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Microphone Array Processing

« A fundamental technique for various studies
= Speech recognition & cocktail-party effect

. Itisimportant to selectively listen to utterances of interest
even if we make conversation in a noisy environment

= Robot audition
. Robots should use their own ears for listening to sounds
. Individual sound sources should be localized and separated

+ Analysis of recorded speech communication SRS T Pest=
. Speaker identification Yo d q
. Voice activity detection for each speaker
. Noise/reverberation reduction




« We aim at sound source separation and localization
= Input: z,z,, -+, zy Output: yi,v,, -, vy (= S1, S5, , Sy)
. Mixing process: sources s, s,, -+, s); —> observations z,, z,, -+, zy
. Two settings: 4 is given (non-blind) <> A is not given (blind)
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Mixing Input Filtering Output




Overview 4

« Two major approaches to microphone array processing
= Non-blind setting
. Beamformer
« MUSIC (multiple signal classification)
= Blind setting
. Independent component/vector analysis (ICA/IVA)
. Multi-channel nonnegative matrix factorization (NMF)
. Nonlinear time-frequency masking
= Advanced topics
. Bayesian sound source separation and localization
. Automatic determination of number of sources



3D Coordinate Systems

« Orthogonal coordinate <> Polar coordinate
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Propagation of Plain Wave 6

« A sound wave is observed by using M microphones
" p1, D2, Py the positions of M microhones

Y Q' w: angular frequency of plain wave
Z c: sound speed
Wavenumber vector k = — %u

cos ¢ sin 6 |
Source'direction u = | cos ¢, cos 0,

/ | sing
E - Em x // /
Delaya, Delay >y




Source Signal — Observed Signals

« An observed signal is a delayed version of a source signal
= Suppose that source signal s(t) is propagated to M microphones

= Each microphonem (1 < m < M) has delay time 7,,

N

()] [s(t—11)]
2(¢) = Zzz(t) _|s(t R T2)
[O:oi;el;r:éd T | Zy ()] S(t— Ty
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Fourier transform

zZ(w) =
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Sound Observation 3

« Observed signals are correlated with each other
- The spatial property is determined by an array manifold vector

o Z(w) = a(w)S(w) E?,Zz(w) A )
S() Zy(@)] _ [ar ()
Za )l = Ly 5@
a(e) - [all _ le—szn] x‘
We often assume ayl le—jotm

S(w) ~ N.(0,1) Array manifold vector  z(w) ~ N,(0, a(w)a" (w))




Array Manifold Vector for Plane Wave

 The array manifold vector a(w) can be calculated
from microphone positions p,,p,, -, Py

cos ¢ cos 6,
sin ¢

— s: sound pressure
0z%2 c20t?  c:soundspeed

CoS ¢ sin G,
(azimuth, elevation): (6,,¢,) Source direction: u =

d%s 0%s 0%s 1 0%s
0x? * dy? *
Plain wave with angular frequency w that solves the equation:
s(p,t) = Aexp(j(wt — k'p)) = Aexp(jot) exp(—jk' p)

—\ [—

k: wavenumber vector [ Source signal ][ Phase difference ]

Wave equation:

p: observation point

A: wavelength = e == A (W) = eXp(—jkTpm) — exp (jz_nqum)
W f A
1 1
k=-2u=-Zu |k|=2 = k'Pn=—Cu'p,
c



Straight-shape Microphone Array

» Microphone position t 5 Plane wave
M—1 ! Y&
Pm — [((m —-1)— T) d,, 0, O] /
« Time delay
M-1\d, .
T, = —((m—l)— > ) . sin 6,
- Array manifold vector z(w) = [Z1(w), Z3(®), -+, Zs(w)]
@ (w) = exp (j ((m ~1) - Mz_ 1) Zﬁd’“ sin es> z(w) = a(w)S(w)

(M-1 o , 2nd,
a(w) = e_] 2 )1/)[1, eV o2V ... gi(M=1)y ]T <¢ — > X sin 0, )




Round-shape Microphone Array

S(w)

« Microphone position y 1. 6,
Pm = [1:sin ¢y, 7, cos (m:O]T 1 ,>/P|ane
8 u 2 Wwave
« Time delay E{? \E{m ??
e . . . 7,“, %
Tm == (sin 6, sin {,,, + cos O, cos ;) E.a £2 5

N ]

e
- = ?COS(GS - (m)

68 Eg4
* Array manifold vector I N I
JTL Z(w) = a(w)S(w)

an (@) = exp (j%cosws - cm>>
z(w) = [Z1(w), Z3(w), +, Zg(w)]

Such round-shape microphone arrays are often used in practice
for localizing and separating sound sources around a robot




Array Manifold Vector for Spherical Wave 12

 The array manifold vector a(w) can be calculated
from 3D microphone positions p,,p,, -, Py

(azimuth, elevation, distance): (6, ¢, ) Source position: |r cos ¢, cos 0,

7 sin ¢,

T COS ¢, sin HS]

2 2
d (TS) — 10 (rs) s:sound pressure

Wave equation:
. or? c? O0t?  ¢:soundspeed

Spherical wave with angular frequency » that satisfies the equation:

s(r,t) = éexp(i(a)t —k.1r)=A exp(/'a)t)%exp(—jkrr)

k,: wavenumber [ Source signal ] [ Phase/amplitude difference ]
A: wavelength

1 . 1 . Tm
ky=—== A1====2 | an(0) = —exp(—jk, 1) = —exp (—Jw %)

