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ABSTRACT 

This paper presents a Bayesian extension of multichannel nonneg­
ative matrix factorization (MNMF) that decomposes the complex 
spectrograms of mixture signals recorded by a microphone array 
into basis spectra, their temporal activations, and the spatial corre­
lation matrices of sources (directions) in the time-frequency-channel 
domain. Although the original MNMF can be used in a blind set­
ting, prior knowledge of a microphone array is useful for improving 
source separation. The impulse response (spatial correlation matrix) 
of each direction can be measured in an anechoic room, however, 
it differs from that in a real environment where the microphone ar­
ray is used. To solve this, we propose a unified Bayesian model of 
source separation and localization by introducing a prior distribution 
determined by an anechoic spatial correlation matrix on areal spa­
tial correlation matrix with respect to each direction. This enables us 
to adaptively estimate areal spatial correlation matrix and the direc­
tion of each source. Experimental results showed that our method 
outperformed the original MNMF and the state-of-the-art methods 
with prior knowledge in terms of signal-to-distortion ratio (SDR) 
even when the method was used in an unknown environment with 
acoustic characteristics different from those of the anechoic room. 

Index Terms- Source separation, source localization, multi­
channel nonnegative matrix factorization, Bayesian modeling 

1. INTRODUCTION 

Microphone array processing forms the basis of computational audi­
tory scene analysis that aims to recognize individual auditory events 
in asound mixture. In multichannel source separation, phase differ­
ences between microphones playa key role. For ex am pIe, frequency­
domain independent component analysis (ICA) [1] and independent 
vector analysis (lVA) [2, 3] can separate mixture sounds in such a 
way that source signals are statistically independent from each other. 
On the other hand, separation methods based on time-frequency (TF) 
clustering [4,5] assign each TF bin of mixture sounds exclusively to 
one of the sources by focusing on the phase information. 

The power spectrograms of sources as weil as phase differences 
between microphones have recently been modeled for multichannel 
source separation. Nonnegative matrix factorization (NMF) [6] is a 
well-known technique of single-channel source separation that ap­
proximates the power spectrogram of each source as a rank-l ma­
trix. Various approaches have been proposed to separate sounds 
by NMF [7- 9]. To deal with spatial correlation matrices over mi­
crophones, Sawada et al. [10] proposed a multichannel extension 
of NMF (MNMF). Kitamura et al. [11] proposed a rank-l MNMF 
that restricts the spatial correlation matrices to rank-l matrices and 
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Fig. 1. The generative story of multichannel NMF. 

this model was shown to be an NMF-integrated version of IVA. TF 
clustering-based method [5] can also be integrated with NMF [12]. 
Deep neural networks have been used to estimate the power densities 
of sources [13]. In general, most of multichannel separation methods 
have been designed so that they can be used in a blind setting. 

In this paper we propose a Bayesian extension of MNMF that 
can incorporate various kinds of prior knowledge in a principled 
manner. When prior knowledge about an environment, microphones, 
and/or sources (e.g., microphone array geometry, impulse responses 
measured in an anechoic room, and the template spectra of sources) 
are available, for ex am pIe, the parameters of MNMF can be con­
verged to reasonable values. Furthermore, a nonparametric Bayesian 
extension of MNMF would be feasible to automatically estimate the 
number of sources according to observed data in a similar way to a 
nonparametric Bayesian model of TF clustering [5]. 

As illustrated in Fig. 1, we design the generative process of the 
complex spectrograms of multi-channel mixture signals and then try 
to solve the inverse problem. More specifically, the power spectro­
gram densities of each source are determined by the product of a 
basis matrix and an activation matrix. The spatial correlation matri­
ces of each source, on the other hand, are given by the weighted sum 
ofthose corresponding to different directions. U sing these two types 
of variables, the complex spectrogram of each source is stochasti­
cally generated. The mixture spectrograms are given by the sum of 
the source spectrograms. The proposed method uses spatial corre­
lation matrices (impulse responses) measured in an anechoic room 
to determine prior distributions on real spatial correlation matrices. 
Given the mixture spectrograms as observed data, we optimize all 
the parameters iteratively using Gibbs sampling. Finally, the source 
spectrograms are obtained by multichannel Wiener filtering and the 
source directions are determined from the direction weights. 
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2. RELATED WORK 

