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Abstract—This paper presents a new method of singing voice
analysis that performs mutually-dependent singing voice separa-
tion and vocal fundamental frequency (F0) estimation. Vocal F0
estimation is considered to become easier if singing voices can
be separated from a music audio signal, and vocal F0 contours
are useful for singing voice separation. This calls for an approach
that improves the performance of each of these tasks by using
the results of the other. The proposed method first performs ro-
bust principal component analysis (RPCA) for roughly extracting
singing voices from a target music audio signal. The F0 contour
of the main melody is then estimated from the separated singing
voices by finding the optimal temporal path over an F0 saliency
spectrogram. Finally, the singing voices are separated again more
accurately by combining a conventional time-frequency mask given
by RPCA with another mask that passes only the harmonic struc-
tures of the estimated F0s. Experimental results showed that the
proposed method significantly improved the performances of both
singing voice separation and vocal F0 estimation. The proposed
method also outperformed all the other methods of singing voice
separation submitted to an international music analysis competi-
tion called MIREX 2014.

Index Terms—Robust principal component analysis (RPCA),
subharmonic summation (SHS), singing voice separation, vocal F0
estimation.

I. INTRODUCTION

S INGING voice analysis is important for active music
listening interfaces [1] that enable a user to customize the

contents of existing music recordings in ways not limited to
frequency equalization and tempo adjustment. Since singing
voices tend to form main melodies and strongly affect the
moods of musical pieces, several methods have been proposed
for editing the three major kinds of acoustic characteristics of
singing voices: fundamental frequencies (F0s), timbres, and
volumes. A system of speech analysis and synthesis called
TANDEM-STRAIGHT [2], for example, decomposes human
voices into F0s, spectral envelopes (timbres), and non-periodic
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components. High-quality F0- and/or timbre-changed singing
voices can then be resynthesized by manipulating F0s and
spectral envelopes. Ohishi et al. [3] represents F0 or volume
dynamics of singing voices by using a probabilistic model and
transfers those dynamics to other singing voices. Note that
these methods deal only with isolated singing voices. Fujihara
and Goto [4] model the spectral envelopes of singing voices in
polyphonic audio signals to directly modify the vocal timbres
without affecting accompaniment parts.

To develop a system that enables a user to edit the acoustic
characteristics of singing voices included in a polyphonic au-
dio signal, we need to accurately perform both singing voice
separation and vocal F0 estimation. The performance of each
task could be improved by using the results of the other because
there is a complementary relationship between them. If singing
voices were extracted from a polyphonic audio signal, it would
be easy to estimate a vocal F0 contour from them. Vocal F0
contours are useful for improving singing voice separation. In
most studies, however, only the one-way dependency between
the two tasks has been considered. Singing voice separation has
often been used as preprocessing for vocal F0 estimation, and
vice versa.

In this paper we propose a novel singing voice analysis
method that performs singing voice separation and vocal F0
estimation in an interdependent manner. The core component
of the proposed method is preliminary singing voice separa-
tion based on robust principal component analysis (RPCA) [5].
Given the amplitude spectrogram (matrix) of a music signal,
RPCA decomposes it into the sum of a low-rank matrix and a
sparse matrix. Since accompaniments such as drums and rhythm
guitars tend to play similar phrases repeatedly, the resulting
spectrogram generally has a low-rank structure. Since singing
voices vary significantly and continuously over time and the
power of singing voices concentrates on harmonic partials, on
the other hand, the resulting spectrogram has a not low-rank but
sparse structure. Although RPCA is considered to be one of the
most prominent ways of singing voice separation, non-repetitive
instrument sounds are inevitably assigned to a sparse spectro-
gram. To filter out such non-vocal sounds, we estimate the F0
contour of singing voices from the sparse spectrogram based
on a saliency-based F0 estimation method called subharmonic
summation (SHS) [6] and extract only a series of harmonic
structures corresponding to the estimated F0s. Here we propose
a novel F0 saliency spectrogram in the time-frequency (TF)
domain by leveraging the results of RPCA. This can avoid the
negative effect of accompaniment sounds in vocal F0 estimation.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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Fig. 1. Typical instrumental composition of popular music.

Our method is similar in spirit to a recent method of singing
voice separation that combines rhythm-based and pitch-based
methods of singing voice separation [7]. It first estimates two
types of soft TF masks passing only singing voices by using a
singing voice separation method called REPET-SIM [8] and a
vocal F0 estimation method (originally proposed for multiple-
F0 estimation [9]). Those soft masks are then integrated into
a unified mask in a weighted manner. On the other hand, our
method is deeply linked to human perception of a main melody
in polyphonic music [10], [11]. Fig. 1 shows an instrumental
composition of popular music. It is thought that humans eas-
ily recognize the sounds of rhythm instruments such as drums
and rhythm guitars [10] and that in the residual sounds of non-
rhythm instruments, spectral components that have predominant
harmonic structures are identified as main melodies [11]. The
proposed method first separates the sounds of rhythm instru-
ments by using a TF mask estimated by RPCA. Main melodies
are extracted as singing voices from the residual sounds by using
another mask that passes only predominant harmonic structures.
Although the main melodies do not always correspond to singing
voices, we do not deal with vocal activity detection (VAD) in
this paper because many promising VAD methods [12]–[14] can
be applied as pre- or post-processing of our method.

The rest of this paper is organized as follows. Section II intro-
duces related works. Section III explains the proposed method.
Section IV describes the evaluation experiments and the MIREX
2014 singing-voice-separation task results. Section V describes
the experiments determining robust parameters for the proposed
method. Section VI concludes this paper.

