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ABSTRACT
This paper describes a template-matching-based system,
called AdaMast, that detects onset times of the bass drum,
snare drum, and hi-hat cymbals in polyphonic audio sig-
nals of popular songs. AdaMast uses the power spectro-
grams of the drum sounds as templates. However, there
are two main problems in transcribing drum sounds in the
presence of other sounds. The first problem is that ac-
tual drum-sound spectrograms cannot be prepared as tem-
plates beforehand for each song. The second problem is
that power spectrograms of sound mixtures including the
drum sound are greatly different from the template (pure
drum-sound spectrogram). To solve the first problem, a
template-adaptation algorithm is built into AdaMast. To
solve the second problem, a distance measure used in the
template matching is designed to be robust to the spec-
tral overlapping of other sounds. The test results in Audio
Drum Detection Contest were 72.8%, 70.2%, and 57.4%
in transcribing the bass drums, snare drums, and hi-hat
cymbals, respectively, and AdaMast won the contest.

Keywords: Drum sound recognition, spectrogram tem-
plate, template adaptation, template matching.

1 INTRODUCTION
From the viewpoint of the methodology, drum transcrip-
tion methods are roughly categorized into three types:
feature-based classification methods, sound source sepa-
ration methods, and template-based detection methods. In
addition, those methods can be also categorized by focus-
ing on the complexity of input audio signals: solo tones,
drum tracks, or musical pieces such as popular songs.

Feature-based classification methods use acoustic fea-
ture models trained with database. Herrera et al. (2002)
compared conventional classifiers in the experiments of
identifying solo drum sounds. To transcribe drum sounds
in drums-only audio signals, the use of N-grams (Paulus
and Klapuri (2003a)), probabilistic models (Paulus and
Klapuri (2003b)), or HMM&SVM (Gillet and Richard
(2004)) was proposed. To identify drum sounds extracted
from polyphonic audio signals, Van Steelant et al. (2004)
reported on the effectiveness of SVM. Sandvold et al.
(2004) proposed a feature-model adaptation method that
is robust to the distortion of features since the feature dis-
tortion caused by other sounds is a main problem.

Sound source separation methods, which are com-
monly used, originated from the spectrogram decomposi-
tion formulation in ISA (Independent Subspace Analysis,
Casey and Westner (2000)). To transcribe drum sounds
in audio signals of drum tracks, various assumptions are
made in decomposing a single music spectrogram into
multiple spectrograms of drum instruments; ISA (FitzGer-
ald et al. (2002); Uhle et al. (2003)) assumes the statisti-
cal independence of sources, NMF (Non-negative Matrix
Factorization, Paulus and Klapuri (2005)) assumes their
non-negativity, and sparse coding (Virtanen (2003)) as-
sumes their non-negativity and sparseness. Further devel-
opments were made by FitzGerald et al. (2003b,a). They
proposed PSA (Prior Subspace Analysis, FitzGerald et al.
(2003b)), which assumes the prior frequency character-
istics of drum sounds, and applied it to transcribe drum
sounds in the presence of harmonic sounds (FitzGerald
et al. (2003a)). For the same purpose, Dittmar and Uhle
(Dittmar and Uhle (2004)) adopted non-negative ICA that
considers the non-negativity of sources. To attain good
separation results, it is necessary to estimate the number
of sources, but it is difficult to precisely estimate it in gen-
eral. In addition, it is also necessary to identify the drum-
instrument label of each separated signal or spectrogram
and detect the onset times of the target drum sound.

Template-based detection methods are based on a typ-
ical pattern recognition approach — the distance between
a template and an input pattern is calculated. Goto and
Muraoka (1994) proposed a template-matching method
that used spectrogram templates, and transcribe drum
sounds in drum-track audio signals consisting of drums
only. Gouyon et al. (2000) proposed a method that clas-
sifies mixed sounds extracted from polyphonic audio sig-
nals into two categories (bass and snare drums). To de-
tect those drum sounds to be classified, they proposed
a template-adaptation method using waveform templates.
It can deal with drum-sound variations found in musical
pieces. Zils et al. (2002) extended Gouyon’s method, and
tried the extraction of bass and snare drum sounds from
CD recordings. In general, it is difficult to deal with the
difference between a template and an actual pattern used
in a musical piece. To deal with this difference in the time-
frequency space and achieve more robust performance,
AdaMast (Yoshii et al. (2004, 2005)) was developed by
integrating Goto’s matching method and Zils’ adaptation
method.
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Figure 1: Overview of template-adaptation method.

2 ARCHITECTURE
AdaMast is a template-based drum sound recognition sys-
tem. We briefly describe the recognition algorithms of it,
and explain our system-design policy.

2.1 Algorithms

AdaMast is composed of successive template-adaptation
and template-matching parts. They use the power spec-
trograms of the drums as templates. Detailed explana-
tion of the core algorithms is described in our previous
paper (Yoshii et al. (2004)). Further extensions (e.g., au-
tomatic thresholding, harmonic-structure suppression) are
described in another paper (Yoshii et al. (2005)).

