Microphone Array Processing

Graduate School of Informatics
Kyoto University
Kazuyoshi Yoshii
yoshii@kuis.kyoto-u.ac.jp

Microphone Array Processing

- A fundamental technique for various studies
 - Speech recognition & cocktail-party effect
 - It is important to selectively listen to utterances of interest even if we make conversation in a noisy environment
 - Robot audition
 - Robots should use their own ears for listening to sounds
 - Individual sound sources should be localized and separated
 - Analysis of recorded speech communication
 - Speaker identification
 - Voice activity detection for each speaker
 - Noise/reverberation reduction

- We aim at sound source separation and localization
 - Input: z_1, z_2, \dots, z_N Output: $y_1, y_2, \dots, y_M \ (\approx s_1, s_2, \dots, s_M)$
 - Mixing process: sources $s_1, s_2, \cdots, s_M \rightarrow$ observations z_1, z_2, \cdots, z_N
 - Two settings: A is given (non-blind) $\leftrightarrow A$ is not given (blind)

- Two major approaches to microphone array processing
 - Non-blind setting
 - Beamformer
 - MUSIC (multiple signal classification)
 - Blind setting
 - Independent component/vector analysis (ICA/IVA)
 - Multi-channel nonnegative matrix factorization (NMF)
 - Nonlinear time-frequency masking
 - Advanced topics
 - Bayesian sound source separation and localization
 - Automatic determination of number of sources

3D Coordinate Systems

Orthogonal coordinate
 ⇔ Polar coordinate

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} r \cos \phi \sin \theta \\ r \cos \phi \cos \theta \\ r \sin \phi \end{bmatrix}$$

$$Azimuth \theta$$

$$r \cos \phi$$

$$delevation \phi$$

$$delevat$$

Propagation of Plain Wave

- A sound wave is observed by using M microphones
 - p_1, p_2, \dots, p_M : the positions of M microhones

Source Signal → Observed Signals

- An observed signal is a delayed version of a source signal
 - Suppose that source signal s(t) is propagated to M microphones
 - Each microphone m $(1 \le m \le M)$ has delay time τ_m

$$Z_m(\omega) \equiv \int_{-\infty}^{\infty} z_m(t) e^{-j\omega t} dt = \int_{-\infty}^{\infty} s(t - \tau_m) e^{-j\omega t} dt = e^{-j\omega \tau_m} S(\omega)$$

$$S(\omega) \equiv \int_{-\infty}^{\infty} s(t)e^{-j\omega t}dt \quad a(\omega) = \begin{bmatrix} a_1 \\ \vdots \\ a_M \end{bmatrix} \equiv \begin{bmatrix} e^{-j\omega\tau_1} \\ \vdots \\ e^{-j\omega\tau_M} \end{bmatrix}$$

$$C(\omega) = a(\omega)S(\omega)$$

$$C($$

$$z(\omega) = a(\omega)S(\omega)$$
Observation Source

Sound Observation

- Observed signals are correlated with each other
 - The spatial property is determined by an array manifold vector

Array Manifold Vector for Plane Wave

• The array manifold vector $a(\omega)$ can be calculated from microphone positions p_1, p_2, \dots, p_M

(azimuth, elevation): (θ_s, ϕ_s) Source direction: $u = \begin{bmatrix} \cos \phi_s \sin \theta_s \\ \cos \phi_s \cos \theta_s \\ \sin \phi_s \end{bmatrix}$

Wave equation:
$$\frac{\partial^2 s}{\partial x^2} + \frac{\partial^2 s}{\partial y^2} + \frac{\partial^2 s}{\partial z^2} = \frac{1}{c^2} \frac{\partial^2 s}{\partial t^2}$$
 s: sound pressure c : sound speed

Plain wave with angular frequency ω that solves the equation:

$$s(\boldsymbol{p},t) = A \exp(j(\omega t - \boldsymbol{k}^T \boldsymbol{p})) = A \exp(j\omega t) \exp(-j\boldsymbol{k}^T \boldsymbol{p})$$

k: wavenumber vector

p: observation point

$$\lambda$$
: wavelength $\lambda = \frac{2\pi c}{\omega} = \frac{c}{b}$

$$\boldsymbol{k} \equiv -\frac{\omega}{c}\boldsymbol{u} = -\frac{2\pi}{\lambda}\boldsymbol{u} \quad |\boldsymbol{k}| \equiv \frac{\omega}{c} \quad |\boldsymbol{\tau}_m = \frac{1}{\omega}\boldsymbol{k}^T\boldsymbol{p}_m = -\frac{1}{c}\boldsymbol{u}^T\boldsymbol{p}_m$$

Source signal Phase difference

$$\lambda$$
: wavelength $\lambda = \frac{2\pi c}{\omega} = \frac{c}{f}$ $a_m(\omega) = \exp(-j \mathbf{k}^T \mathbf{p}_m) = \exp\left(j \frac{2\pi}{\lambda} \mathbf{u}^T \mathbf{p}_m\right)$ $\mathbf{k} \equiv -\frac{\omega}{\lambda} \mathbf{u} = -\frac{2\pi}{\lambda} \mathbf{u}$ $|\mathbf{k}| \equiv \frac{\omega}{\lambda}$ $\tau_m = \frac{1}{\lambda} \mathbf{k}^T \mathbf{p}_m = -\frac{1}{\lambda} \mathbf{u}^T \mathbf{p}_m$

Straight-shape Microphone Array

Microphone position

$$p_m = \left[\left((m-1) - \frac{M-1}{2} \right) d_x, 0, 0 \right]^T$$

Time delay

$$\tau_m = -\left((m-1) - \frac{M-1}{2}\right) \frac{d_x}{c} \sin \theta_s$$

Array manifold vector

$$a_m(\omega) = \exp\left(j\left((m-1) - \frac{M-1}{2}\right)\frac{2\pi d_x}{\lambda}\sin\theta_s\right)$$

$$\boldsymbol{a}(\omega) = e^{-\frac{j(M-1)\psi}{2}} \left[1, e^{j\psi}, e^{j2\psi}, \cdots, e^{j(M-1)\psi}\right]^T \qquad \left(\psi = \frac{2\pi d_x}{\lambda} \sin \theta_s\right)$$

$$\mathbf{z}(\omega) = \mathbf{a}(\omega)S(\omega)$$

Round-shape Microphone Array

Microphone position

$$\boldsymbol{p}_m = [r_c \sin \zeta_m, r_c \cos \zeta_m, 0]^T$$

Time delay

$$\tau_m = -\frac{r_c}{c}(\sin\theta_s \sin\zeta_m + \cos\theta_s \cos\zeta_m)$$
$$= -\frac{r_c}{c}\cos(\theta_s - \zeta_m)$$

Array manifold vector

$$a_m(\omega) = \exp\left(j\frac{2\pi r_c}{\lambda}\cos(\theta_s - \zeta_m)\right)$$

Such round-shape microphone arrays are often used in practice for localizing and separating sound sources around a robot

Array Manifold Vector for Spherical Wave

• The array manifold vector $a(\omega)$ can be calculated from 3D microphone positions p_1, p_2, \dots, p_M

(azimuth, elevation, distance): (θ_s, ϕ_s, r) Source position: $\begin{bmatrix} r \cos \phi_s \sin \theta_s \\ r \cos \phi_s \cos \theta_s \\ r \sin \phi_s \end{bmatrix}$

$$egin{array}{c|c} r\cos\phi_s\sin heta_s \ r\cos\phi_s\cos heta_s \ r\sin\phi_s \end{array}$$

Wave equation:
$$\frac{\partial^2(rs)}{\partial r^2} = \frac{1}{c^2} \frac{\partial^2(rs)}{\partial t^2}$$
 s: sound pressure c: sound speed