A conventional approach to multichannel source separation is to es­
ti mate a linear unmixing filter that decomposes the complex spectra 
of mixture signals into those of source signals in the frequency do­
main [1- 3, 14]. Mixture signals are usually modeled as the sum of 
source signals convolved with the impulse responses of the corre­
sponding source directions. This is equivalent to an instantaneous 
mixing process in the frequency domain, Le., the complex spectra 
of mixture signals are the sum of source spectra multiplied by the 
impulse-response spectra. U sing such Iinearity between mixture and 
source spectra, frequency-domain ICA can estimate a linear unmix­
ing filter for each frequency bin [1]. The permutation of separated 
source spectra, however, is not aligned between different frequency 
bins. One way to resolve this permutation ambiguity is to focus on 
the directions and inter-frequency correlations of the sources [14]. 
IVA [2, 3] is an extension of ICA that can jointly deal with all fre­
quency components in a vectorial manner. 

Another popular approach to multichannel source separation is 
nonlinear time-frequency hard masking based on the sparseness (dis­
jointness) of source spectrograms [4, 5, 12, 15- 17]. If each TF bin 
is assigned to one of sources independently [16], the permutation 
ambiguity arises as in ICA. To avoid this problem, Otsuka et al. [5] 
proposed a Bayesian mixture method inspired by latent Dirichlet al­
location (LDA) in which each TF bin is exclusively assigned to one 
of sources, each of which is further exclusively assigned to one of di­
rections. The impulse responses measured in an anechoic room can 
be used as prior knowledge for joint source separation and localiza­
tion. This method was extended to a BayesianJactor-mixture model 
called NMF-LDA [12] that approximates the power spectrogram of 
each source as a low-rank matrix (weighted sum ofrank-l basis ma­
tri ces) for completing missing TF bins assigned to other sources. 
An alternative extension is a Bayesian mixture-mixture model called 
LDA-LDA [l7] that exclusively assigns each TF bin of the power 
spectrogram of each source to one of bases. 

MNMF [10,18] i s non linear ti me-frequency soft masking method. 
More specifically, MNMF decomposes the complex spectrograms of 
mixture signals into basis spectra, temporal activations, and spatial 
correlation matrices. This is aJactor-Jactor model because the mul­
tichannel mixture spectrum at each TF bin is modeled as a weighted 
sum of source spectra (Le., each TF bin is not assigned to one of 
sources), each of which is further modeled as a weighted sum of 
basis spectra. To reduce the initialization sensitivity ofMNMF, vari­
ous restrictions on the spatial correlation matrix have been proposed. 
Kitamura et al. [ll] restricted those to rank-l matrices. Nikunen 
et al. [19] calculated those using the geometry of the microphone 
array. The main contribution of this paper is to formulate a Bayesian 
Jactor-Jactor model to incorporate prior knowledge of a microphone 
array into the framework of MNMF as in [5] . A Bayesian model 
enables prior knowledge to adapt to the recorded environment. 

3. BAYESIAN MNMF 

This section explains a Bayesian model of MNMF that decomposes 
the complex spectrograms of mixture signals into basis spectra, tem­
poral activations, and spatial correlation matrices in a statistical man­
ner. Bayesian estimation of real spatial correlation matrices based on 
those measured in an anechoic room leads to accurate joint source 
separation and localization in an arbitrary environment. 

3.1. Model rormulation 

When K sources are observed with M microphones, each TF bin of 
the complex spectrograms of observed mixture signals and that of 
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the complex spectrograms of source signals are defined as folIows: 

Xtj = [Xtjl , ' ,XtjM]T E CM , 

Ytj = [Ytjl,' ,YtjK]T E C K, 

(1) 

(2) 

where Xtjrn and Ytj k respectively denote the complex spectrum of 
microphone m and that of source k at time frame t and frequency 
f. As is often the case with related work, we assurne that the source 
spectrum Ytj k is complex Gaussian distributed as folIows: 

Ytjk I Atjk ~ N c(O, Atjk ) , (3) 

where Atjk is the power spectrum density of source k at time frame 
t and frequency f. 