A C w f m m



Measurement of Array Manifold Vector

« Geometry-based estimation

« Usethe formula: a,,(w) = exp(—jk’p) = exp (j—qum>
« Recording-based estimation Source direction HM\
= Use only direct sounds for measuring the impulse response

icrophone position

= Transform the impulse response into the frequency domain

Reflected sound
Windowing

Ao N
\ A 7

/ \Il:ourier transform

Amplitude characteristics Phase characteristics
N\ N

/
[dB] Y R

T N — 0

Direct sound

SV

v




Sound Observation Model

 The observed sound is a mixture of various sounds

= Direct sound: z,
= Reflected sound: z,
= Spatial colored noise: v,

= Spatial white noise: v,
Single source

\

J

Observed sound:
z=z,+z,+v.+v,

Multiple sources

v, 199009




Sound Observation Model

« Suppose that N sound sources and M microphones

S1(w)° @) ¥
s(w) = SZ(E(U) z(w) = ZZ(E(‘))
Sy (W) Zy ()]




Direct Sounds

« Sum of direct sounds coming from N sound sources

= Suppose that there are N sound sources
= Each sound source is recorded by each microphone (linear system)

Single source Multiple sources
N
2,0) = a(@)S() 1 2() = ) G©)S(w) = A@)s()

i=1

Zs1(w)] ( Mixing.fmlztrix i 'S1(w)]

N Zop(w) array manifold matrix Sy w)

G A©) = [a @), ay@)] 7|

N\

Zsm (). a,(w): array manifold vector Sy (@).

for each source n




Reflected Sounds and Noise

« Different linear systems are assumed
= Directsounds: z, = As
- Reflected sounds: z, = 4,5 (3 is highly correlated to s)
. Short direct path # Long reflection path > 4 # A,
= Spatial colored noise: v. = A.q (q is not correlated to s) )
. The elements of v, are inter-dependent

. . . >V =v,+7v,
= Spatial white noise: v,, ~ N(0,52I)

. The elements of v,, are independent )

General observation model v, IS C{ften assumed
to be included in v,

Z=As+v




Spatial Correlation Matrix

 The spatial correlation matrix R = E[zz"] represents
the spatial characteristics of multi-channel signals z

= Fordirect sounds: R, = E[z.z] = AE[ss"]A" = AT A"
= For source signals: T = E[ss"]

. If sound signals are independent, I = diag(yy, -, yn)

. vi = E[S;(w)S; (w)] is the power of source i at frequency w
= Fornoise: K = E[vv"]

. If noise v is spatially white, K = oI

. o’ is the power of noise

[General observationmodel: Z = As + v }




Observation of Single Source

« The spectra of each source has a unique spatial property
= The spatial correlation matrix R is determined by the mixing matrix

OKterved data: z,(w) = [Z1(w), -, Zgy(w)]

ZSZ((‘))
W | L1 LI ]
Covariance matrix
_ H
— Eﬁ RS - E[ZSZS ]
X XX
X
x X%
X xXX
w | | | ] X
X X
Sourcen =1
m = 2 %;

4




Probabilistic Modeling

« Formulate a probabilistic model of z = As + v
= Deterministic signal model

p(v) = N(v|0,K) > Likelihood: p(z; ®) = N(z|As, K)

Linear transform _. o
7= As+p  [ind 0 ={4 s K}that maximizes p(z; @)

. A is determined by source directions {6, -, 0y}
= Random signal model I'is determined by source power {yy, -+, vy}
N
p(v) = N(v|0,K) > Likelihood: p(z; ®) = N(z|0,ATA" + K)

Linear transform =
p(s) = N(s|0,I") 7= As 4+ v Find ® = {4, T, K} that maximizes p(z; 0)

I = E[ss"] (= diag(yy, -, ¥n))

Bayesian treatment of 0 is feasible p(z|®)p(0)
by incorporating a prior p(0) p(0]z) = p(2)




Impulse Response




Impulse Response 2

« The impulse response is a signhal recorded by a microphone
when an impulse is emitted from a sound source

- The source signal is distorted by reflection, noise, and diffraction
= Impulse response (time domain) = Transfer function (freq. domain)
. Different rooms have different impulse responses

Impulse Impulse response

m 5(t) h() g ]r h(t)
T

| rd Voo
|

h(t) = h(t) *6(t)

\

c=—_




Basic Formulation

« Room acoustics are often represented as a linear system
= Source signal + Room acoustics + Additive noise — Observed signal

-

o

Impulse resp

N
h(t)

onse

S

Source signal

z(t) = h(t) *s(t) + v(t)

"

(t)

8

| S—

Additive noise

v(t)

x(t)

Observed signal




Convolution of Impulse Response

« Time-domain convolution < Frequency-domain product
= s(t): source signal — z(t): observed signal
= h(t): impulse response that characterizes the linear system

e - \
Continuous ;1) — h(¢) # s(¢) = j h(t — 1)s(z)dr
time domain — o0

Discrete 141 — p[e] « s[t z ht — 1]s
time domain

\_ . N == J

- n: time index N
Timedomain  z[n] = h[n] * s[n] = Z h|n —

m=0
Freq.domain  Z[k] = H[k] 'S[k]ﬁ k: frequency index]

\. J




Simulation of Room Acoustics

 Audio signals recorded in an arbitrary room can be
simulated by using the impulse response of the room

Source signal Impulse response Observed signal

Time-domain representation

s(t) k h(t) = z(t)
\_ Y, )
FFT< > . . < iFFT
Frequency-domain representation

S x Hw = Z()




Time Stretched Pulse

« The TSP can be easily emitted from a loudspeaker
= Frequency characteristics:
. The impulse contains all frequencies at a moment (huge power)
. The TSP contains a limited range of frequencies at a moment