Spherical wave with angular frequency ω that satisfies the equation:

$$s(r,t) = \frac{A}{r} \exp(j(\omega t - k_r r)) = A \exp(j\omega t) \frac{1}{r} \exp(-jk_r r)$$

 k_r : wavenumber

 λ : wavelength

Source signal Phase/amplitude difference

$$k_r \equiv \frac{2\pi}{\lambda} = \frac{\omega}{c}$$
 $\lambda = \frac{2\pi c}{\omega} = \frac{c}{f}$ $a_m(\omega) = \frac{1}{r_m} \exp(-jk_r r_m) = \frac{1}{r_m} \exp\left(-j\omega \frac{r_m}{c}\right)$

Source direction | Microphone position

Measurement of Array Manifold Vector

- Geometry-based estimation
 - Use the formula: $a_m(\omega) = \exp(-j\mathbf{k}^T\mathbf{p}) = \exp\left(j\frac{2\pi}{\lambda}\mathbf{u}^T\mathbf{p}_m\right)$
- Recording-based estimation
 - Use only direct sounds for measuring the impulse response
 - Transform the impulse response into the frequency domain

Sound Observation Model

- The observed sound is a mixture of various sounds
 - Direct sound: z_s
 - Reflected sound: z_r
 - Spatial colored noise: v_c
 - Spatial white noise: v_w

Observed sound:

$$\mathbf{z} = \mathbf{z}_{\scriptscriptstyle S} + \mathbf{z}_{\scriptscriptstyle T} + \mathbf{v}_{\scriptscriptstyle C} + \mathbf{v}_{\scriptscriptstyle W}$$

Single source

Multiple sources

Sound Observation Model

Suppose that N sound sources and M microphones

Direct Sounds

- Sum of direct sounds coming from N sound sources
 - Suppose that there are N sound sources
 - Each sound source is recorded by each microphone (linear system)

Single source

Multiple sources

$$\mathbf{z}_{S}(\omega) = \mathbf{a}(\omega)S(\omega)$$
 $\mathbf{z}_{S}(\omega) = \sum_{i=1}^{N} \mathbf{a}_{i}(\omega)S_{i}(\omega) = \mathbf{A}(\omega)\mathbf{s}(\omega)$

$$\mathbf{z}_{s}(\omega) = \begin{bmatrix} Z_{s1}(\omega) \\ Z_{s2}(\omega) \\ \vdots \\ Z_{sM}(\omega) \end{bmatrix}$$

$$\mathbf{z}_{s}(\omega) = \begin{bmatrix} Z_{s1}(\omega) \\ Z_{s2}(\omega) \\ \vdots \\ Z_{sM}(\omega) \end{bmatrix}$$
 (array manifold matrix)
$$\mathbf{A}(\omega) = [\mathbf{a}_{1}(\omega), \cdots, \mathbf{a}_{N}(\omega)]$$

$$\mathbf{a}_{n}(\omega) : \text{array manifold vector}$$
 for each source n

Mixing matrix

$$\mathbf{s}(\omega) = \begin{bmatrix} S_1(\omega) \\ S_2(\omega) \\ \vdots \\ S_N(\omega) \end{bmatrix}$$

Reflected Sounds and Noise

- Different linear systems are assumed
 - Direct sounds: $z_s = As$
 - Reflected sounds: $z_r = A_r \check{s}$ (\check{s} is <u>highly</u> correlated to s)
 - Short direct path \neq Long reflection path \rightarrow $A \neq A_r$
 - Spatial colored noise: $v_c = A_c q$ (q is not correlated to s)
 - . The elements of v_c are inter-dependent
 - Spatial white noise: $v_w \sim N(0, \sigma^2 I)$
 - The elements of v_w are independent

General observation model

$$z = As + v$$

Spatial Correlation Matrix

- The spatial correlation matrix $R = E[zz^H]$ represents the spatial characteristics of multi-channel signals z
 - For direct sounds: $R_S = E[\mathbf{z}_S \mathbf{z}_S^H] = AE[\mathbf{s}\mathbf{s}^H]A^H = A\Gamma A^H$
 - For source signals: $\Gamma = E[ss^H]$
 - If sound signals are independent, $\Gamma = \text{diag}(\gamma_1, \dots, \gamma_N)$
 - $\gamma_i = E[S_i(\omega)S_i^*(\omega)]$ is the power of source *i* at frequency ω
 - For noise: $K = E[vv^H]$
 - If noise v is spatially white, $K = \sigma^2 I$
 - σ^2 is the power of noise

General observation model: z = As + v

Observation of Single Source

- The spectra of each source has a unique spatial property
 - The spatial correlation matrix R_s is determined by the mixing matrix Observed data: $\mathbf{z}_s(\omega) = [Z_{s1}(\omega), \cdots, Z_{sM}(\omega)]$

Probabilistic Modeling

- Formulate a probabilistic model of z = As + v
 - Deterministic signal model

$$p(v) = N(v|\mathbf{0}, K)$$
Linear transform
$$z = As + v$$
Likelihood: $p(z; \mathbf{\Theta}) = N(z|As, K)$
Find $\mathbf{\Theta} = \{A, s, K\}$ that maximizes $p(z; \mathbf{\Theta})$

Random signal model

A is determined by source directions $\{\theta_1, \dots, \theta_N\}$ Γ is determined by source power $\{\gamma_1, \dots, \gamma_N\}$

$$p(v) = N(v|\mathbf{0}, K)$$

$$p(s) = N(s|\mathbf{0}, \Gamma)$$
Linear transform
$$z = As + v$$

$$\Gamma = E[ss^H] (= \operatorname{diag}(\gamma_1, \dots, \gamma_N))$$
Likelihood: $p(z; \Theta) = N(z|\mathbf{0}, A\Gamma A^H + K)$

$$Find \Theta = \{A, \Gamma, K\} \text{ that maximizes } p(z; \Theta)$$

Bayesian treatment of Θ is feasible by incorporating a prior $p(\Theta)$ $p(\Theta|\mathbf{z}) = \frac{p(\mathbf{z}|\Theta)p(\Theta)}{p(z)}$

Impulse Response

Impulse Response

- The impulse response is a signal recorded by a microphone when an impulse is emitted from a sound source
 - The source signal is distorted by reflection, noise, and diffraction
 - Impulse response (time domain) = Transfer function (freq. domain)
 - Different rooms have different impulse responses

Basic Formulation

- Room acoustics are often represented as a linear system
 - Source signal + Room acoustics + Additive noise → Observed signal

Convolution of Impulse Response

- Time-domain convolution ↔ Frequency-domain product
 - s(t): source signal $\rightarrow z(t)$: observed signal
 - h(t): impulse response that characterizes the linear system

Continuous time domain
$$z(t) = h(t) * s(t) = \int_{-\infty}^{\infty} h(t-\tau)s(\tau)d\tau$$
Discrete time domain
$$z[t] = h[t] * s[t] = \sum_{\tau=-\infty}^{\infty} h[t-\tau]s[\tau]$$

$$n: \text{time index}$$
Time domain
$$z[n] = h[n] * s[n] = \sum_{m=0}^{N-1} h[n-m]s[m]$$
Freq. domain
$$Z[k] = H[k] \cdot S[k]$$

$$k: \text{frequency index}$$

Simulation of Room Acoustics

 Audio signals recorded in an arbitrary room can be simulated by using the impulse response of the room

Time Stretched Pulse

- The TSP can be easily emitted from a loudspeaker
 - Frequency characteristics:
 - The impulse contains all frequencies at a moment (huge power)
 - The TSP contains a limited range of frequencies at a moment
 - The impulse is recovered by convoluting two TSPs

Measurement of Impulse Response

- Convolute a TSP response with an inverse TSP
 - The effects of TSP and iTSP are canceled out

Recording Setting

Prepare devices required for recording TSPs

Loudspeaker and earplugs:

The TSPs are emitted multiple times

Microphone array:

The TSP is recorded by each microphone

Recording device:

All microphones are synchronized

Recording Setting

• Mark the floor with a certain interval (5° or 10°)

