupted (in the time
order) by notes of other voices. Accordingly necessary inference
algorithms are also different as we will see in Section III-C.

III. PROPOSED METHOD

We present a complete description of a rhythm transcription
method based on merged-output HMM [19] that describes poly-
phonic performances with multiple-voice structure. The gener-
ative model is presented in Section III-A, the determination of
model parameters is discussed in Section III-B and its inference
algorithm that simultaneously yields rhythm transcription and
voice separation is derived in Section III-C.

A. Model Formulation

A merged-output HMM for rhythm transcription proposed
in Ref. [19] is reviewed here with additional details. First, the
description of the chord model is given, which was explained
as a ‘self-transition’ in the note-value state space. Since self-
transition is also used to represent repeated note values of two
note clusters, it should be treated with care and we introduce
a two-level hierarchical Markov model to solve the problem.
Second, a refinement of switching the probability of choosing
voice HMMs is given, which was not mentioned previously but
necessary to improve the accuracy of voice separation.

In the following, a music score is specified by multiple se-
quences, corresponding to voices, of pitches and note values and
a MIDI performance signal is specified by a sequence of pitches
and onset times. In this paper we only consider note onsets and
thus note length and IOI mean the same thing.

1) Model for Each Voice: A voice HMM is constructed
based on the note HMM [9], which is extended to explicitly
model pitches in order to appropriately describe voices. If there
are no chords, a score note is specified by a pair of pitch and
note value. Note that to define N note lengths we need N+1
note onsets and thus N+1 score notes should be considered.
Let N+1 be the number of score notes in one voice and let rn

denote the note value of the n-th note. If there are no chords,

Fig. 5. Hierarchical Markov model for sequences of note clusters. (Left) The
high-level model describes the sequence in units of note clusters and the low-
level model describes internal structure of notes in each note cluster. (Right) An
example polyphonic score and its note onsets represented by the model.

the note values r = (rn )N +1
n=1 are generated by a Markov chain

with the following probabilities:

P (r1) = πini(r1), (3)

P (rn+1 |rn ) = π(rn , rn+1) (n = 1, . . . , N) (4)

where πini is the initial probability and π is the (stationary)
transition probability.

To describe chords, we extend the above Markov model to a
two-level hierarchical Markov model with state variables (r, g).
The variable r represents the note value of a note cluster and g
indicates whether the next note onset belongs to the same note
cluster or not: If gn = 0 the n-th and (n+1)-th notes are in a
note cluster and if gn = 1, they belong to different note clusters.
The variable g also takes the values ‘in’ and ‘out’ to define
the initial and exiting probabilities. The internal Markov model
has the topology illustrated in Fig. 5 and is described with the
following transition probabilities (ρ(r)

g ,g ′ = P (g′|g; r)):

ρ
(r)
in,0 = βr , ρ

(r)
in,1 = 1 − βr , (5)

ρ
(r)
0,0 = γr , ρ

(r)
0,1 = 1 − γr , ρ

(r)
0,out = 0, (6)

ρ
(r)
1,0 = ρ

(r)
1,1 = 0, ρ

(r)
1,out = 1 (7)

where βr and γr are parameters controlling the number of notes
in a note cluster. Denoting w = (r, g) and w′ = (r′, g′), the
transition probability of the hierarchical model is given as

ξ(w′, w) := P (w|w′) = ρ
(r ′)
g ′,outπ(r′, r)ρ(r)

in,g + δrr ′ρ
(r)
g ′,g . (8)

The initial probability is given as ξini(w1) := P (w1) =
πini(r1)ρ

(r1 )
in,g1

. We notate w = (wn )N +1
n=1 = (rn , gn )N +1

n=1 .
To describe the temporal fluctuations, we introduce a tempo

variable, denoted by vn , that describes the local (inverse) tempo
for the time interval between the n-th and (n+1)-th note onsets
[28], [31]. To represent the variation of tempos, we put a Gaus-
sian Markov process on the logarithm of the tempo variable
un = ln vn as

P (u1) = N(u1 ;uini, σ
2
v ,ini), (9)

P (un+1 |un ) = N(un+1;un , σ2
v ) (10)

where N( · ;μ,Σ) denotes the normal distribution with mean
μ and variance Σ, and uini , σv,ini and σv are parameters. The
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Fig. 6. Graphical representation of the autoregressive HMM for one voice.
The label ‘Init’ indicates the initial probability and the dotted circle of the first
onset time t1 indicates that a distribution is not given for this variable.

parameter σv describes the amount of tempo changes. If the n-th
and (n+1)-th notes belong to a note cluster (i.e. gn = 0), their
IOI approximately obeys an exponential distribution [28] and
the probability of the onset time of the (n+1)-th note, denoted
by tn+1 , is then given as

P (tn+1 |tn , vn , rn , gn = 0) = Exp(tn+1; λ) (11)

where Exp denotes the exponential distribution and λ is the scale
parameter, which controls the asynchrony of note onsets in a note
cluster. Otherwise, tn+1 − tn has a duration corresponding to
note value rn and the probability is described with a normal
distribution as

P (tn+1 |tn , vn , rn , gn = 1) = N(tn+1; tn + rnvn , σ2
t ). (12)

Intuitively the parameter σt describes the amount of onset-time
fluctuations due to human motor noise when a performer keeps a
tempo. We do not put a distribution on the onset time of the first
note t1 because we formulate the model to be invariant under
time translations and this value would not affect any results of
inference. We notate v = (vn )N

n=1 and t = (tn )N +1
n=1 .