= The impulse is recovered by convoluting two TSPs
Impulse Time stretched pulse Inverse TSP

6(t) TSP(t) iTSP(t)



Measurement of Impulse Response

« Convolute a TSP response with an inverse TSP

« The effects of TSP and iTSP are canceled out

>

>

>

»» 3

h(t) * TSP(E) * iTSP(E) = h(t)

X

h(t) = TSP(t)
Average
Impulse response

h(t) » TSP(t) iTSP(t)



Recording Setting

 Prepare devices required for recording TSPs

Loudspeaker and earplugs:
The TSPs are emitted multiple times

Microphone array:
The TSP is recorded by each microphone

Recording device:

All microphones are synchronized
IS



Recording Setting

« Mark the floor with a certain interval (5° or 10°)

Angle measurer:
Laser is emitted while rotating

Markers:
Stickers are on all directions
Two people:

Angle measurer control + Marking
IS



TSP Recording



Wiener Filtering



« Weaimtolearna

Wiener Filter

Ve

~\

inear filter that extracts signals of interest

K Desired Vi = wHuk k: time index
response
nout Output xl uuk
npu -1
p Vie| Error w=| 2 w, = k.
uy —_—> w _’ Ek . :
L Training data | Wk | Uk—K+1]
U [ 4] Wke—1 | _4 1| Yk-K+1
uy YA 2| Z Z
v v v
wi w3 FIR filter wi
4 @2 — Vi




Supervised Learning

 Estimate a linear filter wy that extracts y, from an observed
signal u;, such that y, is close to a given desired response d;

= Minimize error ¢, between desired response d,;, and filter output y,
Cost function

] = E|lex]?]
= E [(di — wwe) (di — w')" |

= E[dyd;;] — wiE[w,d;] — E|dw! |w + wiE |, |lw

=oi—whr,, —r w+wiR,w

Let the partial derivative be equal to zero
dJ
w* =Ty +RwW-0 R ,Wyr =Tyq WMF = R‘L_l,lrud
/\

[ Normal equation ]
IS




Time-domain Representation

« Wiener filter assumes that input u, is weakly stationary
- The mean and autocorrelation of u, are constant for any k
= Auto-correlation: r,,(n) = E[ujuj_,,|
= Cross-correlation: ry,(n) = E[d,u;,_,]

Correlation matrix (Toeplitz matrix)

R0  n(K—1D)] " 74(0)
R,=| RCD TRk D
n(1-K) - n(0) | Ty (K — 1)
Time-domain Wiener filter
wur = Ry wh R, =14, 2 wir,(n—i+1) = rdu(n)

n=0,-,K—1)




Frequency-domain Representation

« Wiener filter assumes that input u, is weakly stationary
- The mean and autocorrelation of u, are constant for any k
= Auto-correlation: r,,(n) = Elujuj_,]|
= Cross-correlation: g, (n) = E[d,u;,_,]

K 00
Z wir,(n—i+1) =r44,n) z wir,(n—i+1) =ryMm)
i=1 [=—o00
We assume that v, (input) = d;, (desired response) + v, (noise)
W(w)S,(w) = Sy, (w) Frequency-domain Wiener filer
Si(w)
S, (@) = Sy(w) + S, (w) W(w) = ——"

Sd ((‘)) + Sv((‘))
Sau(w) = Sq(w) <{ d, and v, are independent ]




Learning Methods

« Fixed filtering

- Estimate a Wiener filter from a finite amount of samples

*

Least square method (LS)

 Adaptive filtering
= Estimate a Wiener filter in an online manner

*

*

*

*

*

Steepest descent method

Newton’s method

Least mean square method (LMS)
Affine projection algorithm (APA)
Recursive least squares method (RLS)



Beamforming




Beamformer

« Extract signals of a particular direction from observations
= Assumption: array manifold vectors a,, --- a;, are known
_\\

(Depend on direction 9, ¢ and frequency w ]

Sound
Sound source 1
source 2
//
v /

/ Goal

ﬁi ﬁi ﬁ ﬁ ﬁi Design.afiltertha.tpasses

1 2 M only a signal coming from

Microphone array a particular direction




Basic Formulation

 Design filters passing signals of a particular direction
= z,(t): mt" observed signal  w,,(t): m*" filter
= y(t): output of beamformer

Time domain Frequency domain
z1(8) 1 w1(®) Zy(w) | Wi(w)
o— — WS
zy (1) ] wm(®) Zy(w) ] Wn (@)

M M
Y(E) = ) Win(0) * 2 () V(@)= ) Wi(@)Zn(®)
m=1 m=1




Basic Formulation B

 Design filters passing components of a particular direction
« Z.,(w): m" observed signal W, (w): m* filter
= Y (w): output of beamformer

Frequency domain Vectorial representation
Z1(w) *— Wi (w) Z1(w)] Wi (w)]
Zy(w) Wi (@) @ T 2O wiw) =| ")
Y(w ' '
: | Zy ()] Wy (w).

