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ABSTRACT

This paper presents an analysis-manipulation method émegen-
erate musical instrument sounds with arbitrary pitches dura-
tions from the sound of a given musical instrument (caBedd
without distorting its timbral characteristics. Based @yghoa-
coustical knowledge of the auditory effects of timbres, wérted
timbral features based on the spectrogram of the sound ofs&a mu
cal instrument as (i) the relative amplitudes of the harropeiaks,
(ii) the distribution of the inharmonic component, and)(t&ém-
poral envelopes. First, to analyze the timbral features séex

it was separated into harmonic and inharmonic componeing us
Iltoyama’s integrated model. For pitch manipulation, wektoto
account the pitch-dependency of features (i) and (ii). Veégljoted
the values of each feature by using a cubic polynomial thaitcee
imated the distribution of these features over pitches. @aipu-
late duration, we focused on preserving feature (jii) in dftack
and decay duration of seed Therefore, only steady durations
were expanded or shrunk. In addition, we propose a methaefor
producing the properties of vibrato. Experimental resdémon-
strated the quality of the synthesized sounds produced) ugin

addition, by extracting the guitar sounds from a tune playga
favorite guitarist (Eric Clapton, Yngwie J. Malmsteen,.ptand
replacing the guitar part of another tune with the extrastaghds,
users could listen to their favorite guitarist playing eais phrases
virtually.

To achieve our goal, we need to tackle the following probtems

(1) separating the monophonic sounds of a target musical
instrument from a polyphonic audio signal to extract the
musical instrument sounds that users want to replace; and

(2) synthesizing new sounds that have arbitrary pitch and
duration from the separated sounds to play arbitrary phrases.

Many researchers including Itoyama have studied the foprady-
lem and have reported their results for sound-source sipafd,

5, 6]. However, there have been few studies of the applicaifo
separated sounds. We have therefore focused on the latter pr
lem, that is, analysis-manipulation of musical instrumsmtinds
from separated sounds.

2. MANIPULATION OF PITCH AND DURATIONWITH
CONSIDERATION OF TIMBRAL CHARACTERISTICS

method. The spectral and MFCC distances between the synthe-Qur aim is, given some actual sounds of an individual musical

sized sounds and actual sounds of 32 instruments were &dyice
64.70% and 32.31%, respectively.

1. INTRODUCTION

Atraditional equalizer enables users to change the spebteac-
teristics of acoustic signals. New equalizers that regdigen de-
veloped for musical sounds can manipulate the volume andaep
the timbre of individual musical instrument part [1, 2, 3]héke
techniques are called as musical instrument equalizersle\tfie
equalizer provided in a typical audio player changes mus@mands
by manipulating the frequency range, a musical instrumguaak
izer changes the sounds by manipulating musical instrupeats,
which enhances the listening experience. Yoshii’'s musicsiu-
ment equalizer (called Drumix [2]) can adjust the volume exd
place the timbre of only percussive instruments (snare @sd b
drums). However, Itoyama’s musical instrument equalizer ad-
just the volume of all musical instruments [3]. Unforturgtéhe
latter is so far limited to volume, and cannot replace théotarof
each musical instrument part.

Our ultimate goal is to develop a musical instrument equal-
izer that can replace arbitrary musical instrument partk users’
favorite timbres. For example, the equalizer we envisagelavo
enable the musical instruments typically used to play rocisim
(electric guitar, electric bass, keyboard, etc.) to beaegd by in-
struments used to play classical music (violin, wood bass)q
etc.) Users could thus enjoy a classical remix of the music. |

strument (callecgeed, to synthesize the sound of that instrument
with arbitrary pitch and duration based on the original stsunA

key point of this synthesis is to avoid distorting the timhraar-
acteristics. For example, if we synthesize a D sound based on
the C sound of a musical instrument, users should feel ag iDth
sound was generated by the same individual instrument ot f

a different one.

To synthesize a musical instrument sound without distgrtin
its timbral characteristics, we need to define the timbratufiees
mathematically and analyze the characteristics of timb&isid-
ies in acoustic psychology have found that auditory diffiess
between timbres tend to be caused by (i) spectral energy-dist
bution, (ii) synchronicity in the transients of higher hamcs,
and (iii) low-amplitude, high-frequency energy in the akaeg-
ment [7]. We consider the these factors correspond to thewel
ing three features:

(i) therelative amplitudesof the harmonic peaks,
(ii) theinharmonic component, and
(i) temporal envelopes.