Finally we describe the generation of pitches p = (pn )N +1
n=0

as a Markov chain (we introduce an auxiliary symbol p0 for
later convenience). The probabilities are

P (p1) = θ(p0 , p1), (13)

P (pn |pn−1) = θ(pn−1 , pn ) (n = 2, . . . , N+1) (14)

where θ(p′, p) denotes the (stationary) transition probability and
if p′ = p0 it denotes the initial probability.

The above model can be summarised as an autoregressive
HMM with hidden states (r, g,v) and outputs (p, t) (Fig. 6),
which will be a voice HMM. Although so far the probabilities of
pitches are independent of other variables, they will be signif-
icant once multiple voice HMMs are merged and the posterior
probabilities are inferred.

2) Model for Multiple Voices: We combine the multiple
voice HMMs in Section III-A1 using the framework of merged-
output HMMs (Section II-D). Since in piano performances,
which are our main focus, polyrhythm and voice asynchrony
usually involve the two hands, we consider a model with two
voices, leaving a note that it is not difficult to formalise a model
with more than two voices. In what follows, voices are indexed
by a variable s = 1, 2, corresponding to the left and right hand

in practice. All the variables and parameters are now considered
for each voice and thus r(s) = (r(s)

n )Ns +1
n=1 is the sequence of

note values in voice s, πs(r′, r) their transition probability, etc.
Simply speaking, the sequence of merged outputs is obtained
by gathering the outputs of the voice HMMs and sorting them
according to onset times. To derive inference algorithms that
are computationally tractable, however, we should formulate a
model that outputs notes incrementally in the order of obser-
vations. This can be done by introducing stochastic variables
s = (sn )N +1

n=1 , which indicate that the n-th observed note be-
longs to voice sn and follow the probability sn ∼ Ber (α1 , α2).
The parameter αsn

represents how likely the n-th note is gen-
erated from the HMM of voice sn .

The variable sn is determined in advance to the pitch, note
value or onset time of the corresponding note in the generative
process (which is described below). For rhythm transcription,
however, dependence of the parameter αs on features of the
given input (MIDI performance) can be introduced to improve
the accuracy of voice separation. As such a feature, we use
contexts of pitch that reflects the constraint on pitch intervals
that can be simultaneously played by one hand. Defining phigh

n

and plow
n as the highest and lowest pitch that is sounding si-

multaneously (but not necessarily having a simultaneous onset)
with pn , we switch the value of αsn

depending on whether
pn − plow

n > 15 or not and whether phigh
n − pn > 15 or not (to-

tal of four cases), reflecting the fact that a pitch interval larger
than 15 semitones is rarely played with one hand at a time.
The effect of using this context-dependent αs is examined in
Section IV-C.

If voice sn is chosen, then the HMM of voice sn outputs a
note, and the hidden state of the other voice HMM is unchanged.
Such a model can be described with an HMM with a state space
labelled by k = (s, p(1) , w(1) , t(1) , p(2) , w(2) , t(2) , v). Here we
have a single tempo variable v that is shared by the two voices
in order to assure loose synchrony between them. The transition
probability P (kn=k|kn−1=k′), for n ≥ 2, is given as

αsP (v|v′)As(w(s) , p(s) , t(s) |w′(s) , p′(s) , t′(s) ; v′)

·
[
δs1δw ′( 2 ) w ( 2 ) δp ′( 2 ) p ( 2 ) δ(t′(2) − t(2)) + (1 ↔ 2)

]
(15)

where the expression ‘(1↔2)’ means that the previous term is
repeated with 1 and 2 interchanged and we have defined

As(w(s) , p(s) , t(s) |w′(s) , p′(s) , t′(s) ; v′)

= ξs(w′(s) , w(s))θs(p′(s) , p(s))P (t(s) |t′(s) , v′, w′(s)) (16)

and δ denotes Kronecker’s delta for discrete variables and
Dirac’s delta function for continuous variables. The probabil-
ity P (v|v′) is defined in Eq. (10), and P (t(s) |t′(s) , v′, w′(s)) is
defined in Eqs. (11) and (12). For note values the initial proba-
bility is given as P (r(s)

1 ) = πini
s (r(s)

1 ), and for pitches the initial

probability is given in Eq. (13). The first onset times t
(1)
1 and

t
(2)
1 do not have distributions, as explained in Section III-A1,

and we practically set t
(1)
1 = t

(2)
1 = t1 (the first observed onset

time). Finally the output of the model is given as

pn = p(sn )
n , tn = t(sn )

n , (17)
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Fig. 7. Graphical representation of the proposed merged-output HMM when

the voice information is fixed. The variables with a tilde (r̃(s)
n and g̃

(s)
n ) represent

note values for each voice without redundancies (see Section III-C). See also
the caption of Fig. 6. Here we have independent initial distributions for note
values and pitches of different voice HMMs.