Zy (w)— Wy (w)

( )

Y(w) = w(w)z(w)

M
B . prd _/ \ﬁ
Y(w) = zl Win(w)Zp(w) [Estimated source] Observation
m=

\ J/




Filter Estimation

 Various methods have been proposed for filter estimation

Method Filter vector Beam/filter type
(steering vector) and assumptions
Delay-sum beamformer _a Beam (fixed filter)
(DS) W= dia a: known
Spatial Wiener filter _ p-1 Beam & null (adaptive filter)
(SWF) W=Rz Tz d: known
Maximum likelihood K 'la Beam & null (adaptive filter)
(ML) W= "ig-1g a, K: known
Minimum variance R 'a Beam & null (adaptive filter)
(MV) W=HRr 14 a: known
Generalized sidelobe ol 1ol Beam (fixed) & null (adaptive)
canceller (GSC) w = (B"RB)""B"Rw, a, K: known
Generalized eigenvalue — EGE-1 Beam & null (adaptive filter)
decomposition (GEVD) W= K: known




Delay-Sum Beamformer

 Take the average of delay-compensated observed signals

= The delays are determlned by a direction of beamforming
= Ly z(t+ 1)

Output

y(t)

Average

Z3 (t + T3)
Dela)/




Mathematical Formulation

« The filter vector w has a same direction as a

Observed Time-domain  Source signal of Wi (8) = 770+ )
signal filter a particular direction

zy(t) | wi(®)

zy(t) | W2(t) [~ y(t) = 2 Win (£) * 2 ()

y(t)
M
Fourier 2
M t+7
7 (t) Wy (t) transform o m( m)
Steering vector w' (w) = i[ejwﬁ eJ0T2 ... elwTu] [_Dg;amformer]
M ) ) )

e /n 1 a
Array manifold vector a(w) = : Wps =—a =——

e~ JOTY M a a ﬁ Normalize]




Performance Analysis

« Suppose that a beam with a “wrong” direction is used

= Source direction (6, ¢,)
. R Different!
= Steering-vector direction (6, ¢r)

( )

z(a)) = a(a))S(w) Y(w) = w(w)z(w)

A1 N e 2
Observatlon Source [Estimated source] Observation

\ J/

Y(w) = w(w)!a(w)S(w) = ¥Y(k w)S(w) 4 If (65, ¢5) = (Or, 1), Y (w) = S(w) ]

[ Time delay corresponding to direction (07, ¢7) J

Yk, w) = v Z exp(]a)r( )) exp(—jk'p,,) i Called a beam pattern )J

—1 (regarded as a function of (9;, ¢,)

Wavenumber-frequency response




Performance Analysis

 Analyze a beam pattern of a straight-shape array
= Suppose that the steering directionis 9; = 0

Array manifold vector

, M-1
am (W) = exp (_] ((m - 1) - T) kxdx)

Steering vector

k = [kx» ky» kz]

1

| . .
H = —[e/WT1 gJ0T2 ... QJOTM] = —[1 ... 1]
wh(w) = - [e/™, e, - efom] = 1, -, 1]
Beam pattern Y (Mk.d,
Wk w) = w _12 (¢ D M_lkd _1sm< 5 )
y0) =wi(w)a(w) =+ 1eXp j| (m > xlx | =77 sin(kxdx>
m= 2

7 Sum of geometric progression ]




Beam Pattern

 Visualize a beam pattern: 20logo|¥(k, w)]

Direction 0

90 0 —90
2T I : : 21
d, 0 d,
0 < Visible region Rk A
Grating Ipbe

Gain
[dB]

2T

Wavenumber k, [1/m]

If grating lobes are within A

the visible region, false
sources will be detected

in sound source localization
\_ J




Beam Pattern

« The microphone interval d, affects the beam pattern

0

2T
1 2

Wavenumber k., [1/m]

d, =21

0 . n Visible region
/\N\/\/\/\N\AN\/ \/\/\AMN\/\/\/\A -

/\/\/\/\/\/ \/\/\/\/\/\



Beam Pattern

« The aperture Md, affects the beam pattern

0

- ~ Visible region

/\/\/\A/\/\/\/\/\/\/\

T[

Wavenumber k., [1/m]




Geometry of Microphone Array

« The micinterval must be set for avoiding spatial aliasing

- Grafting lobes should be without the visible region 2, 4 1
4. "7 ==y
,  Period of beam pattern: 2—: o )
— a. < "4, Sampling theorem

iy

Zn Wavenumber

Visible region: 7 A ky [1/m]

BER

in spatial domain
C
d, < —

2f
l Mic interval

Sampling theorem

in time domain

1
T, < —

A~

Sampling interval




Spatial Wiener Filter

« Multichannel Wiener filter in the spatial domain

Time-domain Wiener filter

Input Output  y, = wlu,
u— > W >k

wyr = Rylrg R, = E[wuy|

Spatial-domain Wiener filter

Input Output Vi = WHZk
Zy > W /> Yk

WmMmr = Rz_lrzd R, = E[ZZH]

w = . u, =

Ty = Elugdy]

W = Zj =




Maximum-Likelihood Beamformer

« Maximize the likelihood for observed data z
Source signal = Observed signals

z(w) =a(w)S(w)+v(w) —> z=as+v

. . Limitation:
—
Observed signals — Source signal we need to estimate K

y(w) = w(w)z(w) —> y=wlz in advance

We assume v ~ N(v|0,K) K = E[vv']: correlation matrix of noise
l/ Linear transformation of v
z|s ~ N(z|as, K)
Log likelihood: log p(z|s) = —log|nK| — (z — as)"K~1(z — as)

al'K1z K la

dlo z|s
gp(zls) = ) W = 8

Hp—1
=a'K —a
as* (z )

Svp = ————
ML ™ qiK-1q



Practical Example

« Combine ML beamformer with voice activity detection
- Estimate an array manifold vector a for voiced regions
- Estimate a spatial correlation matrix K for unvoiced (noise) regions

—>{ Human tracking a
Camera ~ Voiced Filter update
Integrated VAD K 'la
- Unvoiced WML = k14
Sound source
. K
localization !
N
s e e B B e - Output
199¢9¢9%¢ I