Assuming an instantaneous mixing process in the frequency do­
main, the observation Xtj is represented using source spectra and 
steering vectors as folIows: 

K 

Xtj = L ajkYtjk, (4) 
k=l 

where a j k E C M is a steering vector of source k at frequency f. 
We represent spatial directions with D discretized values indexed by 
d = 1, ... , D. Note that a steering vector ajd depends on both 
direction d and frequency fand it should theoretically be equivalent 
to a steering vector a j k of a particular source k because the source 
exists at one of the directions. Relaxing this constraint, the steering 
vector of the source is represented as the weighted sum of steering 
vectors of all directions as folIows: 

D 

ajk = L Ukdajd , 

d= l 

(5) 

where Ukd is the weight of direction d for source k and {Uk d}.f= l is 
expected to be sparse to associate source k with one direction. 

Using Eqs. (3) , (4) , and (5) , the observation spectrum Xtj is 
found to be multivariate complex Gaussian distributed as folIows: 

Xtf I A, S, G ~ N e. (0, ~ ~ AtjkSkdGil ) , (6) 

where S k d = U%d and Gil = afda7d is a spatial correlation matrix 
for direction d at frequency f. 

If the power spectrogram densities {Atj k} ;~;.J= l of each source 
k are assumed to have a low-rank structure, they are decomposed as 

L 

Atjk = L Wktfhklt, 

t=l 
(7) 

where W ktt is the power spectrum density of basis I at frequency f 
and h k tt is the volume of basis I at time frame t . 

Plugging Eq. (7) into Eq. (6), the Iikelihood of the unknown 
parameters W , H , S , and G for the observed data X is given by 

Xt f I W, H, S, G ~ N e. (0, ~ t ~ WktjhkttS k dGi l) , (8) 

For mathematical convenience, the conjugate prior distributions are 
put on those model parameters as folIows: 

Wktj ~ Gamma(aü , bü ) , 

h k tt ~ Gamrna(a~,b~), 
Skd ~ Gamma(ag , M), 

Gfd ~ Wc(VO,G~d)' 

(9) 

(10) 

(ll) 

(12) 



where Wc is the complex Wishart distribution defined by 

IX lv- M exp{ -tr(A - 1 X)} (13) WC(X lv A) = _!....--' __ ....!....!o~~_-'-'-_ 
, IAlv 7r M(M - l )/2 n~,:; f(v - m) ' 

where v :::: M is a degree of freedom and A >- 0 E rc MXM is a 
scale matrix. To use prior knowledge about a microphone array, the 
steering vectors {a~d} f = l are measured for each direction d in an 

anechoic room and G~d is set as G~d = (a~d(a~d)H + EI) , where 
E > 0 is a small number to make G~d positive definite. 

3.2. Bayesian inference 

Our goal is to ca1culate the posterior distribution p(W, H, S, G IX) 
using the Bayes' theorem p(W, H, S, G IX) = p(x .~~. s . G) 
and find optimal parameters that maximize the posterior in practice. 
Since p(W, H, S , G IX) is analytically intractable, but a posterior 
distribution of each parameter conditioned on the remaining param­
eters (e.g. , p(WIH, G , S, X) is tractable, we can use Gibbs sam­
pling [20] that alternately and iteratively updates one of the parame­
ters W , H, S, and G according to the conditional posterior distri­
bution by fixing the other parameters. 

To derive a tractable conditional posterior of each parameter, we 
use a variational approach [21]. Although the conditional posterior 
is proportional to the complete joint likelihood given by the product 
of Egs. (8)- (12), it is difficult to directIy get sampIes from the condi­
tional posterior because of the complicated form of Eg. (8). There­
fore, the log-likelihood function defined by Eg. (8) is lower bounded 
by a tractable auxiliary function having auxiliary variables. The aux­
iliary function should become egual to the log-likelihood function 
when it is maximized with respect to the auxiliary variables. Such 
an auxiliary function can be used as a proxy for the log-likelihood 
function. More specifically, letting Ytfkld = Wklf hkltSkd G j d , the 
log-likelihood is given by 