Angle measurer:

Laser is emitted while rotating

Markers:

Stickers are on all directions

Two people:

Angle measurer control + Marking

TSP Recording

Wiener Filtering

Wiener Filter

We aim to learn a linear filter that extracts signals of interest

Supervised Learning

- Estimate a linear filter w_{MF} that extracts y_k from an observed signal u_k such that y_k is close to a given desired response d_k
 - Minimize error ϵ_k between desired response d_k and filter output y_k Cost function

$$J = E[|\epsilon_k|^2]$$

$$= E[(d_k - \mathbf{w}^H \mathbf{u}_k)(d_k - \mathbf{w}^H \mathbf{u}_k)^H]$$

$$= E[d_k d_k^*] - \mathbf{w}^H E[\mathbf{u}_k d_k^*] - E[d_k^* \mathbf{u}_k^H] \mathbf{w} + \mathbf{w}^H E[\mathbf{u}_k \mathbf{u}_k^H] \mathbf{w}$$

$$\equiv \sigma_d^2 - \mathbf{w}^H \mathbf{r}_{ud} - \mathbf{r}_{ud}^H \mathbf{w} + \mathbf{w}^H \mathbf{R}_u \mathbf{w}$$

Let the partial derivative be equal to zero

$$\frac{\partial J}{\partial \boldsymbol{w}^*} = -\boldsymbol{r}_{ud} + \boldsymbol{R}_u \boldsymbol{w} \to 0 \qquad \qquad \boldsymbol{R}_u \boldsymbol{w}_{MF} = \boldsymbol{r}_{ud} \qquad \qquad \boldsymbol{w}_{MF} = \boldsymbol{R}_u^{-1} \boldsymbol{r}_{ud}$$
Normal equation

Time-domain Representation

- Wiener filter assumes that input u_k is weakly stationary
 - The mean and autocorrelation of u_k are constant for any k
 - Auto-correlation: $r_u(n) = E[u_k u_{k-n}^*]$
 - Cross-correlation: $r_{du}(n) = E[d_k u_{k-n}^*]$

Correlation matrix (Toeplitz matrix)

$$\mathbf{R}_{u} = \begin{bmatrix} r_{u}(0) & \dots & r_{u}(K-1) \\ r_{u}(-1) & \dots & r_{u}(K-2) \\ \vdots & \ddots & \vdots \\ r_{u}(1-K) & \dots & r_{u}(0) \end{bmatrix} \qquad \mathbf{r}_{du} = \begin{bmatrix} r_{du}(0) \\ r_{du}(-1) \\ \vdots \\ r_{du}(K-1) \end{bmatrix}$$

$$m{r}_{du} = egin{bmatrix} r_{du}(0) \\ r_{du}(-1) \\ \vdots \\ r_{du}(K-1) \end{bmatrix}$$

Time-domain Wiener filter

$$\mathbf{w}_{\mathrm{MF}} = \mathbf{R}_{u}^{-1} \mathbf{r}_{ud} \qquad \mathbf{w}_{\mathrm{MF}}^{H} \mathbf{R}_{u} = \mathbf{r}_{du} \qquad \sum_{i=1}^{K} w_{i}^{*} r_{u} (n-i+1) = r_{du}(n)$$

$$(n=0,\cdots,K-1)$$

Frequency-domain Representation

- Wiener filter assumes that input u_k is weakly stationary
 - The mean and autocorrelation of u_k are constant for any k
 - Auto-correlation: $r_u(n) = E[u_k u_{k-n}^*]$
 - Cross-correlation: $r_{du}(n) = E[d_k u_{k-n}^*]$

$$\sum_{i=1}^{K} w_i^* r_u(n-i+1) = r_{du}(n) \qquad \sum_{i=-\infty}^{\infty} w_i^* r_u(n-i+1) = r_{du}(n)$$

We assume that u_k (input) = d_k (desired response) + v_k (noise)

$$W(\omega)S_u(\omega) = S_{du}(\omega)$$
 Frequency-domain Wiener filer $S_u(\omega) = S_d(\omega) + S_v(\omega)$ $W(\omega) = \frac{S_d(\omega)}{S_d(\omega) + S_v(\omega)}$ $S_{du}(\omega) = S_d(\omega)$ and $S_d(\omega) = S_d(\omega)$ are independent

Learning Methods

- Fixed filtering
 - Estimate a Wiener filter from a finite amount of samples
 - Least square method (LS)
- Adaptive filtering
 - Estimate a Wiener filter in an online manner
 - Steepest descent method
 - Newton's method
 - Least mean square method (LMS)
 - Affine projection algorithm (APA)
 - Recursive least squares method (RLS)

Beamforming

Beamformer

- Extract signals of a particular direction from observations
 - Assumption: array manifold vectors $a_1, \dots a_M$ are known

Depend on direction θ , ϕ and frequency ω

Goal

Design a filter that passes only a signal coming from a particular direction

Basic Formulation

- Design filters passing signals of a particular direction
 - $z_m(t)$: m^{th} observed signal $w_m(t)$: m^{th} filter
 - y(t): output of beamformer

Basic Formulation

- Design filters passing components of a particular direction
 - $Z_m(\omega)$: m^{th} observed signal $W_m(\omega)$: m^{th} filter
 - $Y(\omega)$: output of beamformer

Frequency domain

$$Y(\omega) = \sum_{m=1}^{M} W_m^*(\omega) Z_m(\omega)$$

Vectorial representation

$$\mathbf{z}(\omega) = \begin{bmatrix} Z_1(\omega) \\ Z_2(\omega) \\ \vdots \\ Z_M(\omega) \end{bmatrix} \quad \mathbf{w}(\omega) = \begin{bmatrix} W_1(\omega) \\ W_2(\omega) \\ \vdots \\ W_M(\omega) \end{bmatrix}$$

Filter Estimation

Various methods have been proposed for filter estimation

Method	Filter vector (steering vector)	Beam/filter type and assumptions
Delay-sum beamformer (DS)	$w = \frac{a}{a^H a}$	Beam (fixed filter) <i>a</i> : known
Spatial Wiener filter (SWF)	$\boldsymbol{w} = \boldsymbol{R}_Z^{-1} \boldsymbol{r}_{zd}$	Beam & null (adaptive filter) d: known
Maximum likelihood (ML)	$w = \frac{K^{-1}a}{a^H K^{-1}a}$	Beam & null (adaptive filter) a, K : known
Minimum variance (MV)	$w = \frac{R^{-1}a}{a^H R^{-1}a}$	Beam & null (adaptive filter) a : known
Generalized sidelobe canceller (GSC)	$\mathbf{w} = (\mathbf{B}^H \mathbf{R} \mathbf{B})^{-1} \mathbf{B}^H \mathbf{R} \mathbf{w}_c$	Beam (fixed) & null (adaptive) a, K : known
Generalized eigenvalue decomposition (GEVD)	$w = EGE^{-1}$	Beam & null (adaptive filter) K: known

Delay-Sum Beamformer

- Take the average of delay-compensated observed signals
 - The delays are determined by a direction of beamforming

Mathematical Formulation

The filter vector w has a same direction as a

Performance Analysis

- Suppose that a beam with a "wrong" direction is used

 - Source direction (θ_s, ϕ_s) Steering-vector direction (θ_T, ϕ_T) Different!

$$\mathbf{z}(\omega) = \mathbf{a}(\omega)S(\omega)$$
Observation Source

$$Y(\omega) = \mathbf{w}^{H}(\omega)\mathbf{z}(\omega)$$
Estimated source Observation

$$Y(\omega) = \mathbf{w}(\omega)^{H} \mathbf{a}(\omega) S(\omega) = \Psi(\mathbf{k}, \omega) S(\omega)$$
 If $(\theta_{s}, \phi_{s}) = (\theta_{T}, \phi_{T}), Y(\omega) = S(\omega)$