II. RELATED WORK

This section introduces related works on vocal F0 estimation
and singing voice separation. It also reviews some studies on
the combination of those two tasks.

A. Vocal F0 Estimation

A typical approach to vocal F0 estimation is to identify F0s
that have predominant harmonic structures by using an F0
saliency spectrogram that represents how likely the F0 is to
exist in each TF bin. A core of this approach is how to estimate
a saliency spectrogram [15]–[19]. Goto [15] proposed a statis-
tical multiple-F0 analyzer called PreFEst that approximates an
observed spectrum as a superimposition of harmonic structures.
Each harmonic structure is represented as a Gaussian mixture

model (GMM) and the mixing weights of GMMs correspond-
ing to different F0s can be regarded as a saliency spectrum. Rao
et al. [16] tracked multiple candidates of vocal F0s including
the F0s of locally predominant non-vocal sounds and then iden-
tified vocal F0s by focusing on the temporal instability of vocal
components. Dressler [17] attempted to reduce the number of
possible overtones by identifying which overtones are derived
from a vocal harmonic structure. Salamon et al. [19] proposed
a heuristics-based method called MELODIA that focuses on the
characteristics of vocal F0 contours. The contours of F0 can-
didates are obtained by using a saliency spectrogram based on
SHS. This method achieved the state-of-the-art results in vocal
F0 estimation.

B. Singing Voice Separation

A typical approach to singing voice separation is to make a
TF mask that separates a target music spectrogram into a vocal
spectrogram and an accompaniment spectrogram. There are two
types of TF masks: soft masks and binary masks. An ideal binary
mask assigns 1 to a TF unit if the power of singing voices in
the unit is larger than that of the other concurrent sounds, and 0
otherwise. Although vocal and accompaniment sounds overlap
with various ratios at many TF units, excellent separation can be
achieved using binary masking. This is related to a phenomenon
called auditory masking: a louder sound tends to mask a weaker
sound within a particular frequency band [20].

Nonnegative matrix factorization (NMF) has often been used
for separating a polyphonic spectrogram into nonnegative com-
ponents and clustering those components into vocal compo-
nents and accompaniment components [21]–[23]. Another ap-
proach is to exploit the temporal and spectral continuity of ac-
companiment sounds and the sparsity of singing voices in the
TF domain [24]–[26]. Tachibana et al. [24], for example, pro-
posed harmonic/percussive source separation (HPSS) based on
the isotropic natures of harmonic and percussive sounds. Both
components were estimated jointly via maximum a posteriori
estimation. Fitzgerald et al. [25] proposed an HPSS method
applying different median filters to polyphonic spectra along
the time and frequency directions. Jeong et al. [26] statisti-
cally modeled the continuities of accompaniment sounds and
the sparsity of singing voices. Yen et al. [27] separated vocal,
harmonic, and percussive components by clustering frequency
modulation features in an unsupervised manner. Huang et al.
[28] have recently used a deep recurrent neural network for
supervised singing voice separation.

Some state-of-the-art methods of singing voice separation fo-
cus on the repeating characteristics of accompaniment sounds
[5], [8], [29]. Accompaniment sounds are often played by mu-
sical instruments that repeat similar phrases throughout the mu-
sic, such as drums and rhythm guitars. To identify repetitive
patterns in a polyphonic audio signal, Rafii et al. [29] took
the median of repeated spectral segments detected by an au-
tocorrelation method, and improved the separation by using a
similarity matrix [8]. Huang et al. [5] used RPCA to identify
repetitive structures of accompaniment sounds. Liutkus et al.
[30] proposed kernel additive modeling that combines many
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conventional methods and accounts for various features like
continuity, smoothness, and stability over time or frequency.
These methods tend to work robustly in several situations or
genres because they make few assumptions about the target
signal. Driedger et al. [31] proposed a cascading method that
first decomposes a music spectrogram into harmonic, percus-
sive, and residual spectrograms, each of which is further de-
composed into partial components of singing voices and those
of accompaniment sounds by using conventional methods [28],
[32]. Finally, the estimated components are reassembled to form
singing voices and accompaniment sounds.

C. One-Way or Mutual Combination

Since singing voice separation and vocal F0 estimation have
complementary relationships, the performance of each task can
be improved by using the results of the other. Some vocal F0
estimation methods use singing voice separation techniques as
preprocessing for reducing the negative effect of accompani-
ment sounds in polyphonic music [24], [29], [33], [34]. This
approach results in comparatively better performance when the
volume of singing voices is relatively low [35]. Some methods
of singing voice separation use vocal F0 estimation techniques
because the energy of a singing voice is concentrated on an F0
and its harmonic partials [32], [36], [37]. Virtanen et al. [32] pro-
posed a method that first separates harmonic components using
a predominant F0 contour. The residual components are then
modeled by NMF and accompaniment sounds are extracted.
Singing voices and accompaniment sounds are separated by
using the learned parameters again.

Some methods perform both vocal F0 estimation and singing
voice separation. Hsu et al. [38] proposed a tandem algorithm
that iterates these two tasks. Durrieu et al. [39] used source-
filter NMF for directly modeling the F0s and timbres of singing
voices and accompaniment sounds. Rafii et al. [7] proposed
a framework that combines repetition-based source separation
with F0-based source separation. A unified TF mask for singing
voice separation is obtained by combining the TF masks es-
timated by the two types of source separation in a weighted
manner. Cabañas-Molero et al. [40] proposed a method that
roughly separates singing voices from stereo recordings by fo-
cusing on the spatial diversity (called center extraction) and
then estimates a vocal F0 contour for the separated voices. The
separation of singing voices is further improved by using the F0
contour.