10gp(X IW , H , S , G) ~ L (- log IYtfl- tr(Xt/~jl)), (14) 
tf 

where Xtf = Xf}Xtf and Ytf = 2:kld Ytf kld . To derive a lower 
bound L from Eg. (14), we use two inegualities used in [21]. First, 
for a convex function j(Z) = - log IZ I (Z C: 0 E rc MXM ), we 
ca1culate a tangent plane at arbitrary n c: 0 by using a first-order 
Taylor expansion as folIows: 

- log IZ I :::: - log In l- tr(n - l Z) + M, (15) 

where the eguality holds when n = Z. Second, for a concave func­
ti on g(Z) = -tr(Z-l A) with any matrix A C: 0 , we use the 
following ineguality: 

K 

-tr ( (2:{;=1 Z k) -lA) :::: - ~ tr( zkl<PkA<Pr) , (16) 

where {Z k C: o} t'= 1 is a set of arbitrary matrices, {<p k } t'= 1 is a set 
of auxiliary matrices that sum to the identity matrix (2: k <Pk = I) , 
and the eguality holds when <P k = Z k(2:k' Z k' )- 1. 

Using Inegualities (15) and (16), the log-likelihood function given 
by Eg. (14) is lower bounded by L as folIows: 

10gp(X IW , H , S , G) 

2: L (-tr (Ytfn;~/) - log Intf l + M) 
t/ 

- L tr (~J~ld<Ptfkld Xtf<Ptfkld) ~f L 
tfkld 

(17) 
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where n t/ and <P t/kid are newly-introduced auxiliary variables. The 
auxiliary function L is maximized, i.e., the eguality holds, when ntf 
and <Ptfkld are given by 

- 1 
<Pt /kid = Yt /kld ~f . 

(18) 

(19) 

The parameters Wklf , hklt , Skd, and G /d can be sampled from 
the following conditional distributions proportional to the product of 
Egs. (9)-(12) and (17): 

Wklf I X , e~Wklf ~ GIG(a:f, Pk/f , Tklf) ' (20) 

hklt I x, e~hklt ~GIG(a3 , pZlt , Trlt) , (21) 

Skd I X, e~S kd ~ GIG(ag, Pkd, Tkd), (22) 

G fd I X, e~G f d ~ MGIGc(vo, R fd, Ufd), (23) 

where e~* is a set of all parameters exc1uding *. GIG indicates the 
generalized inverse Gaussian distribution [22] and MGIGc indicates 
the complex matrix GIG distribution [23], defined by 

( I ) - exp{ (-"y - 1) logx - px - T/X }p'I/ 2 (24) 
GIG X"( , p,T - 2T'I/ 2 K 'I (2#) 

MGIGC(X b , R , U) cx: IX I'I - M exp{ -tr(RX + U X-ln , (25) 

where K 'I is the modified Bessel function of the second kind, "( is a 
real number, P > 0, T > 0, R >- 0, and U >- O. To draw sampIes 
from the GIG and complex MGIG distributions , we use a rejection 
sampling method [24] and a Metropolis-Hastings (MH) method [25] , 
respectively. In the MH method, we use as a proposal distribution a 
complex Wishart distribution whose mode eguals to that of a target 
complex MGIG distribution (the mode of an MGIG distribution can 
be calculated by using an algebraic Riccati eguation [23]). The con­
ditional posterior parameters P:, T: , Rjd, and Ufd are given by 

Pklj = b:f + LhkltSkdtr(G j dnZ/) , 
td 

Tklj = L hkl~skdtr (G fd <Pt/kld X tf <Ptfkld) , 
td 

pZlt = b3 + L Wklfskdtr(Gjdnz,/), 
fd 

Tk'lt = L Wkl}Skd tr (G /d<PtfkldXtj<Ptfkld) , 
jd 

Pkd = bg + L Wklfhklttr(Gjdnz/), 
tfl 

Tkd = L wki}hkl~tr (G /d <Ptfkld Xt / <P tfkld) , 
tfl 

R fd = (G~d) - l + L wki}hkl~Skd<Pt/kldXt/<Ptfkld, 
tkl 

Ujd = L WklfhkltSkdn-;/. 
tkl 

3.3. Source separation and localization 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

The multichannel mixture spectrum Xtj over microphones at time 
frame t and freguency bin j is decomposed into the sum of multi­
channel source spectra {Xt fk}L'= l using multichannel Wiener filter­
ing [10] as folIows: 

Xtfk = Ytfk~jlXtf , 

where Ytj k = 2:ld Ytfkld. 