and thus the complete-data probability is written as

P (k,p, t) =
N +1∏

n=1

P (kn |kn−1)δpn p
( s n )
n

δ(tn − t(sn )
n ). (18)

Here N = N1 + N2 denotes the total number of score notes, and
the following notations are used: v = (vn )N

n=1 , p = (pn )N +1
n=1 ,

t = (tn )N +1
n=1 , and k = (kn )N +1

n=1 . Note that whereas p and t are
observed quantities, p(1) ,p(2) , t(1) and t(2) are not because we
cannot directly observe the voice information encrypted in s.
The graphical representation of the model is illustrated in Fig. 7.

B. Model Parameters and Their Determination

We here summarise model parameters, explain how they can
be determined from data and describe some reasonable con-
straints to improve the efficiency of parameter learning. Let Np

and Nr be the number of pitches and note values, which are set
as 88 and 15 in our implementation in Section IV.

The score model for each voice HMM has the following pa-
rameters: πini(r) [Nr ], π(r, r′) [N 2

r ], βr [Nr ], γr [Nr ], θ(p0 , p)
[Np ] and θ(p, p′) [N 2

p ], where the number in square brackets
indicate the number of parameters. (The number of independent
parameters may reduce because of normalisation conditions,
which we shall not care here for simplicity.) These parameters
can be determined with a data set of music scores with voice
indications. For piano pieces, the two staffs in the grand staff
notation can be used for the two voice HMMs. After represent-
ing notes in each voice as a sequence of note clusters as in
Fig. 3, πini(r) and π(r, r′) can be obtained in a standard way.
Determining θ(p0 , p) and θ(p, p′) is also straightforward. To de-
termine the parameters βr and γr , we first define the frequency
of note clusters containing m notes with note value r as f

(r)
m .

Since βr is the proportion of note clusters containing more than
one notes, it is given by

βr =
∞∑

m=2

f (r)
m

/ ∞∑

m ′=1

f
(r)
m ′ . (19)

The γr can be obtained by matching the expected staying time
at state with g = 0 (Fig. 5) as follows:

∞∑

m=2
mf

(r)
m

∞∑

m ′=2
f

(r)
m ′

= 〈m〉m≥2 =
∞∑

m=2

mγm−2
r (1 − γr ) =

2 − γr

1 − γr
.

In practice, the transition probability θ(p, p′) and the initial
probabilities θ(p0 , p) and πini(r) are often subject to the sparse-
ness problem since the first one has a rather large number of
parameters and for the last two only one sample from each
piece can be used. To overcome this problem, we can reduce
the number of parameters in the following way, which is used in
our implementation. First, we approximate θ(p, p′) as a function
of the interval p′ − p, which reduces the number of parameters
from N 2

p to 2Np . Second, we can approximate θ(p0 , p) by a
Gaussian function as

θ(p0 , p) ∝ N(p;μp, σ
2
p ). (20)

Finally, for πini(r), the stationary (unigram) probability ob-
tained from π(r, r′) can be used. Note that the pitch probabili-
ties are only used to improve voice separation and their precise
values do not much influence the results of rhythm transcription.
Likewise the initial probabilities do not influence the results for
most notes due to the Markov property.

The performance model has the following five parameters:
σv , σini

v , vini(= exp(uini)), σt and λ. These can be determined
from performance data, for example, MIDI recordings of piano
performances whose notes are matched to the corresponding
notes in the scores. Among these the initial values, σini

v and
vini(= exp(uini)) are most difficult to determine from data but
again have limited influence as a prior for global tempo, which
is supposed to be musically less important (see discussion in
Section IV-A). In our implementation, they are simply set by
hand. The method for determining the other parameters based on
a principle of minimal prediction error is discussed in a previous
study [28] and will not be repeated here.

An additional parameter for the merged-output HMM is αs ,
which is generally obtained by simply counting the number
of notes in each voice or can be approximated simply by
α1 = α2 = 1/2. In our implementation, we obtain four αs’s
depending on the context as described in Section III-A2, which
is also straightforward.

C. Inference Algorithm

To obtain the result of rhythm transcription using the model
just described, we must estimate the most probable hidden state
sequence k̂ = argmaxkP (k|p, t) given the observations (p, t).
This gives us the voice information ŝ and the estimated note
values r̂(1) and r̂(2) . Let w̃(s) = (w̃(s)

n )Ns
n=1 = (r̃(s)

n , g̃
(s)
n )Ns

n=1
be the reduced sequence of note values for voice s, which is
obtained by, for all n, deleting the n-th element with sn 
= s in
ŵ(s) . Then the score time τ

(s)
n of the n-th note onset in voice s
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is given by

τ (s)
n =

n−δs s 1∑

m=1

g̃(s)
m r̃(s)

m . (21)

The inference algorithm of merged-output HMM has been
discussed previously [24]. Since a merged-output HMM can be
seen as an HMM with a product state space, the Viterbi algorithm
[20] can be applied for inference in principle. It was shown that
owing to the specific form of transition probability matrix as in
Eq. (1), the computational complexity for one Viterbi update can
be reduced from O(4N 2

1 N 2
2 ) to O(2N1N2(N1 + N2)) where

Ns is the size of the state space of the s-th voice HMM. However,
since the state space of the model in Section III-A2 involves both
discrete and continuous variables, an exact inference in this way
is difficult.