III. PROPOSED METHOD

The proposed method jointly executes singing voice separa-
tion and vocal F0 estimation (Fig. 2). Our method uses RPCA
to estimate a mask (called an RPCA mask) that separates
a target music spectrogram into low-rank components and
sparse components. The vocal F0 contour is then estimated
from the separated sparse components via Viterbi search on
an F0 saliency spectrogram, resulting in another mask (called
a harmonic mask) that separates harmonic components of
the estimated F0 contour. These masks are integrated via

Fig. 2. Overview of the proposed method. First an RPCA mask that separates
low-rank components in a polyphonic spectrogram is computed. From this
mask and the original spectrogram, a vocal F0 contour is estimated. The RPCA
mask and the harmonic mask calculated from the F0 contour are combined by
multiplication, and finally the singing voice and the accompaniment sounds are
separated using the integrated mask.

element-wise multiplication, and finally singing voices and
accompaniment sounds are obtained by separating the music
spectrogram according to the integrated mask. The proposed
method can work well for complicated music audio signals.
Even if the volume of singing voices is relatively low and music
audio signals contain various kinds of musical instruments, the
harmonic structures (F0s) of singing voices can be discovered
by calculating an F0 saliency spectrogram from an RPCA mask.

A. Singing Voice Separation

Vocal and accompaniment sounds are separated by combining
TF masks based on RPCA and vocal F0s.

1) Calculating an RPCA Mask: A singing voice separation
method based on RPCA [5] assumes that accompaniment and
vocal components tend to have low-rank and sparse structures,
respectively, in the TF domain. Since spectra of harmonic in-
struments (e.g., pianos and guitars) are consistent for each F0
and the F0s are basically discretized at a semitone level, har-
monic spectra having the same shape appear repeatedly in the
same musical piece. Spectra of non-harmonic instruments (e.g.,
drums) also tend to appear repeatedly. Vocal spectra, in contrast,
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rarely have the same shape because the vocal timbres and F0s
vary continuously and significantly over time.

RPCA decomposes an input matrix X into the sum of a
low-rank matrix XL and a sparse matrix XS by solving the
following convex optimization problem:

minimize ‖XL‖∗ + λ̂‖XS‖1 (subject to XL + XS = X),

λ̂ =
λ

√
max(T, F )

, (1)

where X , XL , and XS ∈ RT ×F , ‖ · ‖∗ and ‖ · ‖1 represent the
nuclear norm (also known as the trace norm) and the L1-norm,
respectively. λ is a positive parameter that controls the balance
between the low-rankness of XL and the sparsity of XS . To
find optimal XL and XS , we use an efficient inexact version
of the augmented Lagrange multiplier (ALM) algorithm [41].

When X is the amplitude spectrogram given by the short-time
Fourier transform (STFT) of a target music audio signal (T is the
number of frames and F is the number of frequency bins), the
spectral components having repetitive structures are assigned to
XL and the other varying components are assigned to XS . Let t
and f be a time frame and a frequency bin, respectively (1 ≤ t ≤
T and 1 ≤ f ≤ F ). We obtain a TF soft mask M

(s)
RPCA ∈ RT ×F

by using Wiener filtering:

M
(s)
RPCA(t, f) =

|XS (t, f)|
|XS (t, f)| + |XL (t, f)| . (2)

A TF binary mask M
(b)
RPCA ∈ RT ×F is also obtained by com-

paring XL with XS in an element-wise manner as follows:

M
(b)
RPCA(t, f) =

{
1 if |XS (t, f)| > γ|XL (t, f)|
0 otherwise

. (3)

The gain γ adjusts the energy between the low-rank and sparse
matrices. In this paper the gain parameter is set to 1.0, which
was reported to achieve good separation performance [5]. Note
that M

(b)
RPCA is used only for estimating a vocal F0 contour in

Section III-B.
Using M

(s)
RPCA or M

(b)
RPCA , the vocal spectrogram

X
(∗)
VOCAL ∈ RT ×F is roughly estimated as follows:

X
(∗)
VOCAL = M

(∗)
RPCA � X, (4)

where� indicates the element-wise product. If the value of λ for
singing voice separation is different from that for F0 estimation,
we execute two versions of RPCA with different values of λ

(Fig. 2). If we were to use the same value of λ for both processes,
RPCA would be executed only once. In section V we discuss
the optimal values of λ in detail.

2) Calculating a Harmonic Mask: Using a vocal F0 contour
Ŷ = {ŷ1 , ŷ2 , . . . , ŷT } (see details in Section III-B), we make
a harmonic mask MH ∈ RT ×F . Assuming that the energy of
vocal spectra is localized on the harmonic partials of vocal F0s,
we defined MH ∈ RT ×F as:

MH(t, f) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 < f − wn
u ≤ W,

wn
l = f

(
nhŷt

− w
2

)
,

w(n;W ) if wn
u = f

(
nhŷt

+ w
2

)
,

W = wn
l − wn

u + 1,

0 otherwise

(5)

where w(n;W ) denotes the nth value of a window function
of length W , f(h) denotes the index of the nearest time frame
corresponding to a frequency h [Hz], n is the index of a harmonic
partial, w is a frequency width [Hz] for extracting the energy
around the partial, hŷt

is the estimated vocal F0 [Hz] of frame
t. We chose the Tukey window whose a shape parameter is set
to 0.5 as a window function.