Time delay corresponding to direction
$$(\theta_T, \phi_T)$$

$$\Psi(\boldsymbol{k},\omega) = \frac{1}{M} \sum_{m=1}^{M} \exp(j\omega \tau_m^{(T)}) \exp(-j\boldsymbol{k}^T \boldsymbol{p}_m)$$
 Called a beam pattern (regarded as a function of (θ_s, ϕ_s))

Wavenumber-frequency response

Performance Analysis

- Analyze a beam pattern of a straight-shape array
 - Suppose that the steering direction is $\theta_T = 0$

Array manifold vector

$$a_m(\omega) = \exp\left(-j\left((m-1) - \frac{M-1}{2}\right)k_x d_x\right) \qquad k = [k_x, k_y, k_z]$$

$$k_x = -\frac{2\pi}{\lambda}\sin\theta_s$$

Steering vector

$$\mathbf{w}^{H}(\omega) = \frac{1}{M} [e^{j\omega\tau_{1}}, e^{j\omega\tau_{2}}, \cdots, e^{j\omega\tau_{M}}] = \frac{1}{M} [1, \cdots, 1]$$

$$\mathbf{Visible region}$$

$$-\frac{2\pi}{\lambda} \le k_{x} \le \frac{2\pi}{\lambda}$$

$$-\frac{2\pi}{\lambda} \le k_x \le \frac{2\pi}{\lambda}$$

Beam pattern

$$\Psi(\mathbf{k},\omega) = \mathbf{w}^{H}(\omega)\mathbf{a}(\omega) = \frac{1}{M} \sum_{m=1}^{M} \exp\left(-j\left((m-1) - \frac{M-1}{2}\right)k_{x}d_{x}\right) = \frac{1}{M} \frac{\sin\left(\frac{Mk_{x}d_{x}}{2}\right)}{\sin\left(\frac{k_{x}d_{x}}{2}\right)}$$
Sum of geometric progression

Beam Pattern

• Visualize a beam pattern: $20\log_{10}|\Psi(\mathbf{k},\omega)|$

• The microphone interval d_x affects the beam pattern

Beam Pattern

• The aperture Md_x affects the beam pattern

Geometry of Microphone Array

- The mic interval must be set for avoiding spatial aliasing
 - Grafting lobes should be without the visible region

$$\frac{2\pi}{d_x} > \frac{4\pi}{\lambda} \implies d_x \le \frac{\lambda}{2}$$

Sampling theorem in spatial domain

$$d_{x} \leq \frac{c}{2f}$$
Mic interval

Sampling theorem in time domain

$$T_{S} \leq \frac{1}{2f}$$
Sampling interval

Spatial Wiener Filter

Multichannel Wiener filter in the spatial domain

Time-domain Wiener filter

Spatial-domain Wiener filter

Input
$$z_k \longrightarrow w$$
 Output $y_k = w^H z_k$ $w = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_K \end{bmatrix}$ $z_k = \begin{bmatrix} z_1(\omega, \kappa) \\ Z_2(\omega, K) \\ \vdots \\ Z_M(\omega, k) \end{bmatrix}$

$$\mathbf{w}_{\mathrm{M}F} = \mathbf{R}_{z}^{-1} \mathbf{r}_{zd}$$
 $\mathbf{R}_{z} = E[\mathbf{z}\mathbf{z}^{H}]$ $\mathbf{r}_{zd} = E[\mathbf{z}d^{*}]$

Maximum-Likelihood Beamformer

Maximize the likelihood for observed data z

Source signal → Observed signals

$$z(\omega) = a(\omega)S(\omega) + v(\omega) \longrightarrow z = as + v$$

Observed signals → Source signal

$$y(\omega) = \mathbf{w}^H(\omega)z(\omega)$$
 \longrightarrow $y = \mathbf{w}^H\mathbf{z}$

Limitation:

we need to estimate *K* in advance

We assume
$$v \sim N(v|0,K)$$
 $K = E[vv^H]$: correlation matrix of noise \downarrow Linear transformation of v $z|s \sim N(z|as,K)$

Log likelihood: $\log p(\mathbf{z}|\mathbf{s}) = -\log|\pi \mathbf{K}| - (\mathbf{z} - \mathbf{a}\mathbf{s})^H K^{-1}(\mathbf{z} - \mathbf{a}\mathbf{s})$

$$\frac{\partial \log p(\mathbf{z}|\mathbf{s})}{\partial \mathbf{s}^*} = \mathbf{a}^H \mathbf{K}^{-1} (\mathbf{z} - \mathbf{a}\mathbf{s}) \qquad s_{\mathrm{ML}} = \frac{\mathbf{a}^H \mathbf{K}^{-1} \mathbf{z}}{\mathbf{a}^H \mathbf{K}^{-1} \mathbf{a}} (= y) \implies \mathbf{w}_{\mathrm{ML}} = \frac{\mathbf{K}^{-1} \mathbf{a}}{\mathbf{a}^H \mathbf{K}^{-1} \mathbf{a}}$$

Practical Example

- Combine ML beamformer with voice activity detection
 - Estimate an array manifold vector a for voiced regions
 - Estimate a spatial correlation matrix K for unvoiced (noise) regions

Minimum-Variance Beamformer

- Minimize the output power $|y|^2$
 - The spatial correlation matrix of noise K is not required
 - Constraint: $w^H a = 1$
 - Average output power: $E[|y|^2] = E[|w^H z|^2] = w^H E[zz^H]w = w^H Rw$ Cost function with a Lagrange multiplier λ :

$$J = \mathbf{w}^{H} \mathbf{R} \mathbf{w} + 2 \operatorname{Re} \left(\lambda^{*} (\mathbf{a}^{H} \mathbf{w} - 1) \right)$$

$$\frac{\partial \overline{f}}{\partial \mathbf{w}^{*}} = \mathbf{R} \mathbf{w} + \lambda^{*} (\mathbf{a}^{H} \mathbf{w} - 1) + \lambda (\mathbf{w}^{H} \mathbf{a} - 1)$$

$$\lambda = -(\mathbf{a}^{H} \mathbf{R}^{-1} \mathbf{a})^{-1}$$

$$w_{\text{MV}} = \frac{\mathbf{R}^{-1} \mathbf{a}}{\mathbf{a}^{H} \mathbf{R}^{-1} \mathbf{a}}$$
Noise correlation matrix K is replaced with observed correlation matrix R

$$\mathbf{w}_{\text{ML}} = \frac{K^{-1} \mathbf{a}}{\mathbf{a}^{H} K^{-1} \mathbf{a}}$$

$$w_{\text{ML}} = \frac{K^{-1} \mathbf{a}}{\mathbf{a}^{H} K^{-1} \mathbf{a}}$$

Spatial Spectrum

• We are interested in the power of a signal coming from a steering-vector direction θ_T

Beamformer: $y(\theta_T) = w^H(\theta_T)z$

Average output power:

$$P(\theta_T) = E[|y(\theta_T)|^2] = \mathbf{w}^H(\theta_T)E[\mathbf{z}\mathbf{z}^H]\mathbf{w}(\theta_T) = \mathbf{w}^H(\theta_T)\mathbf{R}\mathbf{w}(\theta_T)$$

Examples:

$$w_{\rm DS} = \frac{a}{a^{H}a} \qquad P_{\rm DS}(\theta) = \frac{a^{H}(\theta)}{a^{H}(\theta)a(\theta)} R \frac{a(\theta)}{a^{H}(\theta)a(\theta)} = \frac{a^{H}(\theta)Ra(\theta)}{|a^{H}(\theta)a(\theta)|^{2}}$$

$$\mathbf{w}_{\text{MV}} = \frac{\mathbf{R}^{-1}\mathbf{a}}{\mathbf{a}^{H}\mathbf{R}^{-1}\mathbf{a}} \quad P_{\text{MV}}(\theta) = \frac{\mathbf{a}^{H}(\theta)\mathbf{R}^{-1}}{\mathbf{a}^{H}(\theta)\mathbf{R}^{-1}\mathbf{a}(\theta)} \mathbf{R} \frac{\mathbf{R}^{-1}\mathbf{a}(\theta)}{\mathbf{a}^{H}(\theta)\mathbf{R}^{-1}\mathbf{a}(\theta)} = \frac{1}{\mathbf{a}^{H}(\theta)\mathbf{R}^{-1}\mathbf{a}(\theta)}$$