To solve this, we discretise the tempo variable, which practi-
cally has little influence when the step size is sufficiently small
since tempo is restricted in a certain range in conventional music
and vn always has uncertainty of O(σt/r

(sn )
n−1 ). Discretisation of

tempo variables has also been used for audio-to-score alignment
[32] and beat tracking [33]. Other continuous variables t, t(1)

and t(2) can take only values of observed onset times and thus
can, in effect, be treated as discrete variables. Unfortunately the
direct use of the Viterbi algorithm is impractical even with this
discretisation. Let us roughly estimate the computational cost to
see this. Let Np , Nw and Nv be the sizes of the state space for

pitch, note value and tempo. Since onset times t
(s)
n could take N

values, the size of the state space for kn is O(2N 2
p N 2

w N 2Nv ),
and the computational cost for one Viterbi update is C =
O(4N 4

p N 4
w N 4N 2

v ). A rough estimation (Np ∼ 100, Nw ∼ 30,
N ∼ 300, Nv ∼ 50) yields C ∼ 1028 , which is intractable.
Even after using the constraints of the transition probabilities in
Eq. (15), we have C = O(4N 3

p N 3
w N 3N 2

v ) ∼ 1022 , which is still
intractable.

We can avoid this intractable computational cost and derive
an efficient inference algorithm by appropriately relating the
hidden variables (p(1) ,p(2) , t(1) , t(2)) to observed quantities
(p, t). We first introduce a variable hn = 1, 2, . . ., which is
defined as the smallest h ≥ 1 satisfying sn 
= sn−h for each n.
We find the following relations:

hn =
{

hn−1 + 1, sn = sn−1 ;
1, sn 
= sn−1 ,

(22)

(p(s)
n , t(s)

n ) =
{

(pn , tn ), s = sn ;
(pn−hn

, tn−hn
), s 
= sn .

(23)

This means that (p(1) ,p(2) , t(1) , t(2)) are determined if we are
given (s,h,p, t) and the effective number of variables is re-
duced by using h. With this change of variables, we find

P (k,p, t) = P (s,w(1) ,w(2) ,v,p(1) ,p(2) , t(1) , t(2) ,p, t)

= P (s,h,w(1) ,w(2) ,v,p, t)

Fig. 8. Example of scaling and shift operations to recover the correct tran-
scription from an estimated result.

=
∏

n

{
αsn

P (vn |vn−1)
[
δsn 1δw

( 2 )
n w

( 2 )
n −1

+ (1 ↔ 2)
]

·
[
δsn sn −1 δhn (hn −1 +1)A

same
n + (1 − δsn sn −1 )δhn 1A

diff
n

]}
,

Asame
n = Asn

(w(sn )
n , pn , tn |w(sn )

n−1 , pn−1 , tn−1 ; vn−1),

Adiff
n = Asn

(w(sn )
n , pn , tn |w(sn )

n−1 , pñ , tñ ; vn−1) (24)

where ñ in the last line should be replaced by n − hn−1 − 1.
We can now apply the Viterbi algorithm on the state space

(s,h,w(1) ,w(2) ,v). Noting that the maximum possible value
of hn is N and using the constraints of the transition proba-
bilities, one finds that C = O(4NN 3

w N 2
v )(∼ 1011), which is

significantly smaller than the previous values. Note that so far
no ad-hoc approximations have been introduced to reduce the
computational complexity. Practically, we can set a smaller max-
imal value Nh(< N) of hn to obtain approximate optimisation,
which further reduces the computational cost toO(4NhN 3

w N 2
v ).

The number Nh can be regarded as the maximum number of
succeeding notes played by one hand without being interrupted
by the other hand. The choice of Nh and its dependency is
discussed in Section IV-C1.

IV. EVALUATION

A. Methodology for Systematic Evaluation

In a few studies that reported systematic evaluations of rhythm
transcription [8], [9], [13], editing costs (i.e. the number of
necessary operations to correct an estimated result) are used
as evaluation measures. These studies used the shift operation,
which changes the score time of a particular note or equivalently,
changes a note value, to count the number of note-wise rhythmic
errors. Musically speaking, on the other hand, the relative note
values are more important than the absolute note values, and the
tempo error should also be considered. This is because there is
arbitrariness in choosing the unit of note values: For example, a
quarter note played in a tempo of 60 BPM has the same duration
as a half note played in a tempo of 120 BPM. Since results of
rhythm transcription often contain note values that are uniformly
scaled from the correct values, which should not be considered
as completely incorrect estimations [8], [34], we must take into
account the scaling operation as well as the shift operation.

