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ABSTRACT
This paper presents a framework for correcting errors of automatic

drum sound detection focusing on the periodicity of drum patterns.
We define drum patterns as periodic structures found in onset se-

quences of bass and snare drum sounds. Our framework extracts
periodic drum patterns from imperfect onset sequences of detected

drum sounds (bottom-up processing) and corrects errors using the
periodicity of the drum patterns (top-down processing). We imple-

mented this framework on our drum-sound detection system. We

first obtained onset sequences of the drum sounds with our system
and extracted drum patterns. On the basis of our observation that

the same drum patterns tend to be repeated, we detected time points
which deviate from the periodicity as error candidates. Finally, we

verified each error candidate to judge whether it is an actual onset or
not. Experiments of drum sound detection for polyphonic audio sig-

nals of popular CD recordings showed that our correction framework
improved the average detection accuracy from 77.4% to 80.7%.

1. INTRODUCTION

The concept of music information retrieval (MIR) has attracted a lot

of attention. MIR enables us to acquire musical pieces by executing a
query about music contents such as rhythms and melodies. To create

an MIR system, we are working on an automatic rhythm description.
Because drums are closely related to the rhythm, many drum-sound

detection systems [1, 2] have been proposed. We developed a sys-
tem, called AdaMast [3, 4], based on adaptation and matching of

drum-sound spectrogram templates. However, bottom-up methods
are required to describe higher-level content (e.g., tempo). Although

AdaMast can automatically detect drum-sound onsets in polyphonic
audio signals of CD recordings, detection errors often occur because

the task for those signals is very difficult with low-level processing
only. One of solutions for reducing the errors is to use higher-level

content as top-down constraints for drum-sound onsets.

We therefore focus on drum patterns which are higher-level con-
tent of the rhythm. There are a few studies on drum sound detection

that focus on the periodicity of drum patterns. In these studies, bar-
line times and bar-line intervals are considered as start times and

lengths of drum patterns. For example, to detect drum sounds in au-
dio signals of drum tracks, Paulus et al. [5] used periodic N-grams

for modeling the transition of drum patterns. Gillet et al. [6] pro-
posed a post-processing method that corrects detected onsets on the

basis of the periodicity. Although their method was applied to detect
drum sounds in polyphonic audio signals, the performance was not

improved. A main limitation of these methods is that they depend
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on the accuracy of bar-line time estimation. They were only tested
in ideal conditions; correct bar-lines were manually given.

As mentioned above, start times and lengths of drum patterns are
defined as bar-line times and bar-line intervals in general. To obtain

the drum patterns, it is necessary to split onset sequences of drum
sounds by estimating bar-line times. However, some drum patterns

are not always useful for the periodicity-based error correction when
they are not periodic. In addition, estimation errors of bar-line times

often give fatal damages to the onset detection and correction.

We define drum patterns as periodic structures found in onset

sequences of drum sounds in popular songs. We try to extract peri-
odic structures which are useful for the error correction from onset

sequences of drum sounds using a bottom-up method. The start time
and length of an extracted pattern are often (i.e., not always) equal

to the bar-line time and bar-line interval.

In this paper, we propose a new error correction framework that

evaluates the reliability of each detected onset on the basis of the
periodicity of drum patterns and that verifies unreliable onsets. The

drum patterns are used as top-down constraints, which are obtained
by results of the bottom-up processing to onset sequences of drum

sounds. Our framework does not use any prior information of bar
lines and it is robust to the bar-line estimation errors. We found that

the framework worked well for polyphonic audio signals of popular
CD recordings including various instrument sounds.

The rest of this paper is organized as follows. Section 2 and Sec-
tion 3 describe our error correction framework and our drum-sound

detection system with the error correction function. Section 4 ex-
plains the actual implementation of this framework. Section 5 shows

evaluation results. Finally, Section 6 summarizes the paper.

2. ERROR CORRECTION FRAMEWORK

An error correction framework is described first. It can be applied to
drum-sound onsets obtained by any drum-sound detection systems.

2.1. Concept
Onset detection errors are corrected through three steps, as shown in
Fig. 1. Each step is briefly explained as follows:

Step 1: Drum pattern extraction
To extract drum patterns which are useful for evaluating the

reliability of detected onsets on the basis of the periodicity,
only periodic drum patterns are extracted. Because an ex-

tracted drum pattern is periodic, similar successive structures
appear in the neighborhood of the extracted pattern even if the

estimation of bar-line times fails, as shown in Fig. 2. There-
fore, the reliability of each detected onset is appropriately

evaluated by examining these successive structures.
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Fig. 2. Error candidate estimation based on the periodicity of suc-
cessive structures in case of bar-line estimation errors.