We took the analysis-manipulation approach shown in Fig-
ure 1. Features (i) and (iii) are related to the harmonic camept,
and Feature (ii) is related to the inharmonic component.stFir

1in this paper, we define the distortion of timbral charastés as the
difference between the timbre of the synthesized soundtantirbre of
the sound obtained by playing the real musical instrument
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Figure 1:Overview of our method.

we analyzed each feature by separating the harmonic and inha
monic components of aeed After the analysis, the pitch and
duration were manipulated without distorting the timbriahiac-
teristics. Here, we note that it is not proper to manipulatly the
pitch and duration without changing the timbral featureimaky,

we synthesized the harmonic and inharmonic signals separat
adding the synthesized signals.

2.1. Analysisof musical instrument sounds

To analyze timbral features, it is necessary to deal witimloaic
and inharmonic components explicitly and to define the werio
mathematical features. To solve this problem, we used tige in
grated model of harmonic and inharmonic structures preseny
Iltoyama. We attempted to express musical instrument soustds
ing an integrated model, i.e., we adapted a mixed model wesiigh
by wrm andw; , which is a combination of a parametric model cor-
responding to the harmonic componédi; (f, ) and a nonpara-
metric model corresponding to an inharmonic compoént f, )

to the spectrogramV/ ( f, ) of aseedas follows:

M(f,r) =waMu(f,r)+wrMr(f,r), 1)

where f andr represent the frequency and time, respectively.
The following constraint applies: ilsz M;(f,r) = 1, the
weight w; represents the energy of an inharmonic component,
andw;M;(f,r) is the spectrogram of an inharmonic component.
Mpu(f,r) is expressed as a weighted mixture model, which is
parametric tawth peaks as follows:

My (fir) =Y Fa(fir)Ea(r), (2)

where}" F,.(f,r) andE,(r) respectively correspond to the
spectral and temporal envelopes of the harmonic compoasnt,
shown in Figures 2, 3.

>, Fu(f,r) is expressed as a Gaussian Mixture Model as
follows:

Fu(f,r) = vaN(f — nu(r),o”), ©)
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where\ (z, y?) represents the Gaussian, the mean and variance of
which arex andy?, respectivelys therefore represents the extent
on the frequency domain andr) is the pitch trajectory on the
time domain.v,, is the relative weight, wherg> = v, = 1.

E,(r)is the nonparametric function, whepe  E,(r) = 1.
While Itoyama constructed,, (r)by using a parametric function
such asF,(f,r), we use the nonparametric function to express
E,(r)for a more detailed analysis. In the integrated model, the
timbral features (i), (ii) and (iii) correspond t@,, wr, M (f,r),
andE,(r), respectively. We describe the analysis of these features
in section 3.

2.2. Pitch manipulation

Pitch manipulation was achieved by multiplying the pitchjec-
tory u(r) by a desired ratio. However, the values of the timbral
features should not be held when manipulating pitch bectinse
bres are pitch-dependent [8]; thus, the larger the ratiotohpna-
nipulation, the larger the distortion of timbral featur&ghen we
shift from u(r) top'(r) , we must also shift frona,, tov;, prop-
erly, as shown in Figure 4.

In solving this problem, we noted the musical instrumentide
tification method proposed by Kitahas al, which considered
the pitch-dependency of timbres [9]. They reported thatpibe
formance of the identification method was improved by leagni
the distribution of the acoustic features after removing pitch-
dependency of timbres by approximating the feature digtioh as
a cubic polynomial. In our study, except for feature (iiiiah de-
pends on articulation style rather than on pitch, we appnaked
the distribution of features (i) and (ii) over pitches as hicypoly-
nomial (calledpitch-dependent feature function). Specifically,
we dealt with the following parameters:

(1) the relative amplitudes of the harmonic peakand
(2) the ratio of harmonic energy to inharmonic enetgy /w;.

Given that somseed have various pitches, we analyzed their tim-
bral features, so that we could obtain the pitch-dependsatitife
function using the least squares method. By using the adxain
pitch-dependent feature function, the timbral featuresevaeter-
mined for the desired pitch. For example, the relative atugdis
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Figure 7:Generation of pitch trajectory.

of the 1st, 4th, and 10th peaks, and the ratio of harmoniggrer
inharmonic energy for trumpet sounds, are shown in Figure 5.