Spatial Spectrum

- MV gives better spatial resolution than DS
 - MV has a similar property to MUSIC method (explained later)

Multiple Signal Classification (MUSIC)

Subspace Methods

• Represent an observed vector $z \in \mathbb{C}^M$ in another space

Frequency-domain method	Eigenspace method	
Fourier transform $y = Fz$	Karhunen-Loève transform — $y = E^H z$	PCA
Invserse Fourier transform $z = F^H y$	Karhunen-Loève expansion $z = Ey$	
F is a discrete transform matrix	$E = [e_1, e_2, \dots, e_M]$ is a set of eigenvectors of $R = E[zz^H]$	

Eigenvalue decomposition

$$\mathbf{R}\mathbf{e}_i = \lambda_i \mathbf{e}_i$$

Spectral decomposition $R = E \Lambda E^H$

 $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_M)$ is a set of the corresponding eigenvalues

The average power of the i^{th} principal component $E[|y_i|^2] = E[\mathbf{e}_i^H \mathbf{z} \mathbf{z}^H \mathbf{e}_i] = \mathbf{e}_i^H \mathbf{R} \mathbf{e}_i = \lambda_i$

Orthogonal

relationships

Case 1: No Noise

- Observed signal = Sum of direct signals
 - Suppose that v = 0 and M > N (#microphones > #sources)

Observation model:
$$z = As + v$$
 $\Gamma = E[ss^H]$

$$\mathbf{z} = \sum_{i=1}^{N} \mathbf{a}_{i} s_{i}$$

$$\mathbf{R} = E[\mathbf{z}\mathbf{z}^{H}] = E[\mathbf{A}\mathbf{s}\mathbf{s}^{H}\mathbf{A}^{H}] = \mathbf{A}\mathbf{\Gamma}\mathbf{A}^{H}$$

$$\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{\Gamma}) = \mathbf{N} \longrightarrow \operatorname{rank}(\mathbf{R}) = \mathbf{N}$$

Eigenvalue decomposition: $R = EME^{H}$

Eigenvalues:
$$\mathbf{M} = \operatorname{diag}(\mu_1, \dots, \mu_M)$$
 $\mu_1 > \dots > \mu_N > 0$, $\mu_{N+1} = \dots = \mu_M = 0$
Eigenvectors: $\mathbf{E} = \{\mathbf{e}_1, \dots, \mathbf{e}_M\}$ $\mathbf{e}_i^H \mathbf{R} \mathbf{e}_i = \mu_i$

$$e_i^H R e_i = e_i^H A \Gamma A^H e_i = (A^H e_i)^H \Gamma (A^H e_i) = \mu_i$$

$$\mathbf{A}^{H}\mathbf{e}_{i} = \mathbf{0}_{N \times 1} \ (N < i \leq M) \longrightarrow \mathbf{a}_{j}^{H}\mathbf{e}_{i} = 0 \ (1 \leq j \leq N, N < i \leq M)$$

Signal and Noise Subspaces

- Orthogonal-complementary subspaces of A
 - Column space: $\mathcal{R}(A) = \operatorname{span}(a_1, \dots, a_N) \rightarrow \operatorname{Signal subspace}$
 - Left nullspace: $N(A^H) = \text{span}(e_{N+1}, \dots, e_M) \rightarrow \text{Noise subspace}$

$$\mathbf{z} = \mathbf{A}\mathbf{s}$$
Eigenvalue decomposition
$$\mathbf{R} = E[\mathbf{z}\mathbf{z}^H] = [\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_M] \operatorname{diag}(\mu_1, \mu_2, \cdots, \mu_M) [\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_M]^H$$

$$\operatorname{span}(\mathbf{e}_1, \cdots, \mathbf{e}_N) = \operatorname{span}(\mathbf{e}_{N+1}, \cdots, \mathbf{e}_M)^{\perp}$$
Orthogonal bases

Identical

Result of the previous slide

$$\mathbf{a}_{j}^{H}\mathbf{e}_{i} = 0 \ (1 \leq j \leq N, N < i \leq M)$$

$$\operatorname{span}(\mathbf{a}_{1}, \dots, \mathbf{a}_{N}) = \operatorname{span}(\mathbf{e}_{N+1}, \dots, \mathbf{e}_{M})^{\perp}$$

Case 2: White Noise

- Observed signal = Sum of direct signals + White noise
 - Suppose that $v = v_w$ and M > N

Observation model:
$$\mathbf{z} = \mathbf{A}\mathbf{s} + \mathbf{v}_w \quad \mathbf{\Gamma} = E[\mathbf{s}\mathbf{s}^H] \quad \sigma^2 \mathbf{I} = E[\mathbf{v}_w \mathbf{v}_w^H]$$

$$\mathbf{z} = \sum_{i=1}^{N} \mathbf{a}_{i} s_{i} + \mathbf{v}_{w}$$

$$\mathbf{R} = E[\mathbf{z}\mathbf{z}^{H}] = \mathbf{A}\mathbf{\Gamma}\mathbf{A}^{H} + \sigma^{2}\mathbf{I}$$

$$\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{\Gamma}) = \mathbf{N} \longrightarrow \operatorname{rank}(\mathbf{R}) = \mathbf{N}$$

Eigenvalue decomposition: $\mathbf{R} = \mathbf{E} \mathbf{\Lambda} \mathbf{E}^H$

Eigenvalues:
$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_M)$$
 $\Lambda = \mathbf{M} + \sigma^2 \mathbf{I}$ No-noise case $+ \sigma^2 \mathbf{I}$ Eigenvectors: $\mathbf{E} = \{\mathbf{e}_1, \dots, \mathbf{e}_M\}$ $\mathbf{e}_i^H \mathbf{R} \mathbf{e}_i = \lambda_i$ Orthogonal

$$\mathbf{e}_{i}^{H}\mathbf{R}\mathbf{e}_{i} = \mathbf{e}_{i}^{H}(\mathbf{A}\mathbf{\Gamma}\mathbf{A}^{H} + \sigma^{2}\mathbf{I})\mathbf{e}_{i} = (\mathbf{A}^{H}\mathbf{e}_{i})^{H}\mathbf{\Gamma}(\mathbf{A}^{H}\mathbf{e}_{i}) + \sigma^{2}$$

$$\mathbf{A}^{H}\mathbf{e}_{i} = \mathbf{0}_{N\times1} (N < i \leq M) \longrightarrow \mathbf{a}_{j}^{H}\mathbf{e}_{i} = 0 (1 \leq j \leq N, N < i \leq M)$$
relationships

Signal and Noise Subspaces

- Orthogonal-complementary subspaces of A
 - Column space: $\mathcal{R}(A) = \operatorname{span}(a_1, \dots, a_N) \to \operatorname{Signal subspace}$
 - Left nullspace: $N(A^H) = \text{span}(e_{N+1}, \dots, e_M) \rightarrow \text{Noise subspace}$

$$z = As + v_w$$

 $z = As + v_w$ $\begin{cases} \lambda_i : \text{the sum of the power of signal } s \\ \text{and noise } v_w \text{ in the } i^{th} \text{subspace} \end{cases}$

Eigenvalue decomposition

$$\mathbf{R} = E[\mathbf{z}\mathbf{z}^H] = [\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_M] \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_M) [\mathbf{e}_1, \mathbf{e}_2, \cdots, \mathbf{e}_M]^H$$

$$span(\mathbf{e}_1, \cdots, \mathbf{e}_N) = \operatorname{span}(\mathbf{e}_{N+1}, \cdots, \mathbf{e}_M)^{\perp}$$
Orthogonal bases