Step 2: Error candidate estimation
Because there are two types of detection errors — false alarms

and misses, candidate times of each error type need to be de-

tected according to the drum pattern periodicity. False-alarm
candidates indicate unreliable onsets among the detected on-

sets. Miss candidates indicate potential onsets that were not
detected by a drum transcription system, although the proba-

bility that they are actual onsets is comparatively high.

Step 3: Error candidate verification
Because those candidates do not always correspond to actual
errors, each candidate needs to be verified carefully with an

evaluation measure. For example, we can reuse a drum tran-
scription system with dynamically changing judgment thresh-

olds according to the reliability of each candidate.

2.2. Approach
Our system implements this framework by making the following two
assumptions on input audio signals.

1. The time signature is 4/4. If the actual time signature of a

song is 2/4, the time signature of the song is assumed to be
4/4 by concatenating two successive measures.

2. The tempo is between 60 and 200 M.M. 1

These assumptions fit into a large class of popular music.

First of all, we should prepare a reference pattern. It represents

prior onset distributions of bass and snare drum sounds in a bar-line
interval (e.g., onsets of bass drum sounds tend to be in the first beat).

The reference pattern is obtained by averaging various drum patterns
sampled from many MIDI files of popular songs.

To extract drum patterns, we perform two steps: period length
calculation and reference pattern matching. First, we calculate the
period length of onset sequences at each time by using a short-time

Fourier transform (STFT). Next, we find time points when the cor-
relation between the reference pattern and the onset sequences takes

the local maximum while shifting and extending the reference pat-
tern along the time axis on the basis of the period length. Finally, the

drum patterns are extracted from these time points.

To estimate error candidates in a drum pattern, we examine the
same time points in successive structures of both sides of the pattern

(see horizontal arrows in Fig. 1 and Fig. 2). If there is an onset

1Mälzel’s Metronome: the number of quarter notes per minute.
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Fig. 3. Overview of feedback architecture of our system.

in a time point in the drum pattern but there are few onsets in the

examined points, we judge that the onset is a false-alarm candidate.
If there is no onset in a time point but there are some onsets in the

examined points, we judge that the time point is a miss candidate.

3. DRUM SOUND DETECTION SYSTEM
WITH ERROR CORRECTION FUNCTION

Fig. 3 shows a novel architecture of our drum-sound detection sys-

tem that implements the error correction framework. The architec-
ture comprises two parts. An onset-detection part detects onset times

of the bass and snare drum sounds on the basis of adaptation and
matching of spectrogram templates. An error-correction part evalu-

ates the reliability of the onset times on the basis of the drum pattern
periodicity and verifies them by reusing the onset-detection part.

In this architecture, bottom-up processing (i.e., drum pattern ex-
traction from onset sequences) and top-down processing (i.e., error

correction based on onset reliability) are linked through the evalua-
tion feedback of the onset reliability based on the drum pattern peri-

odicity. In other words, this architecture has a self-refining function
based on self-evaluation results to yield more reasonable outputs.

3.1. Onset Detection based on Adaptation and Matching of Spec-
trogram Templates of Drum Sounds
This part takes polyphonic audio signals as inputs and outputs on-

sets of the bass and snare drum sounds. Our system [3, 4], which
comprises the following successive stages, achieves this purpose.

Template Adaptation Its purpose is to obtain actual power spec-

trograms of the bass and snare drum sounds in an input audio
signal. First, two initial spectrograms are prepared. These are

called seed templates in a previous study [3]. Note that they
are different from the actual spectrograms of the drum sounds

in the input audio signal. This stage updates each seed tem-
plate iteratively by setting multiple drum-sound spectrograms

found in the input audio signal for the adaptation targets.

Template Matching Its purpose is to detect all the onset times of

the bass and snare drum sounds in the polyphonic audio sig-
nal, even if other instrument sounds overlap them. This stage

judges whether each onset candidate is an actual onset or not;

the onset candidate times are obtained in advance by peak-
picking the song spectrogram. To enable this, we designed a

distance measure that is robust for polyphonic mixtures. In
this measure, the distance is calculated between the adapted

template and a song-spectrogram segment at each onset can-
didate. The distance threshold is automatically determined.