2.3. Duration manipulation

Duration should be manipulated by expanding or shrinkirg th
whole temporal envelop&,, (r) by the desired ratio of duration
because the excitation in the attack and decay segmenthand t
properties of the pitch trajectory are similar in the sansviidl-
ual musical instrument regardless of the duration; theegfthe
larger the ratio of duration manipulation, the larger theoant of
distortion. In particular, in the attack and decay segmeh#smu-
sical instrument sound, the level of energy changes theepgon

of loudness, which gives the impression of timbres. Sirlyiléhe
pitch trajectory affects auditory impressions, espegiédr mu-
sical instruments that are offen played using vibrato alditon
(electric guitar, violin, etc.).

To solve this problem, we propose a method that preserves

3. IMPLEMENTATION OF OUR METHOD
In this section, we explain the specifics of the method dbsdrin
section 2.

3.1. Analysisof musical instrument sounds

Here, the problem is the estimation of the unknown pararsetier
the integrated modelv s, wr, Fn(f, ), En(r), vn, pu(r), o, and
M;(f,r). Itoyama proposed a method that renews these param-
eters by reducing the Kullback-Leibler Divergence (KLDgra-
tively. This iterative calculation can be regarded as angetation-
and-Maximization (EM) algorithm, which estimates theseapa
eters efficiently. The unknown parameters were estimatediby
imizing the following cost function:

J=
> / / <fo (f, ) log

—Gf(ﬁ )+ wuEn(r)Fa(f, r)) dfdr

+//<Gf(f,r)1og G'(f.7)

wrMi(f,r)
—G'(f,r) +wiM(f,7) | dfdr

Y <Zvn_1>+Z<AEn (/En(r)dr_1)>
+5I//<M1(f77')10g Mi(f,r)

—Mf(f7 T) + Ml(f7 T)) dde7

G (f,7)

wa En(r)Fn(f, 1)

Mi(f,r)
(4)

wheregr is the constraint weighfl/; (£, ) is obtained by smooth-
ing the inharmonic modelM;(f,r) with a Gaussian filter on
the frequency domain, angl, and \g,, are Lagrange multipliers.
GH(f,r) andG!(f,r) are the divided harmonic and inharmonic
components, respectively.

3.2. Pitch manipulation

Pitch manipulation was achieved by multiplyindr) by a real
numberc (to low pitch: 0 < « < 1, to high pitch: 1 < «a) as
follows:

p(r) = ap(r), (%)

temporal envelopes in attack and decay segments, and adnethoWherey/(r) is the desired pitch. For example, a musical instru-

that reproduces the properties of the pitch trajectorye#tdre (iii),
we define the end of the sharp emission of energy as dRset
and the start of the sharp decline in energy as off&gt;. When
manipulating duration, only the temporal envelopes betwreset
and offset were expanded and shrunk, as shown in Figure G-Mor
over, we expressed the pitch trajectory between onset &set bfy
using a sinusoidal model, as shown in Figure 7, which represiu
the pitch trajectory that has the same spectral charatiteriBhe
pitch trajectories before onset and after offset are theesasrfor
seed

2.4. Synthesisof musical instrument sounds

To synthesize a harmonic signa} (¢), we used a sinusoidal model,
using the features (i) and (iii). To synthesize an inharmaig-
nals;(t), we used overlap-add synthesis, using the feature (ii). Fi-
nally, the output sound was synthesized by adding the syizib
harmonic sound to the synthesized inharmonic sound.

DAFX-

ment sound with a pitch that is one octave higher was synthe-
sized by substituting two fore. The relative amplitudes of the
harmonic peaks after pitch manipulatiofy were obtained by cal-
culating each relative amplitude of the harmonic peaks fpdoh-
dependent feature functions, which were normalized wighctim-
straint) v, = 1. The inharmonic energy’; was obtained by
dividing the harmonic energy by the expected ratio /w;.
3.3. Duration manipulation
The duration was manipulated by manipulating the temparal e
velopesFE, (r) between onset and offset and generating the pitch
trajectoryu(r).