Identical

Result of the previous slide

$$\mathbf{a}_{j}^{H}\mathbf{e}_{i} = 0 \ (1 \leq j \leq N, N < i \leq M)$$

$$\operatorname{span}(\mathbf{a}_{1}, \dots, \mathbf{a}_{N}) = \operatorname{span}(\mathbf{e}_{N+1}, \dots, \mathbf{e}_{M})^{\perp}$$

Case 3: Colored Noise

- Observed signal = Sum of direct signals + Colored noise
 - Suppose that $v = v_c$ and M > N

Non-diagonal matrix

Observation model: $z = As + v_c$ $\Gamma = E[ss^H]$ $K = E[v_c v_c^H]$

$$\mathbf{z} = \sum_{i=1}^{N} \boldsymbol{a}_i s_i + \boldsymbol{v}_c$$

$$R = E[zz^H] = A\Gamma A^H + K$$

 $\operatorname{rank}(A) = \operatorname{rank}(\Gamma) = N \longrightarrow \operatorname{rank}(R) = N \setminus$

Generalized eigenvalue decomp. of *R*

$$Re_i = \lambda_i Ke_i$$

Eigenvalues: $\Lambda = \{\lambda_1, \dots, \lambda_M\}$

Eigenvectors: $E = \{e_1, \dots, e_M\}$

Eigenvalue decomp. of $\Phi^{-H} R \Phi^{-1}$

$$(\mathbf{\Phi}^{-H}\mathbf{R}\mathbf{\Phi}^{-1})\mathbf{f}_i = \lambda_i \mathbf{f}_i$$

Eigenvalues: $\Lambda = \{\lambda_1, \dots, \lambda_M\}$

Eigenvectors: $F = \{f_1, \dots, f_M\}$

$$\mathbf{\Phi}^H \mathbf{\Phi} = \mathbf{K} \quad \mathbf{f}_i = \mathbf{\Phi} \mathbf{e}_i \quad \text{rank}(\mathbf{\Phi}^{-H} \mathbf{R} \mathbf{\Phi}^{-1}) = N$$

Signal and Noise Subspaces

• Orthogonal-complementary subspaces of $A \Gamma = E[ss^H]$

	No-noise case $oldsymbol{z} = A oldsymbol{s}$		White noise $oldsymbol{z} = oldsymbol{A} oldsymbol{s} + oldsymbol{v}_{w}$		Colored noise $oldsymbol{z} = A oldsymbol{s} + oldsymbol{v}_c$	
	Signal power	Noise power	Signal power	Noise power	Signal power	Noise power
Signal subspace $(1 \le i \le N)$	μ_i	0	μ_i	σ^2	$\check{\mu}_i$	1
Noise subspace $(N < i \le M)$	0	0	0	σ^2	0	1
$E[\mathbf{z}\mathbf{z}^H](=\mathbf{R})$	$A\Gamma A^H$		$A\Gamma A^{H} + \sigma^{2}I$		$A\Gamma A^{H} + \sigma^{2}K$	
$E[\boldsymbol{v}\boldsymbol{v}^H]$	0		$\sigma^2 I$		$K = \Phi^H \Phi$	
Eigenvalue decomposition	R = E	$\mathbf{E}\mathbf{M}\mathbf{E}^H$	R = I	$E \Lambda E^H$	$\Phi^{-H}R\Phi^{-}$	$\mathbf{f}^{1} = \mathbf{F}\widecheck{\mathbf{\Lambda}}\mathbf{F}^{H}$

- Adaptive beamforming based on subspace analysis
 - Separate signal and nose components into different subspaces
 - Calculate spatial spectrum $P_{\text{MUSIC}}(\theta)$

$$P_{\text{MUS}}(\theta) = \frac{\|\boldsymbol{a}(\theta)\|^2}{\sum_{i=N+1}^{M} |\boldsymbol{a}^H(\theta)\boldsymbol{e}_i|^2} = \frac{\boldsymbol{a}^H(\theta)\boldsymbol{a}(\theta)}{\boldsymbol{a}^H(\theta)\boldsymbol{E}_n\boldsymbol{E}_n^H\boldsymbol{a}(\theta)}$$

 $E_n = [e_{N+1}, \dots, e_M]$: a set of eigenvectors corresponding noise subspaces $a(\theta)$: array manifold vector (θ : <u>assumed</u> source direction)

If θ matches a true source direction $(a(\theta) = a_i)$,

$$a^{H}(\theta)\mathbf{E}_{n} = \mathbf{0} \text{ i.e., } P_{\text{MUS}}(\theta) = \infty$$

Signal and noise subspaces are orthogonal

Methods

• Orthogonal-complementary subspaces of $A \Gamma = E[ss^H]$

	SEVD-MUSIC $oldsymbol{z} = oldsymbol{A} oldsymbol{s} + oldsymbol{v}_{w}$		GEVD-MUSIC $oldsymbol{z} = A oldsymbol{s} + oldsymbol{v}_c$		GSVD-MUSIC $oldsymbol{z} = Aoldsymbol{s} + oldsymbol{v}_c$	
	Signal power	Noise power	Signal power	Noise power	Signal power	Noise power
Signal subspace $(1 \le i \le N)$	μ_i	σ^2	$\check{\mu}_i$	1	$\check{\mu}_i$	1
Noise subspace $(N < i \le M)$	0	σ^2	0	1	0	1
$E[\mathbf{z}\mathbf{z}^H](=\mathbf{R})$	$A\Gamma A^{H} + \sigma^{2}I$		$A\Gamma A^{H} + \sigma^{2}K$		$A\Gamma A^{H} + \sigma^{2}K$	
$E[\boldsymbol{v}\boldsymbol{v}^H]$	$\sigma^2 I$		$K = \Phi^H \Phi$		$K = U^H V$	
Eigenvalue decomposition	R = E	Σ ΛΕ ^Η	$\Phi^{-H}R\Phi^{-2}$	$^{1} = \mathbf{F} \mathbf{\Lambda} \mathbf{F}^{H}$	$K^{-1}R =$	$= U\Lambda V^{-H}$

Spatial Spectrum

- Compare MUSIC methods in a <u>simulated</u> environment
 - Assume an observation model: $z = z_s + v_c + v_w$
 - Direct signal: $z_s = a_1 s_1$ (direction 0°)
 - Colored noise: $v_c = a_1^c s_1^c$ (direction 60°)

Eigenvalues Λ

Spatial Spectrum

- Compare MUSIC methods in a <u>real</u> environment
 - Assume an observation model: $z = z_s + v_c + v_w$
 - Direct signal: $z_s = a_1 s_1$ (direction 0°)
 - Colored noise: $v_c = a_1^c s_1^c$ (direction 60°)

Eigenvalues Λ

Integration Over All Frequencies

- Take the average of spatial spectra over all frequencies
 - Frequency weights β are determined according to an application

Comparison of SSL

SEVD-MUSIC and GSVD-MUSIC

MUSIC with Adaptive Noise Estimation

Quadrocopter with 16 mics

with adaptive noise estimation

Independent Component Analysis

Blind Source Separation

- BSS is a mathematically ill-defined problem
 - We cannot uniquely determine source signals
 if neither prior knowledge nor constraints are taken into account
- Focus on some properties of audio signals
 - Acoustic characteristics
 - Speech: voice timbres, accent, intonation, ...
 - Musical instruments: pitches, timbres, rhythms, repetitions, ...
 - Spatial characteristics
 - Source direction (angle and elevation)

Linear methods: beamformer, independent component analysis (ICA)