3.2. Error Correction based on Evaluation Feedback of Onset
Reliability
In the error candidate estimation step, we can also detect reliable
onsets which accord with the periodicity of drum patterns well. Be-

V ­ 238



1.0

0.0
time

onset time points

D

allocation of Gaussian distributions

20 [ms]

Fig. 4. Calculation of detected onset distribution.

0.0

0.7

1

B

R
S

R

432 beat

frame200150100500

1

Fig. 5. Calculation of reference onset distributions.

cause it is highly likely that spectrograms at the reliable onsets in-
clude the target drum-sound spectrograms, the reliable onsets are

useful clues for the accurate adaptation. The error candidate verifi-
cation step is implemented by reusing the onset detection part.

Template Re-adaptation The template updating is performed again

by setting multiple spectrograms extracted from reliable on-
sets for the adaptation targets.

Template Re-matching The template matching is performed again
for false-alarm and miss candidates by dynamically changing

the threshold according to the reliability of each onset.

4. SYSTEM IMPLEMENTATION

To use a STFT for calculating the period length, discrete onset se-
quences are transformed to quasi-continuous functions by allocating

a Gaussian distribution to each onset time, as shown in Fig. 4. The
standard deviation of the Gaussian is 20 [ms]. The time resolution

of the functions is 10 [ms], which corresponds to 1 [frame]. We call
them detected onset distributions, which are represented as DB and

DS for the bass and snare drums, respectively. Henceforth, we often
omit the subscripts B and S for convenience.

4.1. Drum Pattern Extraction
The following two steps are performed to determine the lengths and

start times of drum patterns.

Period length calculation A STFT with a Hanning window is ap-

plied to detected onset distributions DB and DS . The win-
dow length is 2048 [frames], and the shifting interval is 1

[frame]. These two amplitude spectrograms are summed, and
then a total amplitude spectrogram is obtained. The period

length L(t) [frames] is obtained at each frame t by calculat-
ing the peak interval of the spectral autocorrelation.

Reference pattern matching First, a reference pattern is obtained

by averaging measure-length drum patterns in MIDI files of
popular music database RWC-MDB-P-2001 [7] after these

files are normalized at 120 M.M. Let RB and RS be refer-
ence onset distributions, which are obtained by convoluting

the Gaussian with the reference pattern, as in calculating D.
Fig. 5 shows RB and RS . Their length is 200 [frames].

Next, the following processing is performed at each frame

t. Fig. 6 shows an overview of this processing. To reduce
bar-line estimation errors (double-tempo errors), the length

of R is extended to L(t) and 2L(t) [frames] between 120
[frames] (200 M.M.) and 400 [frames] (60 M.M.). The cor-

relation between D starting from frame t and each extended
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R is calculated; it is normalized with the length of R. Then,

the correlations of both the drum types are summed for each
length of R. The total correlation C(t) is determined as the

maximum summed correlation. Let L′(t) be the length of R
(L(t) or 2L(t)) that yields the maximum correlation.

Finally, the start times of the drum patterns are obtained by

picking frame t at which C(t) is larger than a threshold. The
lengths of the drum patterns are determined as L′(t) at picked

frame t. If a drum pattern overlaps with another one, the pat-
tern that has the larger correlation is extracted.

4.2. Error Candidate Estimation
To estimate actual onset times in each drum pattern, the average of

detected onset distributions is calculated in four successive structures
of both sides of the drum pattern, as shown in Fig. 7. Let E be an

estimated onset distribution, obtained by

E(pi + δi) =
1

4

X
m={−2,−1,1,2}

D(pi + δi + m li) (1)

where pi and li (i = 1, · · · , N) are the start time and length of the

i-th extracted pattern. N is the number of extracted drum patterns.
δi is an offset time from start time pi (0 ≤ δi ≤ li).

Each detected onset is grouped into one of three classes (i.e., a
class of reliable onsets and two classes of false-alarm candidates)

from the viewpoint of reliability by comparing the detected onset
distribution D with the estimated onset distribution E. In addition,

a class of miss candidates is considered. As shown in Fig. 8, there
are a total of four classes, which are obtained by

Reliable onsets: {t|D(t) = 1.0, E(t) ≥ 0.8},

False-alarm candidates 1: {t|D(t) = 1.0, 0.8 > E(t) ≥ 0.05},

False-alarm candidates 2: {t|D(t) = 1.0, 0.05 > E(t)},

Miss candidates: {t|D(t) = 0.0, E(t) ≥ 0.4}.