3.3.1. Onset and offset detection
In our study, onset was defined as the moment at which the vi-
bration energy of a musical instrument reached a sufficerel)
and the variation in the energy was low. Offset was definetias t
moment when this energy (with low variation) dropped sudiden
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Figure 5: Pitch-dependent feature functions for trumpet (circlesl éine are the analyzed timbral features and approximateidhpi
dependent feature function in each figure).

Specifically, we defined onsél,, and offsetR,s; as the start This algorithm is similar to the McAulay-Quatieri (MQ) algdhm

and end of- that satisfied the following condition, respectively: [10] as a method of estimating the parameters of a sinuswiddél.
In the MQ algorithm, the rest spectrum is obtained by sukitrgc

dEn(r) . .

dr <€, En(r)>Th, (6) the estimated peak in step 2 from the analyzed spectrum. Véowe
we applied the integrated model to the subtraction by réggitie

whereT'h was the threshold for judging the vibration energy of jnnharmonic component as the rest spectrum, so that theastim
the sound of musical instrument. While this detection metben peak was separated from the analyzed spectrum.

be applied to wind and bowed string instruments, it cannaifze
plied to string instruments that are plucked or struck bseabe
onset and offset occur at the same time in these instrunsmntise
temporal envelopes between onset and offset cannot be degban
or shrunk. When manipulating these string instruments,agand
the end of the temporal envelopes as the offset, and theseaare
nipulated after the onset. s(t) = su(t) + s1(t) ©)
3.3.2. Modeling of pitch trajectory
To construct a model of the pitch trajectonyr), we propose a

pitch trajectory model ) () based on a sinusoidal model, as-
suming that the variation in frequency and amplitude arglstas

3.4. Synthesisof musical instrument sounds

The harmonic signak (t) and inharmonic signad;(¢t) were
synthesized from the harmonic and inharmonic models, tespe
tively. Finally, the output sound(¢) is synthesized by adding
these signals as follows:

3.4.1. Synthesis of harmonic signal
The synthesis of the harmonic sigrai (t) was achieved by using
the sinusoidal model [10] as follows:

follows:
M(”)(T) _ ZA/(cH) expliCrr] + Have, @) su(t) = ZA7L(t)eXp[j<bn(t)] (10)
k " "
pove = [ utr)ar/R ®) ou) = 0+ [ wn(rrar =

where A, (t), ¢n(t), andwy,(t) are the amplitude, instantaneous
phase, and instantaneous frequency of sitie sinusoid respec-
tively. The instantaneous frequency was obtained from ttoh p
trajectory u(r) by using the spline interpolation method. The
amplitudes were calculated from the parameters of the haiomo
model as follows:

whereR is the time length of a musical instrument sound. The un-
known parameters of this model are the amplitu&i@, frequency

(r and phase) that make up the pitch trajectory. These param-
eters were estimated by adapting this model to the pitcbdrajy
iteratively using the following algorithm:

Step 1: The signal, which is obtained by subtracting the average _waEn(r)v, [~
pitch trajectoryu.... from the pitch trajectory.(r), is trans- An(t) = Voro - w(r)dr (12)

formed to the spectrum. The spectrum thus obtained is an-\yherew(t) is the window used in analyzing the spectrogram of a

alyzed in the next step. seed
Step 2: Alg‘”, (k, andy of the largest peak are estimated by us- 3.4.2. Synthesis of inharmonic signal

ing the harmonic model of the integrated model (number The synthesis of the inharmonic signal(t) was achieved by
of time frames: 1, number of peaks: 1). Simultaneously, using the overlap-add method [11]. This algorithm is comiypon
the rest spectrum that is the result of the separation of the used to transform a spectrogram to a signal. Here, the speatn
largest peak is estimated by using the inharmonic model of of the inharmonic component is; M;(f,r), and the phase was
the integrated model. obtained directly from aeed

step 3: The rest spectrum is regarded as the analyzed spectrum 4. EVALUATION
in step 2, which continues until the rest spectrum becomes

small enough. To evaluate our method for pitch manipulation, we carrietiasu

experiment in which we compared the results obtained usimg o
step 4. The estimated parameters of the pitch trajectory model are method and a baseline method. The baseline method was sim-

A,(C“), (x, andy that are obtained using the above steps. ply a version of our method with no consideration of the pitch
dependency of timbres.
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Table 1: Types and number of musical instrument sounds used in
the experiment