As shown in the example in Fig. 8, there can be local scal-
ing operations and shift operations, and a reasonable defini-
tion of the editing cost is the least number No of operations
consisting of Nsc scaling operations and Nsh shift operations
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(No = Nsc + Nsh ). As explained in detail in the appendix, this
rhythm correction cost can be calculated by a dynamic pro-
gramming similarly as the Levenshtein distance. Definition and
calculation of the rhythm correction cost in the polyphonic case
are also discussed there. We use the rhythm correction rate
R = No/N as an evaluation measure.

B. Comparisons with Other Methods

We first present results of comparative evaluations. The pur-
pose is to find out the state-of-the-art method of rhythm tran-
scription and its relation to the proposed model. Among previous
methods described in Section II, the following six were directly
compared: Connectionist Quantizer [7], Melisma Analyzers (the
first [6] and second [14] versions), the note HMM [9], the met-
rical HMM [11] and the 2D PCFG model [16], [17]. The first
five are relatively frequently cited and the last one is theoreti-
cally important as it provides an alternative way of statistically
modelling multiple-voice structure (Section II-C).

1) Setup: Two data sets of MIDI recordings of classical pi-
ano pieces were used. One (polyrhythmic data set) consisted of
30 performances of different (excerpts of) pieces that contained
2 against 3 or 3 against 4 polyrhythmic passages, and the other
(non-polyrhythmic data set) consisted of 30 performances of
different (excerpts of) pieces that did not contain polyrhythmic
passages. Pieces by various composers, ranging from J. S. Bach
to Debussy, were chosen and the players were also various:
Some of the performances were taken from the PEDB database
[35], a few were performances we recorded, and the rests were
taken from collections in public domain websites2.

For the proposed method, all normal, dotted, and triplet note
values ranging from the whole note to the 32nd note were
used as candidate note values. Parameters for the score model,
π(r, r′), βr , γr and θ(p, p′), and the value of αs were learned
from a data set of classical piano pieces that had no overlap
with the test data2 . We set (μp, σp) = (54, 12) for the left-hand
voice HMM and (70, 12) for the right-hand voice HMM (see
Section III-B). Values for the parameters for the performance
model, σv , σt and λ, were taken from a previous study [28]
(which used performance data different from ours). The used
values were σ̄v = 3.32 × 10−2 , σ̄t = 0.02 s and λ̄ = 0.0101 s.
For the tempo variable, we discretised vn into 50 values loga-
rithmically equally spaced in the range of 0.3 to 1.5 s per quarter
note (corresponding to 200 BPM and 40 BPM). We set vini as
the central value of the range (0.671 s per quarter note or 89.4
BPM) and σini

v = 3σ̄v . Nh was chosen as 30, which will be
explained later (Section IV-C1).

For other methods, we used the default values provided in the
source codes, except for the note HMM and the metrical HMM,
which are closely related to our method. For these models, the
parameters of the score models were also trained with the same
score data set and the performance model was the same as
that for the proposed model. The metrical HMM was build and
learned for two cases, duple metres (2/4, 4/4, etc.) and triple

2The list of used pieces is available on our web page [26].

Fig. 9. Rhythm correction rates (lower is better) for the (a) polyrhythmic data
and (b) non-polyrhythmic data. The circle indicates the average (AVE), the blue
box indicates the range from the first to third quartiles. The standard deviation
is indicated as STD.

metres (3/4, 6/4, etc.), and one of these models was chosen for
each performance according to the likelihood.

For Melisma Analyzers, results of the metre analysis were
used and the estimated tactus was scaled to a quarter note to use
the results as rhythm transcriptions. For Connectionist Quan-
tizer, which accepts only monophonic inputs, chord clustering
was performed beforehand with a threshold of 35 ms on the IOIs
of chordal notes. The algorithm was run for 100 iterations for
each performance. Because this algorithm outputs note lengths
in units of 10 ms without indications for tactus, the most frequent
note length was taken as the quarter note value.

2) Results: The distributions of rhythm correction rates,
their averages and standard deviations are shown in Fig. 9. For
clear illustration, the results for Connectionist Quantizer, which
was much worse than the others, were omitted: The average
(standard deviation, first, third quantiles) was 53.7% (18.5%,
43.8%, 67.3%) for the polyrhythmic data and 38.9% (13.9%,
28.2%, 47.3%) for the non-polyrhythmic data.

