Audio Media Processing

Graduate School of Informatics
Kyoto University
Kazuyoshi Yoshii
yoshii@kuis.kyoto-u.ac.jp

Audio Media Processing

Statistical machine learning Bayesian theory, deep neural network, optimization Computational auditory model Symbol Signal processing processing Phrasal, syntactic, topical analysis

Keyword: Listen to Sound

- Listen to "speech"
 - Prince-Shotoku robot
 - Simultaneous speech recognition
 - Microphone-array processing
 - Sound source separation and dereverberation
- Listen to "music"
 - Music understanding and performance
 - Sound source separation and music transcription
 - Co-playing and accompaniment
- Listen to "environmental sounds"
 - Object detection in a disaster environment
 - Analysis of frog calling

Listen to Speech

Shotoku-Taishi (Prince Shotoku)

 Legendary person who can recognize simultaneous utterances of ten persons

Simultaneous Speech Recognition

Closeness between speakers

- Isolated word → Continuous speech
- Evaluation using three robots in a large room

Can many-ears robots go beyond humans?

Simultaneous Speech Recognition

 \sim Meal Order Taking \sim

16ch microphone-array processing • Sound directions are given

Microphone Array Processing

 Separate mixture signals into <u>unknown</u> number of sound sources with <u>unknown</u> reverberation time

Bayesian Unified Formulation

- A modern principled approach to the conventional eggand-chicken problem
 - C.f. Errors are propagated in a cascade framework (localization → separation → dereverberation)

Localization + Separation + Dereverberation

Without dereverberation

With dereverberation

Application to Real Environment

Separate overlapping utterances in a noisy environment

Clock-tower international hall

Microphone array

Observed mixture signal

Separated signals

Background noise

Utterances

Listen to Music

Music Co-playing with Humans

- Real-time score-position tracking
 - Listen to partner's playing by using own ears

Lyric-to-Audio Synchronization

Efficient navigation to a section of interest

Music Understanding

- Parts-based representation of music
 - Combinations of "pitches" and "timbres"

Music Signal Decomposition

Timbre-based audio source separation

Replacement of Drum Parts

Edit only drum parts in mixture signals

Drumix: An audio player with a function for re-arranging drum parts in real time

> Kazuyoshi Yoshii Masataka Goto Kazunori Komatani Tetsuya Ogata Hiroshi G. Okuno

Replacement of Guitar Solo

Edit only a guitar part while preserving original timbres

Timbre and Effect Estimation

Preserve timbers and reverberation of original guitar solo

Songle: Active Music listening Service

 We can enjoy automatically estimated, visualized, and sonificated musical elements of songs on the Web

A New Form of Outreach Activity

- We can amplify user contributions by using machinelearning techniques
 - Corrections by some users → Retraining → Accuracy improvement
 - → Reward to all users

Listen to Environmental Sounds

Give Ears to Flying/Snake Robots

Robot audition could help in disaster

Active Scope Camera

Audition in Flying Robots

• Use a microphone array for localization

Visualization of Frog Calling

Discriminate calling of two kinds of frogs

Visualization of Bird Singing

Separation and localization in a park

Figure 5: HARK を用いた野鳥の歌の音源定位の例.

Reiji Suzuki@Nagoya Univ.

Robot Audition

Why Robot Audition?

Conventional problem: We need to speak around microphones

Why?

The microphones inevitably catch noise sound with target utterances

Our approach: We aim to separate and recognize sounds

Sound Source Localization (SSL)

Sound Source Separation (SSS)

Computational Auditory Scene Analysis (CASA)

Robot Audition for MC Robots

- Robot MCs need to interact with multiple people
 - Use an open-source robot audition software "HARK"
 developed by Honda Research Institute Japan and Kyoto University
 - HATTACK 25: Speech-based quiz game

Inspired by the well-known quiz game in Japan

A player position can be identified by his or her voice

Demo: HATTACK25

- Players can barge in when the robot is talking about questions
 - To answer, players have to say "yes!" first
 - Impossible for standard dialogue systems

Players

Panel

Robot Audition for Flying Robots

 Localize source sources on the ground by using flying robots with microphones

Robot audition is disturbed by self-generating noise

Video of the flying robot

- 1. Learn self-generating noise (with Gaussian Process)
- 2. Suppress noise from input

Robot Audition for Rescue Robot

 Estimate robot shapes and detect sound sources in collapsed buildings

How to estimate microphone positions on the robot?

→ Statistical signal processing techniques

We designed a <u>state space model of robot posture</u> and estimated the posture by measuring <u>TDOA</u> of sounds

Time Difference of Arrival

Posture Estimation for a Hose-shaped Robot

Accurately estimate shapes even when obstacles exist

Keyword: Listen to Sound

- Listen to "speech"
 - Prince-Shotoku robot
 - Simultaneous speech recognition
 - Microphone-array processing
 - Sound source separation and dereverberation
- Listen to "music"
 - Music understanding and performance
 - Sound source separation and music transcription
 - Co-playing and accompaniment
- Listen to "environmental sounds"
 - Object detection in a disaster environment
 - Analysis of frog calling