4.3. Error Candidate Verification
As described in Section 3.2, reliable onsets are used for re-adaptation.

In addition, re-matching is performed while decreasing the distance
threshold gradually as the reliability decreases for false-alarm can-

didates or while increasing the threshold for miss candidates.

V ­ 239



false alarm

candidate 1

false alarm

candidate 2

miss candidate

reliable

onsets

false alarm 

candidate 1

1.0

0.8

0.4

0.0
time

S

E

S

D

0.05

Fig. 8. Example of onset reliability evaluation.

Table 1. Musical pieces used for experiments.

piece number (No.) in RWC-MDB-P-2001

1,5,6,7,8,10,11,12,13,14,18,20,21,22,23,25,26,30,

33,35,36,37,40,41,43,44,46,47,48,50,51,52,53,54,
58,59,61,62,63,66,70,83,84,85,87,88,89,90,92,98

Table 2. Notation of tested methods.

TM Template Matching

TA Template Adaptation
ECM Error Correction based on Re-Matching

ECA Error Correction based on Re-Adaptation

5. EXPERIMENTAL EVALUATION

We performed comparative experiments of detecting bass and snare
drum sounds for polyphonic audio signals including various sounds.

The four methods described in Section 3 were enabled one by one to
evaluate the different performance improvements.

5.1. Conditions
Our methods were tested on fifty songs sampled from popular music

database RWC-MDB-P-2001 developed by Goto et al. [7]. Table 1
shows a list of the songs. The audio signals were sampled with CD

quality, and they were converted to monaural recordings. Table 2
shows a notation list of the tested methods. Each method was eval-

uated by performing comparative experiments with a different com-
bination of our methods. The evaluation measures are defined as

recall rate =
#(correctly detected onsets)

#(actual onsets)
,

precision rate =
#(correctly detected onsets)

#(detected onsets)
,

f-measure =
2 · recall rate · precision rate

recall rate + precision rate
.

The error tolerance is set to 25 [ms].

5.2. Results
Table 3 and Table 4 show the results of detecting the bass and snare
drum sounds, respectively. Our methods improved the f-measures,

and combining them yielded further improvements. A fully-enabled
error correction method (ECA+ECM) improved the f-measure from

76.8% to 81.1% (a 18.7% error reduction) in the bass drum sound
detection and from 78.0% to 80.3% (a 10.6% error reduction) in the

snare drum sound detection. The precision rates of the four classes
in Section 4.2 are 91%, 77%, 66%, and 23% in the bass drum sound

detection. They are 92%, 37%, 51%, and 6% in the snare drum
sound detection. These results proved the effectiveness of our error

correction framework.

Table 3. Experimental results of bass drum sound detection.

method combination recall precision f-measure

TM 70.122% 70.109% 70.115%

TM+TA (baseline) 75.838% 77.758% 76.786%
TM+TA+ECM 76.194% 78.872% 77.510%

TM+TA+ECA 79.691% 81.463% 80.567%
TM+TA+ECM+ECA 79.835% 82.449% 81.121%

Table 4. Experimental results of snare drum sound detection.

method combination recall precision f-measure

TM 67.126% 68.891% 67.997%

TM+TA (baseline) 77.968% 78.025% 77.996%
TM+TA+ECM 78.106% 80.747% 79.404%

TM+TA+ECA 78.191% 80.523% 79.340%
TM+TA+ECM+ECA 78.283% 82.464% 80.319%

Table 5. Experimental results of tempo estimation.

correct double-tempo errors other errors

40 songs (80%) 9 songs (18%) 1 song (2%)

As a secondary effect, our methods will help with tempo estima-

tion. The tempo is determined by converting the majority of L′(t) to

M.M.
“

60,000[ms]
L′(t)·10[ms] · 4 [quarter notes]

”
. Table 5 shows the results of

the tempo estimation. They are promising.

6. CONCLUSION

We presented an error correction framework and introduced an im-

plementation in our template-based drum-sound detection system.
An onset detection part in the system is equipped with a self-refining

function based on evaluation feedback of the onset detection reliabil-
ity. This is an integration of bottom-up processing (i.e., drum pattern

extraction from onset sequences) and top-down processing (i.e., on-
set correction based on drum pattern periodicity). We demonstrated

proof of the concept with comparative experiments. We believe that
our framework could be helpful for many studies.
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