Microphone array




Minimum-Variance Beamformer

 Minimize the output power |y|?
= The spatial correlation matrix of noise K is not required
= Constraint: wa =1

- Average output power: E||y|?| = E [|w z| ] wiE[zzH]w = w! Rw

Cost function with a Lagrange multiplier 4:

] = w'Rw + 2Re (/1*(an — 1))

oF wiRw + 2*(aflw — 1)+A(wfla — 1)
-=Rw+la—->0 w" =—-)R 1la

Noise correlation matrix K
is replaced with observed

ow correlation matrix R
. l R la K la
A= —(aHR 1a) MV™ allR-1q WML = k14



Spatial Spectrum

« We are interested in the power of a signal
coming from a steering-vector direction 6;

Beamformer: y(6;) = w(07)z

Spatial spectrum ]
Average output power:

P(6r) = E[ly(6n)I*] = w!(6r)E[22" 1w (67) = w" (6:)Rw(61)

Examples:
_a P (6) = a’(9) a(6) a (O)Ra(6)
WDs = Gfiq DSV T al(@)a(o)  af(0)a(d)  |af(0)a(6)|?
R 'a a’(@)R™! R 'a(6) 1

ww = gigig ™) = G RTae) R @R Ta@) ~ @ @)Ra(e)



Spatial Spectrum

« MV gives better spatial resolution than DS
= MV has a similar property to MUSIC method (explained later)

P(6) [dB]| DS/500 Hz MV/500 Hz

P(6) [dB]| DS/3000 Hz MV/3000 Hz ,

VA

Direction Direction
IS




Multiple Signal Classification
(MUSIC)



Subspace Methods

- Represent an observed vector z € C* in another space

Frequency-domain method Eigenspace method
Fourier transform Karhunen-Loeéve transform —— pCA
y=Fz y = Efz /7
Invserse Fourier transform Karhunen-Loéve expansion/
z=Fly z = Ey
F is a discrete transform E =[eq e, -, ey]isasetof
matrix eigenvectors of R = E[zz"]

N\ A =diag(Aq,-, Ay) is a set of

B
Figenvalue decomposition the corresponding eigenvalues
. Rei = Aiei )
( 2 The average power of
Spectral decomposition the i*" principal component
R = EAE" ) Ellyil®] = Elel'zz"e;] = ei'Re; = 4,

\
IS



Case 1: No Noise

 Observed signal = Sum of direct signals
= Suppose thatv = 0 and M > N (#microphones > #sources)

Observation model: z = As I = E[ss"]
N
z R = E[zz"] = E[Ass" A"] = AT A"
Z = a;s;
=1 rank(4) =rank(l’) = N — rank(R) =N
Eigenvalue decomposition: R = EME"
EigenvalueS:M = diag(ul,-",uM) Uy = > Uy > 0, UN+1 = = Uy = 0
Eigenvectors: E = {e{, -, ey} el'Re; = y;

Orthogonal
H ° .
eRe, = e’ ATA"e; = (AHei) F(AHel-) _ relationships

Ale, =0y (N<i<M) —> aje,=0(1<j<NN<i<M)




Signal and Noise Subspaces

« Orthogonal-complementary subspaces of 4
= Column space: R(A4) = span(aq, -+, ay) — Signal subspace

- Left nullspace: N(A") = span(ey,1, -, ey) = Noise subspace

z=As u;: the power of signal SJ
Eigenvalue decomposition in the i**subspace

R = E[ZZH] — [31;32;"';eM]diag(#sz; '“;HM)[BLBZ;'”;GM]H

Span(eb Y eN) — Span(eN-l-ll Y eM)-L
Orthogonal bases

Result of the previous slide

aje;=0(1<j<NN<i<M)

Span(al, cee, aN) = Span(eN+1, e, eM)J'

Identical




Case 2: White Noise

« Observed signal = Sum of direct signals + White noise
= Supposethatv =v,and M > N

Observation model: z = As + v,, T = E[ss"] ¢%I = E[v,v]

N
R = E[zz"] = ATA" + o°1I
zZ = Z Qa;s; + Dy

=1 rank(4) = rank(I') =N — rank(R) =N
Eigenvalue decomposition: R = EAE"

Eigenvalues: A= diag(/'ll, ,AM) A=M+ O'ZI ﬁ No-noise case + 21 ]
Eigenvectors: E = {ey, -, ey} el'Re; =

Orthogonal
H . .
B{IRBL- — e{'I(AFAH + O'Zl)ei — (AHel-) I‘(AHei) + g2 relationships

Afle, =0y (N<i<M) — ae,=0(1<j<NN<i<M)




Signal and Noise Subspaces

« Orthogonal-complementary subspaces of 4
= Column space: R(A4) = span(aq, -+, ay) — Signal subspace

- Left nullspace: N(A") = span(ey,1, -, ey) = Noise subspace
A;: the sum of the power of signal sJ

z=As+v
w and noise v,, in the i*subspace

Eigenvalue decomposition

R - E[ZZH] — [ely 32;”';3M]diag(/11;/12:""AM)[ely eZI”'IeM]H

Span(eb Y eN) — Span(eN-l-ll Y eM)-L
Orthogonal bases

Result of the previous slide

aje;=0(1<j<NN<i<M)

Span(al, cee, aN) = Span(eN+1, e, eM)J'

Identical




Case 3: Colored Noise

 Observed signal = Sum of direct signals + Colored noise
- Supposethatv =v.and M > N [ Non-diagonal matrix |

L

Observationmodel: z=As + v, T =E[ss?] K = E[vv!]