3) Integrating the Two Masks for Singing Voice Separation:
Given the RPCA mask (soft) M

(s)
RPCA and the harmonic mask

MH , we define an integrated soft mask M
(s)
RPCA+H as follows:

M
(s)
RPCA+H = M

(s)
RPCA � MH . (6)

Furthermore, an integrated binary mask M
(b)
RPCA+H is also de-

fined as:

M
(b)
RPCA+H(t, f) =

{
1 if M

(s)
RPCA+H(t, f) > 0.5

0 otherwise.
. (7)

Although the integrated masks have fewer spectral units as-
signed to singing voices than the RPCA mask and the harmonic
mask do, they provide better separation quality (see the com-
parative results reported in Section V).

Using the integrated masks M
(∗)
RPCA+H , the vocal and ac-

companiment spectrograms X̂
(∗)
VOCAL and X̂

(∗)
ACCOM are given

by

X̂
(∗)
VOCAL = M

(∗)
RPCA+H � X,

X̂
(∗)
ACCOM = X − X̂

(∗)
VOCAL . (8)

Finally, time signals (waveforms) of singing voices and accom-
paniment sounds are resynthesized by computing the inverse
STFT with the phases of the original music spectrogram.

B. Vocal F0 Estimation

We propose a new method that estimates a vocal F0 contour
Ŷ = {ŷ1 , . . . , ŷT } from the vocal spectrogram X

(b)
VOCAL by

using the binary mask M
(b)
RPCA . A robust F0-saliency spectro-

gram is obtained by using both X
(b)
VOCAL and M

(b)
RPCA and a

vocal F0 contour is estimated by finding an optimal path in the
saliency spectrogram with the Viterbi search algorithm.

1) Calculating a Log-Frequency Spectrogram: We convert
the vocal spectrogram X

(b)
VOCAL ∈ RT ×F to the log-frequency

spectrogram X ′
VOCAL ∈ RT ×C by using spline interpolation

on the dB scale. A frequency hf [Hz] is translated to the index
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Fig. 3. An F0-saliency spectrogram is obtained by integrating an SHS spec-
trogram derived from a separated vocal spectrogram with an F0 enhancement
spectrogram derived from an RPCA mask.

of a log-frequency bin c (1 ≤ c ≤ C) as follows:

c =

⌊
1200 log2

hf

h l ow

p
+ 1

⌋

, (9)

where hlow is a predefined lowest frequency [Hz] and p a fre-
quency resolution [cents] per bin. The frequency hlow must be
sufficiently low to include the low end of a singing voice spec-
trum (i.e., 30 Hz).

To take into account the non-linearity of human auditory
perception, we multiply the A-weighting function RA (f) to the
vocal spectrogram X

(b)
VOCAL in advance. RA (f) is given by

RA (f) =
122002h4

f

(h2
f + 20.62)(h2

f + 122002)

× 1
√

(h2
f + 107.72)(h2

f + 737.92)
. (10)

This function is a rough approximation of the inverse of the
40-phon equal-loudness curve1 and is used for amplifying the
frequency bands that we are perceptually sensitive to, and atten-
uating the frequency bands that we are less sensitive to [19].

2) Calculating an F0-Saliency Spectrogram: Fig. 3 shows
the procedure of calculating an F0-Saliency spectrogram. We
calculate a SHS spectrogram SSHS ∈ RT ×C from the tentative
vocal spectrogram X ′

VOCAL ∈ RT ×C in the log-frequency do-
main. SHS [6] is the most basic and light-weight algorithm that
underlies many vocal F0 estimation methods [19], [42]. SSHS

1http://replaygain.hydrogenaud.ioproposalequal_loudness.html

is given by

SSHS(t, c) =
N∑

n=1

βnX ′
VOCAL

(
t, c +

⌊
1200 log2 n

p

⌋)
,

(11)

where c is the index of a log-frequency bin (1 ≤ c ≤ C), N is
the number of harmonic partials considered, and βn is a decay
factor (0.86n−1 in this paper).

We then calculate an F0 enhancement spectrogram SRPCA ∈
RT ×C from the RPCA mask MRPCA . To improve the perfor-
mance of vocal F0 estimation, we propose to focus on the regu-
larity (periodicity) of harmonic partials over the linear frequency
axis. The RPCA binary mask MRPCA can be used for reducing
half or double pitch errors because the harmonic structure of the
singing voice strongly appears in it.

We first take the discrete Fourier transform of each time frame
of the binary mask as follows:

F (t, k) =

∣∣∣∣
∣∣

F −1∑

f =0

M
(b)
RPCA(t, f)e−i 2 π k f

F

∣∣∣∣
∣∣
. (12)

This idea is similar to the cepstral analysis that extracts the
periodicity of harmonic partials from log-power spectra. We
do not need to compute the log of the RPCA binary mask be-
cause MRPCA ∈ {0, 1}T ×F . The F0 enhancement spectrogram
SRPCA is obtained by picking the value corresponding to a fre-
quency index c:

SRPCA(t, c) = F

(
t,

⌊
htop

hc

⌋)
, (13)

where hc is the frequency [Hz] corresponding to log-frequency
bin c and htop is the highest frequency [Hz] considered (Nyquist
frequency).

Finally, the reliable F0-saliency spectrogram S ∈ RT ×C is
given by integrating SSHS and SRPCA as follows:

S(t, c) = SSHS(t, c)SRPCA(t, c)α , (14)

where α is a weighting factor for adjusting the balance between
SSHS and SRPCA . When α is 0, SRPCA is ignored, resulting in
the standard SHS method. While each bin of SSHS reflects the
total volume of harmonic partials, each bin of SRPCA reflects
the number of harmonic partials.