As shown in Table I, some performances were not properly
processed by the 2D PCFG model and Melisma Analyzers. For
the 2D PCFG model, because it took much time in process-
ing some performances (executions lasted more than a week
for some performances), every performance was run for at least
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TABLE I
AVERAGES AND STANDARD ERRORS OF DIFFERENCES OF THE RHYTHM

CORRECTION RATE FOR LISTED MODELS R AND THAT OF THE PROPOSED

MODEL Rprop (LOWER IS BETTER)

Data set Model Unprocessed R − Rp r o p [%]

Polyrhythmic Note HMM [9] 0 12.2 ± 2.8
Metrical HMM [11] 0 13.1 ± 3.1
2-dim PCFG [17] 18 23.8 ± 3.9
Melisma ver 1 [6] 9 17.7 ± 3.7

Melisma ver 2 [14] 4 21.4 ± 3.3
Connectionist [7] 0 38.7 ± 3.2

Non-polyrhythmic Note HMM [9] 0 −0.82 ± 0.50
Metrical HMM [11] 0 −0.79 ± 0.61
2-dim PCFG [17] 25 1.80 ± 1.64
Melisma ver 1 [6] 4 1.29 ± 1.12

Melisma ver 2 [14] 11 −0.09 ± 1.33
Connectionist [7] 0 30.6 ± 2.95

The number of unprocessed pieces (see text) is shown in the third column. Values
with a statistical significance ≥ 3σ are illustrated in bold font.

24 hours and only performances for which execution ended were
treated as processed cases. Among 29 (out of 60) performances
for which execution ended, 12 performances did not receive
any results (because the parser did not succeed in accepting
the performances) and those were also treated as ‘unprocessed’
cases. To compare the results in the presence of these unpro-
cessed cases, we calculated for each of the algorithms and for
successfully processed performances the differences in rhythm
corrections rates relative to the proposed model. Their average
and standard error (corresponding to 1σ deviation in the t-test)
are shown in Table I.

For the polyrhythmic data, it is clear that the proposed model
outperformed the other methods, by more than 12 points in the
accuracies and more than 3σ deviations in the statistical sig-
nificances. Among the other algorithms, the note HMM and
metrical HMM had similar accuracies and were second best,
and Connectionist Quantizer was the worst. These results quan-
titatively confirmed that modelling multiple-voice structure is
indeed effective for polyrhythmic performances. Contrary to
our expectation, the result for the 2D PCFG model was sec-
ond worst for these data. This might be because that the algo-
rithm using pruning cannot always find the optimal result and
the model parameters have not been trained from data, both of
which are difficult to ameliorate currently but could possibly
be improved in the future. The results show that the statistical
models with (almost fully) learned parameters (the proposed
model, the note HMM and the metrical HMM) had better ac-
curacies than the other statistical models with partly learned
parameters or without parameter learning (the 2D PCFG model
and Melisma Analyzer version 2) and other methods. A typical
example of polyrhythmic performance that is almost correctly
recognised by the proposed model but not by other methods is
shown in Fig. 103. One finds that the 3 against 4 polyrhythm
was properly recognised only by the proposed model
(cf. Fig. 3).

3Other examples and sound files are accessible in our demonstration web
page [26].

For the non-polyrhythmic data, Connectionist Quantizer
again had a far worst result and the differences among the other
methods were much smaller (within 2 points) compared to the
polyrhythmic case. The note HMM and metrical HMM had
similar and best accuracies and the proposed model was the
third best. The difference in the average values between the
proposed model and the note HMM or the metrical HMM was
less than 1 point and the statistical significance was 1.6σ and
1.3σ, respectively. Presumably, the main reason that the note
and metrical HMMs worked better is that the rhythmic pattern
in the reduced sequence of note clusters is often simpler than
that of melody/chords in each voice in the non-polyrhythmic
case because of the principle of complementary rhythm [36].
In particular, notes/chords in a voice can have tied note values
that are not contained in our candidate list (e.g. a quarter note +
16th note value for the last note of the first bar in the upper staff
in the example of Fig. 11), which can also appear as a result of
incorrect voice separation.

It is observed that the transcription by the merged-output
HMM can produce desynchronised cumulative note values in
different voices (e.g., the quarter note E
5 in the upper voice in
Fig. 11 has a time span different from that of the corresponding
notes in the lower voice). This is due to the lack of constraints
to assure the matching of these cumulative note values and the
simplification of independent voice HMMs. For the note HMM
and the proposed model, there were grammatically wrong se-
quences of note values, for example, triplets that appear in single
or two notes without completing a unit of beat (e.g. the triplet
notes in the left-hand part in Fig. 11). Further improvements
are desired by incorporating such constraints and interactions
between voices into the model.

C. Examining the Proposed Method

We here examine the proposed method in more details.
1) Dependency on Nh : In Section III-C we introduced a

cutoff Nh in the inference algorithm to reduce the computational
cost. In a previous study [24] that discussed the same cutoff,
it has been empirically confirmed that Nh = 50 yields almost
exact results for piano performances. Since it is difficult for our
model to run the exact algorithm corresponding to Nh → ∞,
we compared results of varying Nh up to 50 to investigate its
dependency.

As shown in Fig. 12, the results were similar for Nh ≥ 20 and
were exactly same for Nh ≥ 30. Based on this result, we used
the value Nh = 30 for all other evaluations in this paper. Note
that the sufficient value of Nh for exact inference may depend
on data and that smaller values with sub-optimal estimations
could yield better accuracies (as the case of Nh = 20 for our
algorithm and data).