Nonlinear methods: time-frequency masking

- We aim to sound source separation and localization
 - Input: x_1, x_2, \dots, x_N Output: $y_1, y_2, \dots, y_M \ (\approx s_1, s_2, \dots, s_M)$
 - Mixing process: sources $s_1, s_2, \cdots, s_M \rightarrow$ observations z_1, z_2, \cdots, z_N
 - Two settings: A is given (non-blind) $\leftrightarrow A$ is not given (blind)

Beamforming vs. Blind Source Separation

	Beamforming	Blind source separation
Transfer functions	Required	Not necessary
Performance	Low	High
Reverberation	Can be suppressed to some extent	Included in separated signals
Issues		Permutation problem Scaling problem

Beamformer

Blind source separation

Basic Formulation

- Formulate a mixing process in the frequency domain
 - N sound sources are observed by M microphones $\sqrt{M = N \text{ is assumed}}$

$$M = N$$
 is assumed

$$z = As = \sum_{i=1}^{N} a_i S_i$$
 $y = Wz = WAs$ if $W = A^{-1}$, $y \approx s$

Mixing system: z = As Separating process: y = Wz

Source signals

Observed signals

Separated signals

Principle Component Analysis

Linearly transform an observed space into a latent space

Observed vector
$$y = Wz$$
 Output vector $W = [w_1, w_2, \cdots, w_M]^T$ Output vector $W = [w_1, w_2, \cdots, w_M]^T$

First eigenvector e_1 of R_z First principal component

Estimate w_1 such that the variance of $y_1 = w_1^H z$ is maximized $E[|y_1|^2] = w_1^H E[zz^H]w_1 = w_1^H R_Z w_1 \qquad ||w_1|| = 1$

Cost function: $J = w_1^H R_Z w_1 + \lambda_1 (1 - w_1^H w_1)$

 $\frac{\partial J}{\partial \boldsymbol{w}_1^*} = \boldsymbol{R}_z \boldsymbol{w}_1 - \lambda_1 \boldsymbol{w}_1 \to 0 \quad E[|y_1|^2] = \boldsymbol{w}_1^H \boldsymbol{R}_Z \boldsymbol{w}_1 = \lambda \boldsymbol{w}_1^H \boldsymbol{w}_1 = \lambda_1$

 λ_1 is the maximum eigenvalue & w_1 is the corresponding eigenvector

Principle Component Analysis

The dimensions of a latent space should be orthogonal

Second eigenvector e_2 of R_z

Second principal component

Estimate w_2 such that the variance of $y_2 = w_2^H z$ is maximized

$$E[|y_2|^2] = \mathbf{w}_2^H E[\mathbf{z}\mathbf{z}^H] \mathbf{w}_2 = \mathbf{w}_2^H \mathbf{R}_Z \mathbf{w}_2 \qquad ||\mathbf{w}_2|| = 1 \& \mathbf{w}_1^H \mathbf{w}_2 = 0$$

Third eigenvector e_3 of R_z | Third principal component

Estimate w_3 such that the variance of $y_3 = w_3^H z$ is maximized

$$E[|y_3|^2] = \mathbf{w}_3^H E[\mathbf{z}\mathbf{z}^H] \mathbf{w}_3 = \mathbf{w}_3^H \mathbf{R}_Z \mathbf{w}_3 \qquad ||\mathbf{w}_3|| = 1 \& \mathbf{w}_1 \perp \mathbf{w}_2 \perp \mathbf{w}_3$$

Eigenvalue decomposition

$$\mathbf{R}_z = E[\mathbf{z}\mathbf{z}^H]$$

Eigenvectors: $E = [e_1, \dots, e_M]$ Eigenvalues: $\Lambda = [\lambda_1, \dots, \lambda_M]$

PCA: $y = E^H z$ PCA with dimensionality reduction: $y = E_{1:p}^H z$

Whitening

- Perform linear transform y = Wz such that $E[yy^H] = 0$
 - Input space: $E[zz^H] = R_z \rightarrow \text{Output space}$: $E[yy^H] = I$ $E[yy^H] = E[Wzz^HW^H] = WE[zz^H]W^H = WR_zW^H$

If
$$W = \Lambda^{-\frac{1}{2}} E^H$$
, $E[yy^H] = \Lambda^{-\frac{1}{2}} E^H R_z E \Lambda^{-\frac{1}{2}} = \Lambda^{-\frac{1}{2}} \Lambda \Lambda^{-\frac{1}{2}} = I$

Scaling Transform Eigenvalue decomposition: $R_z = E \Lambda E^H$

Sufficient

condition

- PCA achieves second-order decorrelation
 - The dimensions of a latent space are diagonal
- ICA achieves higher-order decorrelation
 - The dimensions of a latent space are independent

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = w_1 z_1 + w_2 z_2$$

- PCA can be used as preprocessing of ICA
 - ICA filter W_{ICA} becomes unitary after performing PCA

The requirement of PCA: $E[yy^H] = W_{PCA}E[zz^H]W_{PCA}^H = I$

If we multiply any unitary matrix U^H ($U^HU = I$, $W_{PCA} \leftarrow U^HW_{PCA}$)

$$\mathbf{y} = \mathbf{U}^H \mathbf{W}_{PCA} \mathbf{z} \longrightarrow E[\mathbf{y}\mathbf{y}^H] = \mathbf{U}^H \mathbf{W}_{PCA} E[\mathbf{z}\mathbf{z}^H] \mathbf{W}_{PCA}^H \mathbf{U} = \mathbf{U}^H \mathbf{U} = \mathbf{I}$$

Cost Function

- Make the dimensions of a latent spaces independent
 - Minimize the KL divergence between p(y) and $\prod_{i=1}^{N} p(y_i)$
 - If the dimensions of y are independent, $p(y) = \prod_{i=1}^{N} p(y_i)$
 - We aim to make p(y) as close to $\prod_{i=1}^{N} p(y_i)$ as possible

$$D_{KL}\left(p(\mathbf{y}) \middle\| \prod_{i=1}^{N} p(y_i)\right) = \int p(\mathbf{y}) \log \frac{p(\mathbf{y})}{\prod_{i=1}^{N} p(y_i)} d\mathbf{y}$$

$$= -\int p(\mathbf{y}) \log p(\mathbf{y}) d\mathbf{y} + \sum_{i=1}^{N} \int p(y_i) \log p(y_i) dy_i$$

$$= -H(\mathbf{y}) + \sum_{i=1}^{N} H(y_i)$$

$$\mathbf{y} = \mathbf{W}\mathbf{z} \longrightarrow H(\mathbf{y}) = H(\mathbf{z}) + \log |\det(\mathbf{W})|$$

$$D_{KL} = -H(\mathbf{z}) - \log |\det(\mathbf{W})| - \sum_{i=1}^{N} E[\log p(y_i)]$$

Natural Gradient Algorithm

Minimize the cost function by using a gradient method

Cost function

$$D_{KL} = -H(\mathbf{z}) - \log|\det(\mathbf{W})| - \sum_{i=1}^{N} E[\log p(y_i)]$$

$$\frac{\partial}{\partial w_{ij}} \sum_{i=1}^{N} E[\log p(y_i)] = E\left[\frac{\partial \log p(y_i)}{\partial y_i} \frac{\partial y_i}{\partial w_{ij}}\right] = E\left[-\varphi(y_i)z_j\right]$$

Score function

Gradient
$$\frac{\partial D_{KL}}{\partial \mathbf{W}} = -\mathbf{W}^{-H} + E[\boldsymbol{\varphi}(\mathbf{y})\mathbf{z}^{H}] = (\mathbf{I} - E[\boldsymbol{\varphi}(\mathbf{y})\mathbf{y}^{H}])\mathbf{W}^{-H}$$

$$\frac{\partial [\boldsymbol{\varphi}(\mathbf{y}_{i})] = -\frac{\partial [\boldsymbol{\varphi}(\mathbf{y}_{i})]}{\partial \mathbf{y}_{i}}$$

$$\boldsymbol{\varphi}(\mathbf{y}) = [\boldsymbol{\varphi}(\mathbf{y}_{1}), \dots, \boldsymbol{\varphi}(\mathbf{y}_{N})]^{T}$$

$$\boldsymbol{\varphi}(y_i) = -\frac{\partial \log \varphi(y_i)}{\partial y_i}$$
$$\boldsymbol{\varphi}(\boldsymbol{y}) = [\varphi(y_1), \dots, \varphi(y_N)]^T$$