3) Executing Viterbi Search: Given the F0-saliency spectro-
gram S, we estimate the optimal F0 contour Ŷ = {ŷ1 , · · · , ŷT }
by solving the following problem:

Ŷ = argmax
y1 ,...,yT

T −1∑

t=1

{
log

S(t, yt)∑ch

c=cl
S(t, c)

+ log G(yt , yt+1)
}

,

(15)

where cl and ch are the lowest and highest log-frequency bins
of an F0 search range. G(yt , yt+1) is the transition cost function
from the current F0 yt to the next F0 yt+1 . G(yt , yt+1) is defined
as

G(yt , yt+1) =
1
2b

exp
(
−|cyt

− cyt + 1 |
b

)
(16)
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TABLE I
DATASETS AND PARAMETERS

Number of clips Length of clips Sampling rate Window size Hopsize N λ w α

MIR-1K 110 20–110 sec 16 kHz 2048 160 10 0.8 50 0.6
MedleyDB 45 17–514 sec 44.1 kHz 4096 441 20 0.8 70 0.6
RWC-MDB-2001 100 125–365 sec 44.1 kHz 4096 441 20 0.8 70 0.6

where b =
√

1502

2 and cy indicates the log-frequency [cents]
corresponding to log-frequency bin c. This function is equiva-
lent to the Laplace distribution whose standard deviation is 150
[cents]. Note that the shifting interval of time frames is 10 [ms].
This optimization problem can be efficiently solved using the
Viterbi search algorithm.

IV. EXPERIMENTAL EVALUATION

This section reports experiments conducted for evaluating
singing voice separation and vocal F0 estimation. The results of
the Singing Voice Separation task of MIREX 2014, which is a
world-wide competition between algorithms for music analysis,
are also shown.

A. Singing Voice Separation

Singing voice separation using different binary masks was
evaluated to verify the effectiveness of the proposed method.

1) Datasets and Parameters: The MIR-1K dataset2 (MIR-
1K) and the MedleyDB dataset (MedleyDB) [43] were used
for evaluating singing voice separation. Note that we used the
110 “Undivided” song clips of MIR-1K and the 45 clips of
MedleyDB listed in Table II. The clips in MIR-1K were recorded
at a 16 kHz sampling rate with 16 bit resolution and the clips
in MedleyDB were recorded at a 44.1 kHz sampling rate with
16 bit resolution. For each clip in both datasets, singing voices
and accompaniment sounds were mixed at three signal-to-noise
ratios (SNR) conditions: −5, 0, and 5 dB.

The datasets and the parameters used for evaluation are sum-
marized in Table I, where the parameters for computing the
STFT (window size and hopsize), SHS (the number N of har-
monic partials), RPCA (a sparsity factor λ), a harmonic mask
(frequency width w), and a saliency spectrogram (a weighting
factor α) are listed. We empirically determined the parameters
w and λ according to the results of grid search (see details in
Section V). The same value of λ (0.8) was used for both RPCA
computations in Fig. 2. The frequency range for the vocal F0
search was restricted to 80–720 Hz.

2) Compared Methods: The following TF masks were com-
pared.

1) RPCA: Using only an RPCA soft mask M
(s)
RPCA

2) H: Using only a harmonic mask MH

3) RPCA-H-S: Using an integrated soft mask M
(s)
RPCA+H

4) RPCA-H-B: Using an integrated binary mask M
(b)
RPCA+H

5) RPCA-H-GT: Using an integrated soft mask made by using
a ground-truth F0 contour

2https://sites.google.com/site/unvoicedsoundseparation/mir-1k

TABLE II
SONG CLIPS IN MedleyDB USED FOR EVALUATION

Artists Songs

A Classic Education Night Owl
Aimee Norwich Child
Alexander Ross Velvet Curtain
Auctioneer Our Future Faces
Ava Luna Waterduct
Big Troubles Phantom
Brandon Webster Dont Hear A Thing, Yes Sir I Can Fly
Clara Berry And
Wooldog

Air Traffic, Boys, Stella, Waltz For My Victims

Creepoid Old Tree
Dreamers Of The
Ghetto

Heavy Love

Faces On Film Waiting For Ga
Family Band Again
Helado Negro Mitad Del Mundo
Hezekiah Jones Borrowed Heart
Hop Along Sister Cities
Invisible Familiars Disturbing Wildlife
Liz Nelson Coldwar, Rainfall
Matthew Entwistle Dont You Ever
Meaxic Take A Step, You Listen
Music Delta 80s Rock, Beatles, Britpop, Country1, Country2, Disco, Gospel,

Grunge, Hendrix, Punk, Reggae, Rock, Rockabilly
Night Panther Fire
Port St Willow Stay Even
Secret Mountains High Horse
Steven Clark Bounty
Strand Of Oaks Spacestation
Sweet Lights You Let Me Down
The Scarlet Brand Les Fleurs Du Mal

6) ISM: Using an ideal soft mask
“RPCA” is a conventional RPCA-based method [5]. “H”

used only a harmonic mask created from an estimated F0 con-
tour. “RPCA-H-S” and “RPCA-H-B” represent the proposed
methods using soft masks and binary masks, respectively, and
“RPCA-H-GT” means a condition that the ground-truth vocal
F0s were given (the upper bound of separation quality for the
proposed framework). “ISM” represents a condition that oracle
TF masks were estimated such that the ground-truth vocal and
accompaniment spectrograms were obtained (the upper bound
of separation quality of TF masking methods). two Note that
even ISM is far from perfect separation because it is based on
naive TF masking, which causes nonlinear distortion (e.g., mu-
sical noise). For H, RPCA-H-S and RPCA-H-B, the accuracies
of vocal F0 estimation are described in Section IV-B.