N

R = E[zz"] = ATA" + K
zZ = z Qa;s; + V.
=1 rank(4) =rank(l’) = N — rank(R) =N
Generalized eigenvalue decomp. of R Eigenvalue decomp. of ® " Rop !
4 ) 4 )
Re; = 1;Ke; (@~"R1)f; = Aif
Eigenvalues: A = {14, -, Ay} Eigenvalues: A = {14, -, Ay}
Eigenvectors: E = {e{,-:-, e Eigenvectors: F = {f{, -,
S g {e1 M} ) % g v ful )

PP =K f, = e rank(®7R®~1) =N




Signal and Noise Subspaces

 Orthogonal-complementary subspacesof A T = E[ss"]

No-noise case White noise Colored noise
zZ=As z=As+v, z = As + v,
Signal Noise Signal Noise Signal Noise
power power power power power power
Signal subspace 2 v
(1<i<N) Ui 0 Ui o Hi 1
Noise subspace 2
e 0 0 0 o 0 1
E[zz"](= R) ArAf ATA" + o1 ATA" + 62K
E[vv"] 0 | K=o"d
Eigenvalue _ H _ H ~-H -1 _ FAFH
decomposition R = EME R = EAE @ "RP - = FAF




MUSIC

 Adaptive beamforming based on subspace analysis
= Separate signal and nose components into different subspaces
= Calculate spatial spectrum Pysc(6)
la(8)||* _ a"(8)a(6)
?LN+1|“H(9)31'|2 a’(6)E,Efla(6)
E, = [eyi1,, ey]: a set of eigenvectors corresponding noise subspaces
a(6): array manifold vector (6: assumed source direction)

If & matches a true source direction (a(8) = a,),
k H(Q)En =0 /.e., PMUS(H) = 0O

Signal and noise subspaces are orthogonal

Pyys(8) =




Methods

« Orthogonal-complementary subspaces of 4

I = E[ss"]

SEVD-MUSIC GEVD-MUSIC GSVD-MUSIC
z=As+v, zZ=As + v, z = As + v,
Signal Noise Signal Noise Signal Noise
power power power power power power
Signal subspace 2 v v
(1<i<N) Ui o Hi 1 Hi 1
Noise subspace 2
e 0 Y 0 1 0 1
E[zz"](= R) ATAY + 0?1 ATA" + %K ATA" + 62K
E[vv"] | K=o"d K = Uy
Eigenvalue . H _H 1 _ H 1 _H
decomposition R = EAE O "RP " = FAF K "R=UAV




Spatial Spectrum

« Compare MUSIC methods in a simulated environment
= Assume an observation model:z =z, + v, + v,,

Pyys(8)
[dB]

. Directsignal: z;, = a;s; (direction 0°)
. Colored noise: v, = afs$ (direction 60°)

; ESEVD-MUSIC

GEVD-MUSIC

Eigenvalues A

SEVD-MUSIC

|

GEVD-MUSIC

[Colored noise

e 00 0

0° 60°

|

)

[Colored noise]

-

0° 60° Direction 9




Spatial Spectrum

« Compare MUSIC methods in a real environment
= Assume an observation model:z =z, + v, + v,,

, , o SEVD-MUSIC
. Directsignal: z;, = a;s; (direction 0°)
. Colored noise: v, = ajs{ (direction 60°) GEVD-MUSIC

Eigenvalues A

Pyys(6) [ SEVD-MUSIC
|dB]

GEVD-MUSIC

i i
[ Colored noise ]I [ Colored noise ]I
0° 60° 0° 60° Direction 0



Integration Over All Frequencies

 Take the average of spatial spectra over all frequencies
= Frequency weights g are determined according to an application

P(Q,wz)

J\/\,

%

Source direction

Ny
1

P(O) =— > BiP(6,w)
=1

Example: g, = [Z1L; 4;(w))]"
A;: sum of eigenvalues of signal subspace




Sound Source Localization



MUSIC with Adaptive Noise Estimation

Work well in a
severely noisy environment

Quadrocopter with 16 mics

audio signal audio signal
x(6) x(t = 1)

Frequency Frequency
analysis analysis
[ X(w) [N ()
Correlation | | Noise correlation
matrix matrix
R =Xxx" K = NNH
I R [ K
Generalized SingularValue
Decomposition
K~ 'R = E_ AEg
|E=[ell"'] _180'0 -
Spatial spectrum g 000 - -
|[GAHEGW)| § oofm
P(ll)) = H g -90.0 - =
216G em| -
-180.0
\ i P(w) / o 50 Frlaorge 150 200
Ground truth SEVD-MUSIC iGSVD-MUSIC

SSL with iGSVD-MUSIC with adaptive noise estimation




Independent Component Analysis



Blind Source Separation

« BSS is a mathematically ill-defined problem

= We cannot uniquely determine source signals
if neither prior knowledge nor constraints are taken into account

« Focus on some properties of audio signals
= Acoustic characteristics
. Speech: voice timbres, accent, intonation, ...
. Musical instruments: pitches, timbres, rhythms, repetitions, ...
= Spatial characteristics
. Source direction (angle and elevation)

Linear methods: beamformer, independent component analysis (ICA)
Nonlinear methods: time-frequency masking




Goal

« We aim to sound source separation and localization
= Input: xq, x5, -+, xy Output: yi,y5,+, vy (= 51,52, *, Syy)
. Mixing process: sources sy, s, -+, sy — observations zq, z,, -+, zy
. Two settings: 4 is given (non-blind) <> A is not given (blind)

Eﬁ%m

Input Output




Beamforming vs. Blind Source Separation

Beamforming Blind source separation
Transfer functions Required Not necessary
Performance Low High
Can be suppressed Included