Natural gradient

$$\frac{\partial D_{KL}}{\partial \boldsymbol{W}} \boldsymbol{W}^H \boldsymbol{W} = (\boldsymbol{I} - E[\boldsymbol{\varphi}(\boldsymbol{y})\boldsymbol{y}^H]) \boldsymbol{W}$$

Updating formula

$$\boldsymbol{W}_{t+1} = \boldsymbol{W}_t + \eta (\boldsymbol{I} - E[\boldsymbol{\varphi}(\boldsymbol{y})\boldsymbol{y}^H]) \boldsymbol{W}_t$$

Score Functions

• A distribution of source signal $s \approx y$ is required

Non-Gaussianity

- ICA assumes sound sources are NOT Gaussian distributed
 - The Gaussian distribution cannot be used as p(y) in ICA

Score function:
$$\varphi(y) = [\varphi(y_1), \dots, \varphi(y_N)]^T$$

Updating formula: $W_{t+1} = W_t + \eta (I - E[\varphi(y)y^H])W_t$

Gaussian case
$$\varphi(y) = \frac{y}{\sigma^2}$$
 $E[\varphi(y)y^H] = \frac{1}{\sigma^2}E[yy^H] = \frac{1}{\sigma^2}R_y$

- → The updating formula is depend on only second-order statistics
- → ICA reduces to PCA

Laplacian case
$$\varphi(y_i) = \frac{1}{\sigma} \frac{y_i}{|y_i|}$$

→ Widely used for modeling speech and music signals

Maximum-Likelihood Estimation

• Estimate W such that p(Z|W) is maximized

Independence of ICA outputs:
$$p(y) = \prod_{i=1}^{N} p_i(y_i)$$

$$\Rightarrow p(\mathbf{z}) = |\det(\mathbf{W})| p(\mathbf{y})$$

$$\mathbf{z} = [\mathbf{z}_1, \cdots, \mathbf{z}_K] \quad \mathbf{z}_k \text{: observation at time } k$$

$$\mathbf{y} = [\mathbf{y}_1, \cdots, \mathbf{y}_K] \quad \mathbf{y}_k \text{: ICA output at time } k$$

$$\Rightarrow p(\mathbf{Z}|\mathbf{W}) = \prod_{k=1}^{K} |\det(\mathbf{W})| \prod_{i=1}^{N} p_i(y_{i,k})$$

$$\frac{\partial p(\mathbf{Z}|\mathbf{W})}{\partial \mathbf{W}} = (\mathbf{I} - E[\boldsymbol{\varphi}(\mathbf{y})\mathbf{y}^H]) \mathbf{W}^{-H} \rightarrow \mathbf{0}$$
The same updating formulate is derived

- ICA variant with a constraint $W_{ICA}^H W_{ICA} = I$
 - PCA is used as preprocessing
 - Fewer iterations are required for convergence

Learning Algorithm

• Choice of function $G(y_i)$

Example: generalized Laplacian: $p(y_i) \propto \exp\left(-\frac{\sqrt{|y_i|^2 + \alpha}}{\sigma}\right)$ [Sawada 2004]

$$G(y_i) = \sqrt{|y_i|^2 + \alpha}$$
 $g(y_i) = \frac{\partial G(y_i)}{\partial y_i} = \frac{y_i^*}{2\sqrt{|y_i|^2 + \alpha}}$

$$g'(y_i) = \frac{\partial g(y_i)}{\partial y_i^*} = \frac{1}{2\sqrt{|y_i|^2 + \alpha}} \left(1 - \frac{1}{2} \frac{|y_i|^2}{|y_i|^2 + \alpha}\right)$$

Updating formula of W

$$\mathbf{y} = \mathbf{W}\mathbf{z}$$
 $\mathbf{W} \equiv [\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_M]^T$

Update a filter: $W \leftarrow E[g(y_i)\mathbf{z}] - E[g'(y_i)]\mathbf{w}_m$ Unitarize a filter: $W \leftarrow W(W^HW)^{-\frac{1}{2}}$ Iterate until convergence

- Permutation ambiguity
 - The dimension order of Y cannot be determined uniquely
- Amplitude ambiguity
 - The dimension amplitude of Y cannot be determined uniquely

Solutions

- Solve permutation ambiguity
 - Focus on y
 - Temporal power envelopes
 - Focus on W
 - Directional patters of W
 - Relative delay times from sources to microphones
 - Column vectors of W^{-1}
- Solve amplitude ambiguity
 - Recover observed signals
 - Use the invserse of W for filtering each y_i

$$z_i = \mathbf{W}^{-1}[0, \cdots, 0, y_i, 0, \cdots, 0]^T$$

Nonlinear Time-Frequency Masking

Observation of Single Source

- The spectra of each source has a unique spatial property
 - The spectra are assumed to be Gaussian distributed

Observation of Single Source

- The spectra of each source has a unique spatial property
 - The spectra are assumed to be Gaussian distributed

Observation of Multiple Sources

- The observed scatter plot is a mixture of spatial properties
 - Assume that source spectra are sparse (disjoint with each other)

Time-Frequency Clustering

- Classify each frequency bin into one of sound sources
 - $z_{tf} = k$ indicates (time t, frequency f) is classified into source k
 - H_{fd} : spatial correlation matrix for frequency f and direction d

Observation model [Duong 2010]

$$\mathbf{x}_{tf} \sim N_c \left(\mathbf{x}_{tf} \middle| \mathbf{0}, \left(\lambda_{tf} \mathbf{H}_{fd_{\mathbf{z}_{tf}}} \right)^{-1} \right)$$

Source direction of time *t* and frequency *f*

Bayesian formulation [Otsuka 2014]

$$\boldsymbol{H}_{fd} \sim W_c \left(\left(\boldsymbol{a}_{fd} \boldsymbol{a}_{fd}^H + \epsilon \boldsymbol{I} \right)^{-1}, v_0 \right)$$

Array manifold vector for frequency *f* and direction *d*

Nonparametric Bayesian Extension

- Automatically estimate the number of sound sources
 - Assume that infinitely many sound sources exist in theory

Observation model [Duong 2010]

$$\mathbf{x}_{tf} \sim N_c \left(\mathbf{x}_{tf} \middle| \mathbf{0}, \left(\lambda_{tf} \mathbf{H}_{fd_{\mathbf{z}_{tf}}} \right)^{-1} \right)$$

Source direction of time t and frequency f

Hierarchical Dirichlet process prior $(k \to \infty)$

[Otsuka 2014]
$$\pi_{tf} \sim \text{HDP}(\alpha, \gamma, \beta)$$
 Sparse learning Parameters Parameters $Z_{tf} \sim \text{Categorical}(\pi_{tf})$ Source

Advantages

- Simultaneous localization and separation
 - Improved performance of each task
 - Integration based on a probabilistic model
 - Automatic estimation of the number of sound sources
 - Nonparametric Bayesian formulation
 - Solving permutation problems
 - All frequency bins are simultaneously analyzed
- Various extensions feasible
 - Simultaneous dereverberation, localization, and separation [Otsuka 2014]
 - Analyzing moving sound sources [Otsuka 2014]
 - Real-time online inference (future work)

Assignment

Questions

- Explain delay-sum (DS) and minimum-variance (MV) beamforming methods using equations and why MV is better than DS.
- Describe the relationships (differences) between PCA and ICA and how to estimate the parameters.
- Report how microphone array processing is used in practice.
- How to submit
 - Submit a PDF file to "Assignment (Yoshii)" on PandA.
 - Deadline: 2018/01/30 23:59