3) Evaluation Measures: The BSS_EVAL toolbox3 [44] was
used for measuring the separation performance. The principle
of BSS_EVAL is to decompose an estimate ŝ of a true source

3http://bass-db.gforge.inria.fr/bss_eval/

https://sites.google.com/site/unvoicedsoundseparation/mir-1k
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Fig. 4. Comparative results of singing voice separation using different binary masks. The upper section shows the results for MIR-1K and the lower section for
MedleyDB. From left to right, the results for mixing conditions at SNRs of −5, 0, and 5 dB are shown. The evaluation values of “ISM” are expressed with letters
in order to make the graphs more readable. (a) −5 dB SNR, (b) 0 dB SNR, (c) 5 dB SNR.

signal s as follows:

ŝ(t) = starget(t) + einterf (t) + enoise(t) + eartif (t), (17)

where starget is an allowed distortion of the target source s
and einterf , enoise and eartif are respectively the interference
of the unwanted sources, perturbing noise, and artifacts in the
separated signals (such as musical noise). Since we assume
that an original signal consists of only vocal and accompani-
ment sounds, the perturbing noise enoise was ignored. Given
the decomposition, three performance measures are defined: the
Source-to-Distortion Ratio (SDR), the Source-to-Interference
Ratio (SIR) and the Source-to-Artifacts Ratio (SAR):

SDR(ŝ, s) := 10 log10

(
‖starget‖2

‖einterf + eartif‖2

)
, (18)

SIR(ŝ, s) := 10 log10

(
‖starget‖2

‖einterf‖2

)
, (19)

SAR(ŝ, s) := 10 log10

(
‖starget + einterf‖2

‖eartif‖2

)
, (20)

where ‖ · ‖ denotes a Euclidean norm. two In general, there is a
trade-off between SIR and SAR. When only reliable frequency
components are extracted, for example, the interference of

unwanted sources is reduced (SIR is improved) and the non-
linear distortion is increased (SAR is degraded).

We then calculated the Normalized SDR (NSDR) that mea-
sures the improvement of the SDR between the estimate ŝ of a
target source signal s and the original mixture x. To measure the
overall separation performance we calculated the Global NSDR
(GNSDR), which is a weighted mean of the NSDRs over all the
mixtures xk (weighted by their length lk ):

NSDR(ŝ, s, x) = SDR(ŝ, s) − SDR(x, s), (21)

GNSDR =
∑

k lkNSDR(ŝk , sk , xk )
∑

k lk
. (22)

In the same way, the Global SIR (GSIR) and the Global SAR
(GSAR) were calculated from the SIRs and the SARs. For all
these ratios, higher values represent better separation quality.

Since this paper does not deal with the VAD and we intended
to examine the effect of the harmonic mask for vocal separation,
we used only the voiced sections for evaluation; that is to say,
the amplitude of the signals in unvoiced sections was set to 0
when calculating the evaluation scores.

4) Experimental Results: two As shown in Fig. 4, the pro-
posed method using soft masks (RPCA-H-S) and the proposed
method using binary masks (RPCA-H-B) outperformed RPCA
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Fig. 5. An example of singing voice separation by the proposed method. The results of “Coldwar / LizNelson” in MedleyDB mixed at a −5 dB SNR are shown.
From left to right, an original singing voice, an original accompaniment sound, a mixed sound, a separated singing voice, and a separated accompaniment sound
are shown. The upper figures are spectrograms obtained by taking the STFT and the lower figures are resynthesized time signals.

TABLE III
EXPERIMENTAL RESULTS FOR VOCAL F0 ESTIMATION (AVERAGE ACCURACY [%] OVER ALL CLIPS IN EACH DATASET)

PreFEst-V MELODIA-V MELODIA

Database SNR [dB] w/o RPCA w/ RPCA w/o RPCA w/ RPCA w/o RPCA w/ RPCA Proposed

MIR-1K −5 36.45 42.99 53.48 60.69 54.37 59.50 57.78
0 50.70 56.15 76.88 80.90 78.09 79.91 75.48
5 63.77 66.32 88.87 90.26 88.89 89.33 85.42

MedleyDB original mix 70.83 72.25 70.69 74.93 71.24 73.40 81.90
−5 71.82 72.72 72.05 76.75 74.56 75.32 82.68
0 80.91 81.02 86.59 89.20 87.34 87.54 90.31
5 86.39 85.41 92.63 93.93 93.08 92.50 93.15

RWC-MDB-P-2001 69.81 71.71 67.79 71.64 69.89 70.30 80.84

Average of all datasets 66.24 68.57 76.12 79.79 77.18 78.48 80.95

and H in terms of GNSDR in most settings. This indicates that
extraction of harmonic structures is useful for singing voice
separation in spite of F0 estimation errors and that combining
an RPCA mask and a harmonic mask is effective for improv-
ing the separation quality of singing voices and accompaniment
sounds. The removal of the spectra of non-repeating instruments
(e.g., bass guitar) significantly improved the separation quality.
two When vocal sounds are much louder than accompaniment
sounds (MedleyDB, 5 dB SNR), H outperformed RPCA-H-B
and RPCA-H-S in GNSDR. This indicates that RPCA masks
tend to excessively remove the frequency components of vocal
sounds in such a condition. RPCA-H-S outperformed RPCA-
H-B in GNSDR, GSAR, and GSIR of the singing voice. On the
other hand, RPCA-H-B outperformed RPCA-H-S in GSIR of
the accompaniment and H outperformed both RPCA-H-B and
RPCA-H-S. This indicates that a harmonic mask is useful for
singing voice suppression.

