
Supplementary Material: Infinite Positive Semidefinite Tensor Factorization

1. Variational Inference

1.1. Matrix Inequality for Concave Function

For a positie semidefinite (PSD) matrix V , we can say

log |V | ≤ log |Ω|+ tr(Ω−1V )−M, (1)

where Ω is an arbitrary PSD matrix. Letting the partial derivative of the right-hand side of inequality (1) with
respect to Ω to be zero, we have

Ω = V . (2)

Substituting Ω = V back in the right-hand side of inequality (1), we have

log |Ω|+ tr(Ω−1V )−M = log |V |+ tr(V −1V )−M = log |V |. (3)

Since this is the minimum of the right-hand side, we have inequality (1) for arbitrary Ω.

1.2. Matrix Inequality for Convex Function

For a PSD matrix Z and a set of PSD matrices {V k}Kk=1 such that
∑K

k=1 V k is invertible, we can say
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where {Φk}Kk=1 is a set of atbitrary matrices that sum to the identity matrix. Define the Lagrangian of the
right-hand side of inequality (4) as follows:
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where Ak is a Lagrangian multiplier that corresponds to the equality constraint in inequality (4). Letting the
partial derivative with respect to Φk to be zero, we have

Φk = V kAk. (6)

Summing both sides, we have
∑K

k=1 Φk =
∑K

k=1 V kAk = I, from which we have the optimal Lagrangian

multiplier Ak = (
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−1 back in the right-hand side of inequality
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Since this is the minimum of the right-hand side, we have inequality (4) for arbitrary {Φk}Kk=1 that sum to the
identity matrix.

2. MGIG Distribution

As to matrix variable V k, we propose to use the matrix GIG (MGIG) distribution (Barndorff-Nielsen et al.,
1982) as the functional form of q(V k). The MGIG distribution over PSD matrix X is defined as

MGIG(X|γ,R,T ) =
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where γ is a real number and R,T > 0 are PSD matrices, M is the size of X, Bγ is the matrix Bessel function
of the second kind (Herz, 1955), and etr(z) indicates exp(tr(z)). It includes the Wishart and inverse-Wishart
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distributions as special cases (Butler, 1998), and its sufficient statistics are log |X|, X, and X−1. It is, however,
difficult to analytically calculate the expectations E[X] and E[X−1]. We therefore need to simulate those values
by using a Monte Carlo method. More specifically, E[X] is given by the following integral:
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where dμ(X) = |X|γ−M+1
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dX. Thus if U is a random matrix drawn from a Wishart distribution

as U ∼ W(2γ,R−1), we can say
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where CW(2γ,R−1) and CMGIG(γ,R,T ) are normalizing constants of the Wishart and MGIG distributions.
Similarly, E[X−1] is given by
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The matrix Bessel function of CMGIG(γ,R,T ) can be calculated by using Laplace approximation or Monte Carlo
simulation (Butler & Wood, 2003).

3. Music Analysis

LD-PSDTF is useful for source separation of music audio signals. In general, source separation has been done on
the frequency domain. In KL- or IS-NMF, for example, a given amplitude or power spectrogram can be split into
a set of K source spectrograms by using a Wiener-filtering technique. However, it is difficult to recover natural
source signals from those spectrograms having no phase information. If the phase of the observed spectrogram
is directly attached to the source spectrograms, the resulting signals have some unpleasant artifacts.

An advantage of time-domain LD-PSDTF is that real-valued source signals can be directly estimated in a prob-
abilistic framework without tackling a difficult problem of phase reconstruction. This is achieved by generalized
Wiener filtering (Eq. (15) of the paper) that assumes source signals to follow full-covariance Gaussians.

We tested LD-PSDTF on an audio signal synthesized by concatenating seven piano sounds (C, E, G, C+E, C+G,
E+G, and C+E+G) with a MIDI synthesizer. The total length was 8.4 s (1.2 s * 7). The task was to separate
the observed signal into three source signals having different pitches (C, E, and G). The signal was sampeld at 16
kHz and split into short overlapping frames by using a Gaussian window with a width of 512 samples (M = 512)
and a shifting interval of 160 samples (N = 840). The PSD basis matrices and their activations were estimated
by using the multiplicative update (MU) algorithm with K = 3. For comparison, we tested KL-NMF with K = 3
for amplitude-spectrogram decomposition and IS-NMF with K = 3 for power-spectrogram decomposition.

The experimental results showed overwhelming superiority of LD-PSDTF for source separation. The average
SDR, SIR, and SAR were 16.7dB, 21.1dB, and 18.7dB for KL-NMF, 18.9dB, 24.1dB, and 20.5dB for IS-NMF,
and 26.7dB, 33.2dB, and 27.8dB for LD-PSDTF. We found it practically effective to initialize LD-PSDTF by
using basis vectors and their activations obtained by IS-NMF for reducing the computational cost and avoiding
the local optima. This means that LD-PSDTF can be used as a high-quality sound generator for IS-NMF.
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Source signals 
of pitch C

Source signals 
of pitch E

Source signals 
of pitch G

Original

KL-NMF

SDR 17.4dB
SIR 21.9dB
SAR 19.4dB

SDR 15.5dB
SIR 21.0dB
SAR 18.5dB

SDR 16.2dB
SIR 20.6dB
SAR 18.2dB

IS-NMF

SDR 18.3dB
SIR 23.9dB
SAR 19.7dB

SDR 20.5dB
SIR 26.2dB
SAR 21.9dB

SDR 17.9dB
SIR 22.4dB
SAR 19.8dB

LD-PSDTF

SDR 25.5dB
SIR 33.7dB
SAR 26.2dB

SDR 30.2dB
SIR 36.4dB
SAR 31.4dB

SDR 24.2dB
SIR 29.4dB
SAR 25.8dB

Mixture signal

Adobe Acrobat Reader is required
for listening to these audio samples

Source Separation of Audio Signals















	icml-2013-yoshii-sup
	icml-2003-yoshii-demo
	スライド番号 1