Instrument | Piano PF), Electric PianoEP),
names Harpsichord IC), Vibraphone YI),
Marimba MB), Organ OR),
Accordion AC), Harmonica HM),
Classic GuitariC), Ukulele UK),
Acoustic Guitar AG), Mandolin (MD),
Electric Guitar EG), Electric BassEB),
Violin (VN), Viola (VL),
Cello (VC), ContrabassB),
Harp HP), Trumpet TR),
Trombone TB), Tuba ([TU),
Soprano Sax§S), Alto Sax AS),
Tenor Sax{S), Baritone SaxBS),
Oboe OB), Fagot FG),
Clarinet CL), Piccolo PC),
Flute FL), RecorderRC)
Individuals | 3 individuals.
Intensity Forte only.
Articulation| Normal articulation style only.
Number of | PF: 264,EP: 206,HC: 178, VI: 104,MB: 145,
tones OR: 178,AC: 141,HM: 101,HC: 111,UK: 71,
AG: 111,MD: 123,EG: 111,EB: 88, VN: 138,
VL:126,VC: 134,CB: 111,HP: 241,TR: 103,
TB: 96, TU: 90,SS: 99,AS: 99, TS: 98,
BS: 98,0B: 96,FG: 120,CL: 120,PC: 98,
FL: 111,RC: 75

4.1. Experimental conditions

To evaluate the quality of the synthesized musical instntreeunds,
we calculated the distances between a synthesized souritiend
sound of a real musical instrument using the following ciéte

1. Spectral distance

Ds

= Z(Ssyn - Sr'eal)2/R7 and
fir

2. Mel-Frequency Cepstrum Coefficient (MFCC) distance
Z(Msyn - Mr'eal)Q/Ry (14)

d,r

(13)

Dy

whereS; andM; are the spectrogram and MFCC respectively, and
these indexesynandreal, indicate the synthesized sound and the
real sound: the smaller these distances, the more siméasyth-
thesized sound to the real sound. The spectral distanceidyma

, Espeimjand, September 1-4, 2008

lected musical instruments played using forte and nornieiuéa-
tion?. Details of the experimental data are shown in Table 1.

The evaluation was carried out using 10-fold cross valiati
within each individual musical instrument to enable us tlwica
late the distances between a synthesized sound and the ebund
a real musical instrument. First, we divided 10% and 90% of
the solo tones of an individual instrument into learningadamnd
evaluation data respectively. The learning data were usézhtn
pitch-dependent feature functions. These data were ajgoded
asseed so that we synthesized the sounds using the same pitch
as for the evaluation data. Finally, we calculated the dista be-
tween the synthesized sounds and real musical instrumentiso
For example, in the case of piano which has 88 keys, the number
of pieces of learning data is 9 (or 8) and the number of pietes o
evaluation data is 79 (or 80), so that there wefeross] x 79 x
9 + 2 [cross]x 80 x 8 = 6,968 trials. We carried out the above
evaluation for all the data i.e., we conducted a total of 4427,
trials.

Here, to reflect the quality of a synthesized sound in ratatio
to distances, we canceled the variation in a musical pedooa
in both the temporal envelopds, (r) and pitch trajectory.(r).

We extractedE, (r) andu(r) from the evaluation data, and ex-
tracted other parameters from the learning data @e=g, so that
we synthesized sounds using the extracted parameterss lexth
periment, we only evaluated pitch manipulation.

4.2. Resultsand discussion

Figure 8 summarizes the spectral distance and MFCC differen
for both methods respectively. The values were averageesfcin
musical instrument. Our method improved the spectral dgss
for all musical instruments and also improved the MFCC dicts

for all musical instruments except the mandolin. Our metresd
duced the average spectral difference and the average MFCC d
ference by 64.70% and 32.31%, respectively. The experahent
results demonstrated the validity of our method, which yéeh-
dependent feature functions.

The distances for fagot (average reduction for the spedisal
tance: 76.02 %, and for the MFCC distance: 75.17 %) are shown i
Figure 9 (a), (b) as an example of a much improved result. én th
baseline method, both distances increased with an incnedke
absolute value of manipulated halftones. However, in ouhots
both distances were stable in spite of an increase in thduibso
value of manipulated halftones. When the value of manipdlat
halftones was small, the baseline method performed a btte
ter than our method in terms of the MFCC distance because of an
error in approximating the timbral features using pitcipeledent
feature functions in our method.