Fig. 5 shows an example of an output of singing voice sepa-
ration by the proposed method. We can see that vocal and ac-
companiment sounds were sufficiently separated from a mixed
signal even though the volume level of vocal sounds was lower
than that of accompaniment sounds.

B. Vocal F0 Estimation

We compared the vocal F0 estimation of the proposed method
with conventional methods.

1) Datasets: MIR-1K, MedleyDB, and the RWC Music
Database (RWC-MDB-P-2001) [45] were used for evaluating
vocal F0 estimation. RWC-MDB-P-2001 contains 100 song
clips of popular music which were recorded at a 44.1 kHz sam-
pling rate with 16 bit resolution. The dataset contains 20 songs
with English lyrics performed in the style of American popular

music in the 1980s and 80 songs with Japanese lyrics performed
in the style of Japanese popular music in the 1990s.

2) Compared Methods: The following four methods were
compared.

1) PreFEst-V: PreFEst (saliency spectrogram) + Viterbi
search

2) MELODIA-V: MELODIA (saliency spectrogram) +
Viterbi search

3) MELODIA: The original MELODIA algorithm
4) Proposed: F0-saliency spectrogram + Viterbi (proposed

method)
PreFEst [15] is a statistical multi-F0 analyzer that is still

considered to be competitive for vocal F0 estimation. Although
PreFEst contains three processes—the PreFEst-front-end for
frequency analysis, the PreFEst-core computing a saliency spec-
trogram, and the PreFEst-back-end that tracks F0 contours using
multiple agents—we used only the PreFEst-core and estimated
F0 contours by using the Viterbi search described in Section III-
B3 (“PreFEst-V”). MELODIA is a state-of-the-art algorithm for
vocal F0 estimation that focuses on the characteristics of vocal
F0 contours. We applied the Viterbi search to a saliency spec-
trogram derived from MELODIA (“MELODIA-V”) and also
tested the original MELODIA algorithm (“MELODIA”). In this
experiment we used the MELODIA implementation provided
as a vamp plug-in.4

Singing voice separation based on RPCA [5] was applied
before computing conventional methods as preprocessing (“w/
RPCA” in Table III). We investigated the effectiveness of the
proposed method in conjunction with preprocessing of singing
voice separation.

4http://mtg.upf.edu/technologies/melodia

http://mtg.upf.edu/technologies/melodia
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3) Evaluation Measures: We measured the raw pitch accu-
racy (RPA) defined as the ratio of the number of frames in which
correct vocal F0s were detected to the total number of voiced
frames. An estimated value was considered correct if the dif-
ference between it and the ground-truth F0 was 50 cents (half a
semitone) or less.

4) Experimental Results: Table III shows the experimental
results of vocal F0 estimation, where each value is an aver-
age accuracy over all clips. The results show that the proposed
method achieved the best performance in terms of average ac-
curacy. With MedleyDB and RWC-MDB-P-2001 the proposed
method significantly outperformed the other methods, while the
performance of MELODIA-V and MELODIA were better than
that of the proposed method with MIR-1K. This might be due to
the different instrumentation of songs included in each dataset.
Most clips in MedleyDB and RWC-MDB-P-2001 contain the
sounds of many kinds of musical instruments, whereas most
clips in MIR-1K contain the sounds of only a small number of
musical instruments.

These results are originated from the characteristics of the
proposed method. In vocal F0 estimation, the spectral periodic-
ity of an RPCA binary mask is used to enhance vocal spectra.
The harmonic structures of singing voices appear clearly in the
RPCA mask when music audio signals contain various kinds
of repetitive musical instrument sounds. The proposed method
therefore works well especially for songs of particular genres
such as rock and pops.

C. MIREX2014

We submitted our algorithm to the Singing Voice Separation
task of the Music Information Retrieval Evaluation eXchange
(MIREX) 2014, which is a community-based framework for
the formal evaluation of analysis algorithms. Since the datasets
are not freely distributed to the participants, MIREX provides
meaningful and fair scientific evaluations.

There is some difference between our submission for MIREX
and the algorithm described in this paper. The major differ-
ence is that only an SHS spectrogram (with the exception of an
F0 enhancement spectrogram in Section III-B2) was used as a
saliency spectrogram in the submission. Instead a simple VAD
method based on an energy threshold was used after singing
voice separation.

1) Dataset: 100 monaural clips of pop music recorded at
44.1-kHz sampling rate with 16-bit resolution were used for
evaluation. The duration of each clip was 30 seconds.

2) Compared Methods: 11 submissions participated in the
task.5 The submissions HKHS1, HKHS2 and HKHS3 are algo-
rithms using deep recurrent neural networks [28]. YC1 separates
singing voices by clustering modulation features [27]. RP1 is
the REPET-SIM algorithm that identifies repetitive structures in
polyphonic music by using a similarity matrix [8]. GW1 uses
Bayesian NMF to model a polyphonic spectrogram, and clus-
ters the learned bases based on acoustic features [23]. JL1 uses
the temporal and spectral discontinuity of singing voices [26],

5www.music-ir.org/mirex/wiki/2014:Singing_Voice_Separation_Results

TABLE IV
PARAMETER SETTINGS FOR MIREX2014

Window size Hopsize N λ w

IIY1 4096 441 15 1.0 100
IIY2 4096 441 15 0.8 100

and LFR1 uses light kernel additive modeling based on the
algorithm in [30]. RNA1 first estimates predominant F0s and
then reconstructs an isolated vocal signal based on harmonic
sinusoidal modeling using estimated F0s. IIY1 and IIY2 are
our submissions. The only difference between IIY1 and IIY2 is
their parameters. The parameters for both submissions are listed
in Table IV.