(34) 



The source spectrograms of the first channel are transformed 
into time-domain source signals using the inverse short-time Fourier 
trans form . The direction d( k) of each source k can be estimated by 
finding the direction such that the weight S k d of direction d for the 
source k is maximized as folIows: 

(35) 

4. EVALUATION 

This section reports comparative quantitative experiments conducted 
for evaluating the proposed method. 

4.1. Experimental conditions 

We synthesized convolutive mixture sounds as test data. Fig. 2 shows 
the locations of microphones and sources. Three sources were con­
voluted using impulse responses measured with 4 microphones in a 
room where the reverberation time RT60 was 400 ms. We used mu­
sic signals (including guitar, bass, vocal, hi-hat, and piano sounds) 
and speech signals selected from the SiSEC data set [26] and the 
JNAS phonetically balanced Japanese utterances [27]. 30 mixture 
signals were used for evaluation: 10 mixtures of music signals, 10 
mixtures of speech signals, and 10 mixtures of music and speech 
signals. The audio signals were sampled at 16 kHz and a short­
time Fourier transformation was carried out with a 5l2-pt Hanning 
window and a 256-pt shift size. Hyperparameters were determined 
experimentally as folIows: L = 20, aü = a3 = aü = bü = b3 = 
bü = 1, Va = M + 1 , and E = 0.01. The steering vectors a~d were 
measured for all directions with an angular interval of 5° (D = 72) 
in an anechoic room and they were different from those used to gen­
erate the test data. 

We compared our method with the standard and state-of-the-art 
methods such as IVA [2], MNMF [10], NMF-LDA [12], and LDA­
LDA [17]. The parameters of each method were updated or sampled 
200 times. The signal-to-distortion ratio (SDR), signal-to-inferences 
ratio (SIR) and signal-to-artifacts ratio (SAR) [28] were used to eval­
uate the separation performance. We compared the localization per­
formance ofthe proposed method with those ofNMF-LDA [12] and 
LDA-LDA [17] . We evaluated the localization performance in terms 
of the average of the absolute localization errors. 

4.2. Experimental results 

The experimental results are listed in Tables 1, 2, and 3. With all 
signal mixtures the SDR was highest for the proposed method, but 
in terms of SIR the proposed method was inferior to NMF-LDA and 
LDA-LDA, which are methods based on TF clustering (hard mask­
ing of TF bins). In terms of SAR the proposed method was almost 
the same as the conventional MNMF and was better than any of the 
other conventional methods. The proposed Bayesian extension was 
found to work weil because the SDR and SIR for it were higher than 
those of MNMF and the SAR for it was almost the same as that for 
MNMF. 

The average absolute localization errors are listed in Table 4. 
Although the localization errors for the proposed method were larger 
than those for the conventional methods, the differences were less 
than 1 0 . We can thus say that the localization performance of the 
proposed method is comparable to that of the conventional methods. 

The results show that the proposed model could separate and 
localize mixture sounds in an environment where the effective steer­
ing vectors are different from those measured in an anechoic room. 
This suggests that the proposed model can not only utilize the prior 
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Fig. 2. Positions of microphones and sources. 

Table 1. Evaluation on music signal mixtures. 

Bayesian MNMF 
MNMF[lO] 
NMF-LDA [12] 
LDA-LDA [17] 
IVA [2] 

SDR SIR SAR 
3.2 dB 8.1 dB 7.5 dB 
1.0 dB 6.2 dB 6.7 dB 
0.5 dB 8.7 dB 3.2 dB 
0.7 dB 8.7 dB 3.3 dB 
0.3 dB 4.9 dB 5.7 dB 

Table 2. Evaluation on speech signal mixtures. 