2) Effect of the Chord Model: As explained in Section III-A,
we propose a two-level hierarchical HMM for the description
of chords, replacing self-transitions used in previous studies
[10], [19]. To examine its effect in terms of accuracies, we
directly compared the two cases implemented in the merged-
output HMM. Since in the former case a self-transition is also
used to describe repeated note values of two note clusters,
post-processing using the onset-time output probabilities was
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Fig. 10. Transcription results of a polyrhythmic passage (Chopin’s Fantaisie Impromptu). Only part of the performance is illustrated, but the rhythm correction
rates for the whole performance are shown. For the result with the proposed model (merged-output HMM), the staffs indicate the estimated voices.

Fig. 11. Transcription results of a non-polyrhythmic passage (J. S. Bach’s Invention No. 2). See the caption to Fig. 10.

performed on the results of Viterbi decoding to determine
whether a self-transition describe chordal notes or not.

The average rhythm correction rate by the chord model us-
ing self-transitions was 15.69% for the polyrhythmic data and
9.12% for the non-polyrhythmic data. By comparing with the
values in Fig. 9, our chord model was slightly better and the
differences are 0.87 ± 0.46 and 0.68 ± 2.47 (statistical signifi-
cance 1.9σ and 0.3σ) for the two data sets. These results indicate
that our chord model is not only conceptually simple but also
seems to improve the accuracy slightly.

3) Effect of Joint Estimation of Voice and Note Values and
Voice Separation Accuracy: A feature of our method is the
simultaneous estimation of voice and note values. An alternative
approach is to use a cascading algorithm that performs voice

Fig. 12. Average rhythm correction rates for varying Nh .

separation first and then estimates note values using the
estimated voices. To examine the effectiveness of the joint
estimation approach, we implemented a cascading algorithm
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consisting of voice separation using only the pitch part of the
model in Section III-A2 and rhythm transcription using two
note HMMs with coupled tempos and compared it with the
proposed method.

The average rhythm correction rate by the cascading algo-
rithm was 16.89% for the polyrhythmic data and 9.67% for
the non-polyrhythmic data. By comparing with the values in
Fig. 9, we see that the proposed method was slightly better and
the differences are 1.88 ± 1.64 and 1.42 ± 0.47 (statistical sig-
nificance 1.1σ and 3.0σ) for the two data sets. These results
indicate the effectiveness of the joint estimation approach of
the proposed method while the cascading algorithm may have
practical importance because of its smaller computational cost.

We also measured the accuracy of voice separation (into two
hands). The accuracy with the proposed model was 94.2% for
the polyrhythmic data and 88.0% for the non-polyrhythmic data
and with the cascading algorithm it was 93.8% and 92.5%.
This indicates firstly that a similar (or higher) accuracy can be
obtained by using only the pitch information and secondly that
a higher accuracy of voice separation does not necessarily lead
to a better rhythm recognition accuracy.

4) Influence of the Model Parameters: In our implementa-
tion, parameters of the tempo variables (mainly σv , σt and λ)
were not optimised but adjusted to values measured in a com-
pletely different experiment [28]. Since these parameters play
important roles of describing ‘naturalness’ of temporal fluc-
tuations in music performance, we performed experiments to
examine their influence.

Fig. 13 shows the results of measuring average rhythm cor-
rection rates for varying σv , σt and λ around the value used for
our implementation. When one parameter was varied, the other
parameters were fixed to the original values. Results for the note
HMM are also shown as references. We see that overall (with
some exceptions) the parameters were optimal around the orig-
inal values, which implies the universality of these parameters.
For both models, we found values with a better accuracy (at least
for one of the data sets) than the original values, suggesting the
possibility of further optimisations.

We see relatively large influence of σt on the merged-output
HMM and λ on the note HMM. This can be explained by the
fact that compared to the note HMM, the merged-output HMM
must handle a more number of inter-note-cluster durations and
a less number of chordal notes because of the presence of two
voices. Accordingly the σt , which controls the fluctuation of
inter-note-cluster durations, has more chances and the λ, which
controls the asynchrony of chordal notes, has less chances to
influence the results of the merged-output HMM.

Finally we examined the effect of context-dependent αs de-
scribed in Section III-A2. For this purpose we simply run the
proposed method with uniformly distributed αs (α1 = α2 =
1/2). The average rhythm correction rate was slightly worse
(17.96 ± 2.49) for the polyrhythmic data and slightly better
(7.76 ± 1.33) for the non-polyrhythmic data. On the other hand,
the accuracy of voice separation was 30.4% (50.0%) for the
polyrhythmic (non-polyrhythmic) data, which is much worse.
The results confirm that the context-dependent αs is important
to improve voice separation and provide yet another example

Fig. 13. Average rhythm correction rates for the merged-output HMM and
the note HMM for varying σv , σt , and λ. Error bars indicate standard errors.

that a more precise voice separation does not necessarily induce
better rhythm recognition accuracy.