3) Evaluation Results: Fig. 6 shows the evaluation results
for all submissions. Our submissions (IIY1 and IIY2) provided
the best mean NSDR for both vocal and accompaniment sounds.
Even though the submissions using the proposed method out-
performed the state-of-the-art methods in MIREX 2014, there
is still room for improving their performances. As described in
Section V-A, the robust range for the parameter w is from 40 to
60. We set the parameter to 100 in the submissions, however,
and that must have considerably reduced the sound quality of
both separated vocal and accompaniment sounds.

V. PARAMETER TUNING

In this section we discuss the effects of parameters that de-
termine the performances of singing voice separation and vocal
F0 estimation.

A. Singing Voice Separation

The parameters λ and w affect the quality of singing voice
separation. λ is the sparsity factor of RPCA described in
Section III-A1 and w is the frequency width of the harmonic
mask described in Section III-A2. The parameter λ can be used
to trade off the rank of a low-rank matrix with the sparsity of a
sparse matrix. The sparse matrix is sparser when λ is larger and
is less sparse when λ is smaller. When w is smaller, fewer spec-
tral bins around an F0 and its harmonic partials are assigned as
singing voices. This is the recall-precision trade-off of singing
voice separation. To examine the relationship between λ and w,
we evaluated the performance of singing voice separation for
combinations of λ from 0.6 to 1.2 in steps of 0.1 and w from 20
to 90 in steps of 10.

1) Experimental Conditions: MIR-1K was used for evalua-
tion at three mixing conditions with SNRs of −5, 0, and 5 dB. In
this experiment, a harmonic mask was created using a ground-
truth F0 contour to examine only the effects of λ and w. GNSDRs
were calculated for each parameter combination.

2) Experimental Results: Fig. 7 shows the overall perfor-
mance for all parameter combinations. Each unit on a grid rep-
resents the GNSDR value. It was shown that λ from 0.6 to 1.0
and w from 40 to 60 provided robust performance in all mix-
ing conditions. In the −5 dB mixing condition, an integrated
mask performed better for both of the singing voice and the
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Fig. 6. Results of the Singing Voice Separation task in MIREX2014. The circles, error bars, and red values represent means, standard deviations, and medians
for all song clips, respectively.

Fig. 7. Experimental results of grid search for singing voice separation.
GNSDR for MIR-1K is shown in each unit. From top to bottom, the results
of −5, 0, and 5 dB SNR conditions are shown. The left figures show results for
the singing voice and the right figures for the music accompaniment. In all parts
of this figure, lighter values represent better results.

Fig. 8. Experimental results of grid search for vocal F0 estimation. The mean
raw pitch accuracy for RWC-MDB-P-2001 is shown in each unit. Lighter values
represent better accuracy.

accompaniment when w was smaller. This was because most
singing voice spectra were covered by accompaniment spectra
and only few singing voice spectra were dominant around an F0
and harmonic partials in the condition.

B. Vocal F0 Estimation

The parameters λ and α affect the accuracy of vocal F0 esti-
mation. λ is the sparsity factor of RPCA and α is the weight pa-
rameter for computing the F0-saliency spectrogram described in
Section III-B2. α determines the balance between an SHS spec-
trogram and an F0 enhancement spectrogram in a F0-saliency
spectrogram, and there must be range of its value that provides
robust performance. We evaluated the accuracy of singing voice
separation for combinations of λ from 0.6 to 1.1 in steps of 0.1
and α from 0 to 2.0 in steps of 0.2. RWC-MDB-P-2001 was
used for evaluation, and RPA was measured for each parameter
combination.



2094 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 24, NO. 11, NOVEMBER 2016

Fig. 8 shows the overall performance for all parameter com-
binations of grid search. Each unit on a grid represents RPA for
each parameter combination. It was shown that λ from 0.7 to
0.9 and α from 0.6 to 0.8 provided comparatively better per-
formance than any other parameter combinations. RPCA with
λ within the range separates vocal sounds to a moderate de-
gree for vocal F0 estimation. The value of α was also crucial
to estimation accuracy. The combinations with α = 0.0 yielded
especially low RPAs. This indicates that an F0 enhancement
spectrogram was effective for vocal F0 estimation.

VI. CONCLUSION

This paper described a method that performs singing voice
separation and vocal F0 estimation in a mutually-dependent
manner. The experimental results showed that the proposed
method achieves better singing voice separation and vocal F0
estimation than conventional methods do. The singing voice
separation of the proposed method was also better than that of
several state-of-the-art methods in MIREX 2014, which is an
international competition in music analysis. In the experiments
on vocal F0 estimation, the proposed method outperformed two
conventional methods that are considered to achieve the state-of-
the-art performance. Some parameters of the proposed method
significantly affect the performances of singing voice separation
and vocal F0 estimation, and we found that a particular range
of those parameters results in relatively good performance in
various situations.

We plan to integrate singing voice separation and vocal F0
estimation in a unified framework. Since the proposed method
performs these tasks in a cascading manner, separation and esti-
mation errors are accumulated. One promising way to solve this
problem is to formulate a unified likelihood function to be max-
imized by interpreting the proposed method from a viewpoint
of probabilistic modeling. To discriminate singing voices from
musical instrument sounds that have sparse and non-repetitive
structures in the TF domain like singing voices, we attempt to
focus on both the structural and timbral characteristics of singing
voices as in [35]. It is also important to conduct subjective eval-
uation to investigate the relationships between the conventional
measures (SDR, SIR, and SAR) and the perceptual quality.
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