Bayesian MNMF 
MNMF[lO] 
NMF-LDA [12] 
LDA-LDA [17] 
IVA [2] 

SDR SIR SAR 
6.0 dB 12.6 dB 7.5 dB 
4.8 dB 10.0 dB 7.7 dB 
4.2 dB 14.0 dB 5.2 dB 
5.8 dB 17.0 dB 6.3 dB 
3.4dB 7.5dB 7.1dB 

Table 3. Evaluation on music and speech signal mixtures. 

Bayesian MNMF 
MNMF[lO] 
NMF-LDA [12] 
LDA-LDA [17] 
IVA [2] 

SDR SIR SAR 
4.9 dB 13.0 dB 6.6 dB 
1.8 dB 8.6 dB 6.1 dB 
1.1 dB 9.8 dB 4.1 dB 
2.8 dB 14.2 dB 3.9 dB 
0.1 dB 5.3 dB 5.3 dB 

Table 4. Average absolute localization error (degree). 

Bayesian MNMF 
NMF-LDA [12] 
LDA-LDA [17] 

speech music music+speech 
2.00 2.50 2.50 
1.67 1.67 1.83 
1.67 1.83 2.00 

knowledge on the steering vectors but also adapt them according to 
the environment where mixture signals are observed. 

5. CONCLUSION 

This paper presented a Bayesian extension ofMNMF for audio source 
separation and localization that can incorporate prior knowledge about 
an environment, microphones, and/or sources. Experimental results 
showed that (1) the proposed method achieved better separation per­
formance than the conventional MNMF, (2) its localization perfor­
mance was comparable to that of conventional methods, and (3) it 
worked weil in an unknown environment whose acoustic character­
istics were significantly different from those of an anechoic room. 

With further extensions, it would be possible to estimate the 
number of the sources in a nonparametric Bayesian manner and to 
develop an online source separation algorithm. Other future works 
include examining the effect of prior learning of basis matrices and 
comparing the proposed method with various methods such as other 
extensions of MNMF [11, 19]. 



6. REFERENCES 

[1] P. Comon and C. Jutten, Handbook ofBlind Source Separation: 
Independent component analysis and applications, Academic 
press, 2010. 

[2] N. Ono, "Stable and fast update rules for independent vector 
analysis based on auxiliary function technique," in IEEE WAS­
PAA, 2011 , pp. 189- 192. 

[3] I. Lee, T. Kim, and T. Lee, "Fast fixed-point independent vector 
analysis algorithms for convolutive blind source separation," 
Signal Processing, vol. 87, no. 8, pp. 1859- 1871,2007. 

[4] N. Ito, S. Araki , and T. Nakatani , "Permutation-free convo­
lutive blind source separation via full-band c1ustering based 
on frequency-independent source presence priors ," in IEEE 
ICASSP, 2013, pp. 3238- 3242. 

[5] T. Otsuka, K. Ishiguro, H. Sawada, and H. G. Okuno, 
"Bayesian nonparametrics for microphone array processing," 
IEEE TASLP, pp. 493- 504, 2014. 

[6] P. Smaragdis and J.c. Brown, "Non-negative matrix factoriza­
ti on for polyphonie music transcription," in IEEE WASPAA , 
2003 , pp. 177- 180. 

[7] David M Blei, Perry R. Cook, and Matthew D. Hoffman, 
"Bayes ian nonparametric matrix factorization for recorded mu­
sie," in ICML, 2010, pp. 439- 446. 

[8] K. Adilolu and E. Vincent, "Variational bayesian inference for 
source separation and robust feature extraction," IEEE TASLP, 
vol. 24, no. 10, pp. l746- l758,2016. 

[9] J. T. Chien and P. K. Yang, "Bayesian factorization and learn­
ing for monaural source separation," IEEE TASLP, vol. 24, no. 
1, pp. 185- 195,2016. 

[10] H. Sawada, H. Kameoka, S. Araki , and N. Ueda, "Multi­
channel extensions of non-negative matrix factorization with 
complex-valued data," IEEE TASLP, vol. 21 , no. 5, pp. 971-
982, 2013. 