The larger the improved value becomes, the stronger thie-pitc

a measure of the difference between each peak of the harmoniglependency of the timbre. In addition to the distances fgotfa

component because the frequency domain is on a linear-Sdade
MFCC distance is commonly used as a criterion for quaniiati
auditory measurement. It can be used to evaluate the differe

in both harmonic and inharmonic components. The energy of an
inharmonic component is smaller than the energy of the pegks

a harmonic component because the frequency domain is on a log
scale. The number of MFCC dimensions was 12.

The actual sounds used for the experiment were extracted fro
the RWC Music Database, RWC-MDB-1-2001, developed by Goto
et al[12]. In this database, the solo tones of musical instrusent
are recorded with each semitone, which are sampled by 44z1 kH
with 16 bits, monaurally. We selected three individualgrins
ments from 32 instruments, and extracted the sounds of the se

DAFX-

there were also good improvements in the distances for the pi
ano and for brass instruments such as the trumpet, tromhdze,
etc. We believe that the timbre of the piano has strong pitch-
dependency because of the complex structure of this instiim
On the other hand, we consider that the strong pitch-depeiee

of the trumpet, trombone, and tuba are due to the qualitiekeof
materials used. In many musical instruments, except theeabo
mentioned instruments in which the MFCC distances were im-
proved, we found that both distances tended to be stablerin ou

2Normal articulation is a common style of articulation in t@st to
vibrato and staccato articulations. However, for the vidtiecause vibrato
sounds in the RWC Music Database are registered as norrallatibn,
we selected sounds registered as non-vibrato
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Figure 8:Differences in spectral distance and MFCC distance withsgdgration (our method) and no consideration (baselinehoe) of

pitch-dependence. Spectral distances were normalizéddigtance of

method, in spite of increases in the absolute value of méatipd
halftones.

The MFCC distances did not show any improvement for some
musical instruments. We discuss the possible reasonsifob¢h
low.

(1) Little pitch-dependency
The distances for the accordion (average reduction forgke-s
tral distance: 46.19 %, and for the MFCC distance: 22.08 %) ar
shown in Figure 9 (c), (d). When manipulating the pitch to,low
both distances were improved by using our method. However,
when manipulating the pitch to high, there was little immrov
ment in both distances. This is because the accordion hias lit
pitch-dependency at high pitch.

(2) Complex pitch-dependency
The distances for the marimba (average reduction for the-spe
tral distance: 24.49 %, and for the MFCC distance: 13.99 %) ar
shown in Figure 9 (e), (f). There were large changes in these
distances using both methods. This result may be due to the
difficulty of learning the pitch-dependency of this musiaa
strument. The sound of the marimba includes percussive ele-
ments with an independent structure, which is similar ta tfia
a piano. Approximating pitch-dependent feature functiass

DAFX-

piano in our method.

cubic polynomial is not sufficient to represent the compliéatp
dependency of an instrument like the marimba. We could sug-
gest increasing the polynomial number as a simple solution t
the problem, but it is not possible to execute learning aately

by increasing the degree of the polynomial functions.

(3) Pitch-dependency of an inhar monic component
The distances for the mandolin (average reduction for tiee-sp
tral distance: 31.21 %, and for the MFCC distance: -6.64 %) ar
shown in Figure 9 (g), (h). There was an improvement in the
spectral distance. This result indicates that the relaivli-
tudes of the harmonic peaks of a synthesized sound are simila
to those of a real sound in terms of pitch-dependency. How-
ever, there was no improvement in the MFCC distance. This is
because the distribution of the inharmonic component ofra sy
thesized sound differs from that of a real sound. Our method
deals with the pitch-dependency of an inharmonic component
according to the ratio of harmonic energy to inharmonic gyer
wg /wr, but not according to the distribution of the inharmonic
componentM; (f,r).

The distances for other struck and plucked string instrusen
such as the mandolin were improved a little in the MFCC distan
It is known that these sounds include a large inharmonic ecamp
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nent at high frequencies during the attack segment [7]. Ticap
dependency of the inharmonic component of struck and ptlicke
string instruments is therefore strong. When we tried tistg to
the synthesized sounds of these musical instruments, theohi
signal seemed to be synthesized well, but the inharmonitakig
did not sound natural. In contrast, there was good improwm¢me
for the piano, in spite of the results for other string instants.
This is because the pitch-dependency of the relative andglt of
the harmonic peaks is stronger for the piano than for othigrgst
instruments.