Reverberation to some extent in separated signals

Permutation problem

Issues .
Scaling problem

Beamformer

Blind source separation




Basic Formulation

« Formulate a mixing process in the frequency domain

= N sound sources are observed by M microphones ﬁM — Nis assumed]
N
z=As=zaiSl- y=Wz=WAs ifw=A4"1y=~s

i=1
Mixing system: z = As Separating process:y = Wz

N\

—_—

Source signals Observed signals Separated signals




Principle Component Analysis

« Linearly transform an observed space into a latent space

z > y=Wz >y

Observed vector . Output vector
W= [WlJ Wy, -, WM]

First eigenvector e; of RZJ girst principal componentJ

Estimate w, such that the variance of y;, = w!’z is maximized

E[|Y1|2] = wiE[zz"lw; = Wi R;w; lw.]| =1

Cost function: ] = wR,w; + 1, (1 — wiw,)
a/

*
ow;

= RZW1 — /11W1 -0 E[|)’1|2] = Wll_Iszl = ).Wll-lwl = /11
A\

[ A1 is the maximum eigenvalue & w; is the corresponding eigenvector ]




Principle Component Analysis

- The dimensions of a latent space should be orthogonal
Second eigenvector e, of RJ @ond principal componentj

Estimate w, such that the variance of y, = w¥ z is maximized

E[lyzlz] = WIZ_IE[ZZH]WZ = WIZ-IR2W2 ”W2” =1 &Wll_IWZ =0

Third eigenvector e; of RZJ ghird principal component J

Estimate w such that the variance of y; = w¥ z is maximized

Elly;|?| = wiE[zz/lw; = wiRyws  lwsl =1 &w; Lw, L w;
Eigenvalue decomposition Eigenvectors: E = [eq, -, ey]
R, = E[zz"] Eigenvalues: A = [A, -, Ay ]

PCA:y = E"z  PCA with dimensionality reduction: y = E¥, z




Whitening

 Perform linear transform y = Wz such that E[yy"] = 0
= Input space: E[zz"] = R, = Output space: E[yy"] =1

E[yy"] = E[Wzz"W"] = WE[zz"\]W! = WR,W"

1 1 1 1 1
If W=A2E", E[yy"] =A2E'R,EA2=A"2AA2=1

| Scaling || Transforml Eigenvalue decomposition: R, = EAE"

5 Observed space y Latent space discovered by PCA
2 2
z y = Wpcaz

Wz

<
I

e
/\ 2 Variances along axes
| Orthogonal

eq are normalized

Al Y1




PCA and ICA

« PCA achieves second-order decorrelation
= The dimensions of a latent space are diagonal

. . . Sufficient
« |CA achieves higher-order decorrelation condition
= The dimensions of a latent space are independent
[}’1] _ Y11 W12] [Z1] _ n
v2l T lwyr wppllz,] = Wi1A1 T W22
Observed space Latent space discovered by PCA Latent space discovered by ICA
z Yy = Wpcaz y =Wz

PCA axes




PCA and ICA

« PCA can be used as preprocessing of ICA
= ICA filter W, becomes unitary after performing PCA

z | ¥ =Wpcpz >y
Observed vector Output vector

The requirement of PCA: E[yy"] = Wy E[zz" W, =1
If we multiply any unitary matrix U” (U7U = I, Wpcpy « UTWpep)
y=U"Wpepz —> E[yy"] = U'WpepElzz" |Wlc,U = UU =1
Latent space discovered by PCA Latent space discovered by ICA

UH
y' = Wpcpz > y =U"y




Cost Function

- Make the dimensions of a latent spaces independent
= Minimize the KL divergence between p(y) and [T, p(v))

. If the dimensions of y are independent, p(y) = [T p(»)
. We aim to make p(y) as close to [T p(y;) as possible

N
Dk | p(¥) - pO) p(¥) log p(y) dy
i=1 Lip()

fp(y) logp(y) dy+2fp(yl)logp(yl)dyl

—H(y)+zH(yl
y =Wz —> H(y) = H(z) + log |det(W)|]
N

D, = —H(2) — logldet(W)| - )" E[logp(y)]
i=1




Natural Gradient Algorithm

« Minimize the cost function by using a gradient method

Cost function

Dy, = —H(2) — logldet(W)| - Z Ellogp(y)]
i=1

N
d _ _|0logp(y) 0y
awij;E[logp(yi)]—E[ 3y, aw] El[-o)z]

Score function

pd

/

dlogp(y;)
Gradient P = — ay.
aaDvI:/L — W 1 Elp(2"] = (1 - Elpm)y )W o) =lp), 9 W]

Natural gradient Updating formula
dD
avlt{/L wiW = (I - E[e(y)y")W [ Wt =W, + (I — ElpO)y W, ]




Score Functions

 Adistribution of source signal s ~ y is required

p(¥) 162
: 1 v1*\ | |o y
Gaussian Nor exp <— ﬁ) P
0 0
. 1
Hyperbolic 7 0 tanh ( Y )
cosine T cosh? o2
0 0
. 1 |y 0 1 1y
Laplacian 5o CXP (— 7) = sgn(y) = "
0




Non-Gaussianity

« |CA assumes sound sources are NOT Gaussian distributed
= The Gaussian distribution cannot be used as p(y) in ICA

Score function: @ (y) = [o(1), -+, ¢ (yp)]"
Updating formula: W, = W, + n(I — E[e(y)y )W,

. y 1 1
Gaussiancase  @(y) =~ Ele(y)y"] = ;E[yyH] =—Ry

— The updating formula is depend on only second-order statistics
— |CA reduces to PCA