[11] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and 
H. Saruwatari, "Relaxation of rank-1 spatial constraint in 
overdetermined blind source separation," in EUSIPCO, 2015 , 
pp. 127l- 1275. 

[12] K. Itakura, Y. Bando, E. Nakamura, K. Itoyama, and K. Yoshii , 
"A unified Bayesian model of time-frequency c1ustering and 
low-rank approximation for multi-channel source separation," 
in EUSIPCO, 2016, pp. 2280-2284. 

[13] A. A. Nugraha, A. Liutkus, and E. Vincent, "Multichannel 
audio source separation with deep neural networks," IEEE 
TASLP, vol. 24, no. 10, pp. 1652- 1664,2016. 

[14] H. Sawada, R. Mukai , S. Araki , and S. Makino, " A robust 
and precise method for solving the permutation problem of 
frequency-domain blind source separation," IEEE TSAP, vol. 
12,no.5, pp.530- 538, 2004. 

[15] H. Sawada, S Araki, and S. Makino, "Underdetermined convo­
lutive blind source separation via frequency bin-wise c1ustering 
and permutation alignment," IEEE TASLP, vol. 19, no. 3, pp. 
516- 527, 2011. 

[16] M. I. Mandel , R. J. Weiss, and D. P. W. Ellis, "Model-based 
expectation-maximization source separation and localization," 
IEEE TASLP, vol. 18, no. 2, pp. 382- 394,2010. 

555 

[17] K. Itakura, Y. Bando, E. Nakamura, K. Itoyama, K. Yoshii, 
and T. Kawahara, "Time-frequency c1ustering based on a 
nested mix ture model for multichannel source separation (in 
Japanese)," in speech processing society, 2016, pp. 25- 28. 

[18] A. Ozerov and C. Fevotte, "Multichannel nonnegative matrix 
factorization in convolutive mixtures for audio source separa­
tion," IEEE TASLP, vol. 18, no. 3, pp. 550-563, 2010. 

[19] J. Nikunen and T. Virtanen, "Multichannel audio separation by 
direction of arrival based spatial covariance model and non­
negative matrix factorization," in IEEE ICASSP, 2014, pp. 
6677- 6681. 

[20] G. Casella and E. I. George, "Explaining the Gibbs sampIer;' 
The American Statistician, vol. 46, no. 3, pp. 167- 174, 1992. 

[21] K. Yoshii , K. Itoyama, and M. Goto, "Student's t nonnega­
tive matrix factorization and positive semidefinite tensor fac­
torization for single-channel audio source separation," in IEEE 
ICASSP, 2016, pp. 51- 55. 

[22] B. J0rgensen, Statistical properties of the generalized inverse 
Gaussian distribution, vol. 9, Springer Science & Business 
Media, 2012. 

[23] F. Fazayeli and A. Banerjee, The Matrix Generalized Inverse 
Gaussian Distribution: Properties and Applications, pp. 648-
664, Springer International Publishing, 2016. 

[24] J. S. Dagpunar, Simulation and Monte Carlo: Wirh applica­
tions injinance and MCMC, John Wiley & Sons, 2007. 

[25] S. Chib and E. Greenberg, "Understanding the Metropolis­
Hastings algorithm," The american statistician, vol. 49, no. 4, 
pp. 327- 335, 1995. 

[26] S. Araki , F. Nesta, E. Vincent, Z. KoldovskY, G. Nolte, 
A. Ziehe, and A. Benichoux, "The 2011 signal separation eval­
uation campaign (SiSEC2011):-audio source separation," in 
Latent Variable Analysis and Signal Separation, pp. 414-422. 
Springer, 2012. 

[27] K. Itou, M. Yamamoto, K. Takeda, T. Takezawa, T. Matsuoka, 
T. Kobayashi , K. Shikano, and S. Itahashi, 'The design of the 
newspaper-based Japanese large vocabulary continuous speech 
recognition corpus," ICSLP, pp. 3261- 3264, 1998. 

[28] E. Vincent, R. Gribonval, and C. Fevotte, "Performance mea­
surement in blind audio source separation," IEEE TASLP, vol. 
14, no. 4, pp.1462- 1469, 2006. 