In addition, the real sounds of struck and plucked stringrins
ments include high overtones that do not exist strictly segral
multiples of the pitch; this is callethharmonicity[13]. Our har-
monic model assumes that all harmonic peaks are strictlytet i
gral multiples of the pitch, so it dose not perform well in Bza
ing the high harmonic peaks of these instruments. The sefrit
struck and plucked string instruments were due to this aggam

The phase vocoder distorts the inharmonic component of a
musical instrument sound, which is a timbral feature begdhis
technique manipulates the sound without dividing the haimo
component and inharmonic components. In addition, bedhise
technique is a non-parametric method, it is difficult to gmalthe
timbral features as explicit parameters.

5.2. Sinusoidal model

The sinusoidal model is a well-known method of synthesizhey
sounds of voices and musical instruments [10]. This teckmiq
tracks the peaks of a spectrogram and analyzes the fre@geuici
each peak and the amplitude of each peak on the time domain.
Sound synthesis is achieved by adding the sinusoids, wétlath
alyzed frequencies multiplied by the analyzed amplitudBsi-
ration is manipulated by expanding or shrinking the spactéhef
analyzed peaks on the frequency domain and pitch is mangolla
by expanding or shrinking the analyzed peaks on the time doma
Unlike the phase vocoder, the sinusoidal model does noireequ

The musical instrument sounds synthesized using our methodcomp|ex calculation of phases, so it can also be used to morph

are available at:
http://winnie.kuis.kyoto-u.ac.jp/members/abe/DARX-0

5. RELATED WORKS

In this section, we explain use of a phase vocoder and sidaisoi
model as a representative method of analysis-manipulation

5.1. Phasevocoder

The phase vocoder technique has a long and well-establissed
tory of use in synthesizing musical instrument sounds. &lage
many variations of the phase vocoder [14, 15, 16]. Sounchsynt
sis is achieved by overlap-add synthesis. Duration is nudatigd
by expanding or shrinking the spectrogram on a time-scate an
calculating the phase that matches neighboring framesh Rit-
nipulation is achieved by re-sampling sounds after dunatianip-
ulation with the sampling rate multiplied by the recipronamber
of the ratio of pitch manipulation. One method of pitch manip
lation expands or shrinks the spectrogram as well as matipg|
the duration on a frequency-scale [17].

musical instrument sounds [18]. In addition, the sinudaidadel
is applied to sound source-separation. Various methodségpa-
rameter estimation have been reported [19, 20, 21].

The sinusoidal model deals with the inharmonic component
as a timbral feature by using the rest spectrogram, whiches t
result of subtracting the tracked peaks from an analyzeddsou
However, the timbral features are not defined as expliciamar
eters. The analysis of some musical instrument sounds leas be
dealt with only in morphing. The application of this techmiqg
has not included consideration of timbral characteris{mtch-
dependency of timbres).

6. CONCLUSION

We presented a method for manipulating the pitch and duratio
musical instrument sounds that considers timbral featuvbgh

are defined as mathematical parameters. We defined three tim-
bral features as (i) the relative amplitudes of the harmpeiaks,

(iii) the inharmonic component, and (ii) temporal envelopg re-
ferring to the spectrogram factors that correspond to miffee in

DAFX-7
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auditory effects as reported by Grey. When manipulatinghpit
it is necessary to take into account the pitch-dependendheof
features (i) and (iii). Therefore, we predicted the valuksach
feature by using a cubic polynomial that approximates tisériei
bution of these features over pitches. In manipulating tiamait
is necessary to preserve feature (iii) in the attack andydseg-

ments of aseed Therefore, only steady durations are expanded or

shrunk. In addition, we proposed a method that can reprothece
properties of vibrato.

Future work will include applying our method to musical in-
strument parts separated from the polyphonic audio sigrialsm-
mercial CD recordings. Because these separated soundsiéncl
various noises, it will be important that we select as muearml

seedas we can. In addition, as analysis of the harmonic com- [11]

ponent of high tones and a consideration of the pitch-degraryd
of the duration of the inharmonic component were insufficfen
synthesizing the sound of struck and plucked string insénis)
we will try to improve our method for these instruments. Waoal
plan to evaluate our method for duration manipulation.
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