1 y;
Laplacian case N = _
Y o) T

— Widely used for modeling speech and music signals




Maximum-Likelihood Estimation

« Estimate W such that p(Z|W) is maximized
|ICA formulation: y = Wz

Independence of ICA outputs: p(y) = ﬂpl(yl) —

— p(z) = |det(W)|p(y)
Z =[zq,---,2zx¢] z,:0bservation attime k

Y =[yy, -, ¥kl yi: ICAoutputattimek

K N
S pEw) =] [ideeami | [piouo <
k=1 i=1

dp(Z|W)

The same updating J
ow

= (1 — E[(p(y)yH])W—H -0 4 formulate is derived




Fast ICA

» |CA variant with a constraint Wil ,Wcp = 1
- PCAis used as preprocessing

- Fewer iterations are required for convergence

[Restricted to be unitaryJ

Cost function VAR N

Dy, = —H(z) — log|det(W)| — z Ellogp(y))]l = —H(z) — 1 — z Ellogp(y;)]
i=1 i=1

4 ~N - ~ -

Optimization problem Minimize
S / 1
mv}nz E[G(y)] subjectto wHw =1 <[ 60w =~ logp(y)

- =1\ Y,

N\
[ We have to design G (y;) such that G(y;,) = —logp(y;) = —logp(s;) ]




Learning Algorithm

 Choice of function G (y,)

ly;|%+a

Example: generalized Laplacian: p(y;) « exp (— ) [Sawada 2004]

G (y;) Vi
G) =VIyl?+a gl) = 5 = -
Vi 2\/ |yl| + «

_0g(yy) 1 1 |yl?

g 0) = dy; 2 |y + a(l 20y l2 4+ “)
« Updating formula of W

y=WZ W = [Wl,Wz,"',WM]

T

Update afilter: w « E[g(y)z] — E[g (v)|wn,
. . 1 > Iterate until convergence
Unitarize afilter: p w(wHw) 2




Problems

« Permutation ambiguity
= The dimension order of Y cannot be determined uniquely
« Amplitude ambiguity
= The dimension amplitude of Y cannot be determined uniquely
Y(0) = W(w)Z()
Z(w) -y Y(w)

.E?_— [ \

Eg |  § Z((U’) I Y((,U’)
i , Ny
<t Y(w) =Ww)Z(w)




Solutions

 Solve permutation ambiguity
= Focusony
. Temporal power envelopes
 FocusonWw
. Directional patters of W
. Relative delay times from sources to microphones
+ Column vectors of W1
 Solve amplitude ambiquity
= Recover observed signals
. Use the invserse of W for filtering each y,
z; = W—l[(), .+,0,v;,0, -+, ()]T



Nonlinear Time-Frequency Masking



Observation of Single Source

« The spectra of each source has a unique spatial property

= The spectra are assumed to be Gaussian distributed

Observed data: x.¢ = [x:f1, X¢r2, -, Xefm]

Channelm =2

Sourcen =1

| mm |
X
t %x X

X
% X X

x*  x

X X
| mm| |

Channelm =1




Observation of Single Source

« The spectra of each source has a unique spatial property
= The spectra are assumed to be Gaussian distributed
Observed data: x.s = [x:f1, X¢f2, ) Xefm]

Channelm =2
Sourcen =2




Observation of Multiple Sources

- The observed scatter plot is a mixture of spatial properties
Assume that source spectra are sparse (disjoint with each other)
Observed data: x.s = [x:f1, X¢f2, ) Xefm]

Channelm =2
Sourcen =2

| I | LIL] | ]

f
é{?

—

=1

m=2 %3 Sourcen =1




Time-Frequency Clustering

« Classify each frequency bin into one of sound sources
- z,s = k indicates (time t, frequency f) is classified into source k

= Hg,: spatial correlation matrix for frequency f and direction d

dq d, Observation model [Duong 2010]

d3 O, (Atfodztf)_l )

xtf ~ NC <xtf

[ Source direction of time t and frequency f ]

Bayesian formulation [Otsuka 2014]

—1
Hfd ~ VVC ((afda?d + EI) ,VO)
/\
d; [Array manifold vector for frequency f and direction d]




Nonparametric Bayesian Extension

 Automatically estimate the number of sound sources
= Assume that infinitely many sound sources exist in theory

Channelm =2

nelm=1

Observation model [Duong 2010]

Xep ~ N (xtf

0,

{ Source direction of time t and frequency fj

Hierarchical Dirichlet process prior (k — )

[Otsuka 2014]

s ~ HDP(«, v, B)

Concentration
parameters

4

\

T _
Tk Sparse
learning
Base
measure |_|
I_"_II_I (XY} >
Source k

zs ~ Categorical(1.f)




Advantages

« Simultaneous localization and separation
= Improved performance of each task
. Integration based on a probabilistic model
= Automatic estimation of the number of sound sources
. Nonparametric Bayesian formulation
= Solving permutation problems
. All frequency bins are simultaneously analyzed
« Various extensions feasible

= Simultaneous dereverberation, localization, and separation [0Otsuka
2014]

= Analyzing moving sound sources [Otsuka 2014]
= Real-time online inference (future work)



Assignment

 Questions

= Explain delay-sum (DS) and minimum-variance (MV) beamforming
methods using equations and why MV is better than DS.

= Describe the relationships (differences) between PCA and ICA and
how to estimate the parameters.

= Report how microphone array processing is used in practice.
« How to submit

= Submit a PDF file to “Assignment (Yoshii)” on PandA.

= Deadline: 2018/01/30 23:59
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