V. CONCLUSION

We have described and examined a rhythm transcription
method based on a merged-output HMM of polyphonic sym-
bolic performance. This model has an internal structure consist-
ing of multiple HMMs to solve the long-standing problem of
properly describing the multiple-voice structure of polyphonic
music. With the inference method derived in this paper, the
algorithm can perform voice separation and note-value recogni-
tion simultaneously. The technique of deriving inference algo-
rithms with reduced computational cost can be applied to other
merged-output HMMs with autoregressive voice HMMs, which
are expectedly effective models of polyphonic music where the
multiple-voice structure is significant.

By examining the proposed method, we also confirmed that
simultaneously inferring the voice and rhythm information im-
proved the accuracy of rhythm transcription compared to a cas-
cading approach, even though it did not necessarily improve the
accuracy of voice separation. On the other hand, transcribed
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results sometimes contained unwanted asynchrony between
notes in different voices that have almost simultaneous notes
onset times. This is because the model describes no information
about the absolute onset time and there are no strong interac-
tions between voices other than the shared tempo. The use of
merged-output HMMs with interacting voice HMMs [23] could
provide a solution in principle, but how to describe synchrony
of global score times while retaining computational tractability
is a remaining problem.

With evaluations comparing seven rhythm transcription meth-
ods, we found that the proposed method performed significantly
better than others for polyrhythmic performances. For non-
polyrhythmic performances, we found that the note HMM and
metrical HMM had the best accuracies and the proposed method
was almost as good as (but slightly worse than) these methods.
These results revealed the state-of-the-art methods for rhythm
transcription that were different for the two kinds of data. While
practically running two or more methods simultaneously and
choosing the best result can be effective, developing a unified
method that yields best results for both kinds of data is desired.
Solving the above problem of unwanted asynchrony would be
one key and constructing a model with variable number of voices
would be another.

APPENDIX A
CALCULATION OF THE RHYTHM CORRECTION COST

Let us formulate the rhythm correction cost introduced in
Section IV-A and derive an algorithm for calculating it. We
first consider the monophonic case. Let rtrue

n and rest
n be the

correct and estimated note value of the n-th note length in the
performance input (n = 1, . . . , N ). We consider a sequence of
pairs (dn , en ) of scaling factor dn and shift interval en for
n = 1, . . . , N . To recover (rtrue

n )N
n=1 from (rest

n )N
n=1 with the

scaling and shift operations, we must have

rtrue
n = dnrest

n + en (25)

for n = 1, · · · , N . The number of scaling operations and that
of shift operations are formally defined as Nsc = #{n|dn+1 
=
dn} and Nsh = #{n|en 
= 0}. The minimum number of editing
operations No is determined by minimising Nsc + Nsh for all
sequences (dn , en )N

n=1 satisfying Eq. (25). This is a special case
of a generalised rhythm correction cost, which can be defined
similarly as the minimum of wscNsc + wshNsh for some non-
negative real numbers wsc and wsh .

Let us now present a dynamic programming to calculate the
rhythm correction cost No . We describe a general algorithm
valid for any values of wsc and wsh . The algorithm can be derived
in the same form as the Viterbi algorithm for HMMs. We define
the ‘state space’ Ω as the set of all possible scaling operations,
which can be constructed by taking ratios of all possible note
values. The space Ω is finite since the set of note values is
finite. The scaling cost (analogous to transition probability) Csc :
Ω × Ω → R is defined as

Csc(dn−1 , dn ) =
{

0, if dn = dn−1 ;
wsc , otherwise.

(26)

For the initial value d1 the cost is defined as Csc(d1) = 0 if
d1 = 1 and wsc otherwise. To describe whether a shift operation
is necessary for the n-th note value after scaling, the shift cost
(analogous to output probability) Csh : Ω → R is defined as

Csh(dn ) =
{

0, if rtrue
n = dnrest

n ;
wsh , otherwise.

(27)

Defining the total cost as

C(d1 , . . . , dN ) =
N∑

n=1

(Csc(dn−1 , dn ) + Csh(dn )) (28)

(we understand Csc(d0 , d1) as Csc(d1)), we have the relation

No = min
d1 ,...,dN

C(d1 , . . . , dN ). (29)

The right-hand side of Eq. (29) can be calculated by the Viterbi
algorithm [20] with computational complexity O((#Ω)2N) <
O(N 4

r N) where Nr is the number of note-value types.
Note that the above formulation is already valid in the pres-

ence of chords. Chordal notes are represented as notes with
rn = 0. The error in clustering a chord, i.e., rtrue

n = 0 but
rest
n 
= 0 or vice versa, can be corrected by a shift operation.

When there are separated multiple voices, we can apply shift
operations on each note in each voice and scaling operations on
all voices simultaneously. If the estimated score time duration
between the first notes of any two voices is different from that
in the correct score, it must be corrected as well. The rhythm
correction cost for multiple voices can be calculated by the same
manner as above using as (rest

n )N
n=1 a sequence of by merging

all τ
(s)
n+1 − τ

(s)
n for all s and 1 ≤ n ≤ Ns and τ

(s)
1 for all s > 1

in the order of onset time, where τ
(s)
n is the score time of n-th

note onset in voice s as defined in Eq. (21).
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