2.1.1 Template Adaptation

The purpose of the adaptation method is to construct a
spectrogram template that is adapted to its correspond-
ing drum-sound spectrogram in the polyphonic audio sig-
nal of a target musical piece. Before starting the adap-
tation, we prepare power-spectrogram templates (we call
seed templates) for the bass drum, snare drum, and hi-hat
cymbals, respectively; three templates in total. To analyze
audio signals sampled at 44.1 [kHz], we used short-time
Fourier transform (STFT) with a Hanning window (4096
points) with a shifting interval of 441 points. The time-
length of the templates is set to 10 [frames]. To adapt the
seed templates to the actual drum-sound spectrograms, we
extended Zils’ adaptation method (Zils et al. (2002)) to the
time-frequency domain.

Our method is based on an iterative adaptation algo-
rithm. An overview is shown in Figure 1. First, onset-
candidate detection stage roughly detects onset candidates
in the input audio signal of a musical piece. Starting from
each onset candidate, a spectrogram segment with a fixed
time length is extracted from the power spectrogram of the
input audio signal. Then, using the seed template and all
the spectrogram segments, the iterative algorithm succes-
sively applies segment selection and template updating to
obtain an adapted template.
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Figure 2: Filter functions FBD, FSD, and FHH represent typ-
ical frequency characteristics of bass drums, snare drums,
and hi-hat cymbals.
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Figure 3: Template updating by collecting median power
at each frame and each frequency bin for selected spectro-
gram segments.

Let Ti (i = 1 · · ·ND) denote a frame detected as an
onset candidate and Pi denote a spectrogram segment ex-
tracted from Ti (ND is the number of detected onset can-
didates). These selection and updating work as follows:

1. Segment selection calculates the reliability Ri that
spectrogram segment Pi includes the drum sound
spectrogram. The reliability is defined as the recip-
rocal of the Euclidean spectral distance:

Ri =
1√∑10

t=1

∑2048
f=1

(
T́g(t, f) − Ṕi(t, f)

)2
, (1)

where Tg is the template after the g-th adaptive iter-
ation. In practice, we used a modified version of this
measure. T́g and Ṕi are low-pass/high-pass filtered
spectrograms:

T́g(t, f) = FD(f) Tg(t, f), (2)

Ṕi(t, f) = FD(f) Pi(t, f), (3)

where FD(f) ({D|BD, SD, HH}) is a low-pass or high-
pass filter function, as shown in Figure 2. We assume
that it represents the typical frequency characteris-
tics of bass drum sounds (BD), snare drum sounds
(SD), and hi-hat cymbal sounds (HH). Spectrogram
segments with high reliabilities are then selected; this
selection is based on a fixed ratio to the total number
of segments.

2. Template updating then reconstructs an updated tem-
plate by estimating the power that is defined, at each
time and each frequency bin, as the median power
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Figure 4: Overview of template-matching method.

among the selected spectrogram segments (Figure 3).
The median operation can suppress harmonic com-
ponents in the updated template. The template is thus
adapted to the current piece and used for the next
adaptive iteration. The updated template, T́g+1, is
weighted by filter function FD and is obtained by

T́g+1(t, f) = median
1≤i≤NS

Ṕ (i)(t, f), (4)

where P (i) (i = 1, · · · , NS) are the spectrogram seg-
ments selected by segment selection. NS is the num-
ber of selected spectrogram segments, which is em-
pirically set to 0.1 × ND in transcribing any drum.

2.1.2 Template Matching

This method detects all the onset times of the drum sounds
in the polyphonic audio signal, even if other musical in-
strument sounds overlap the drum sounds. To find the
actual onset times, this method determines whether the
drum sound actually occurs at each onset candidate time,
as shown in Figure 4. The matching distance is cal-
culated using Goto’s distance measure (Goto and Mu-
raoka (1994)). Since this method focuses on whether the
adapted template is included in a spectrogram segment,
it can calculate an appropriate distance even if the drum
sound is overlapped by other musical instrument sounds.

1. Weight-function preparation generates a function
that represents the spectral saliency of each fre-
quency component in the adapted template. This
function is used for selecting characteristic frequency
bins. The weight function w is defined as

w(t, f) = FD(f) TA(t, f), (5)

where TA is the adapted template and FD is the filter
function.

2. Power adjustment calculates the power difference be-
tween the template and each spectrogram segment by
focusing on the characteristic frequency bins. If the
power difference is larger than a threshold, it judges
that the drum sound spectrogram does not appear in
that segment and does not execute the subsequent
processing. Otherwise, the power of that segment is
adjusted to compensate for the power difference. Let
P ′

i be a power-adjusted spectrogram segment.

3. Distance calculation calculates the spectral distance
between adapted template TA and each P ′

i . If
P ′

i (t, f) is larger than TA(t, f), Goto’s distance mea-
sure regards P ′

i (t, f) as a mixture of frequency com-
ponents not only of the drum sounds but also of other
musical instrument sounds. In other words, if we de-
termine that P ′

i (t, f) includes TA(t, f), then the local
distance at frame t and frequency bin f is minimized.
Therefore, the local distance is defined as

γi(t, f) =
{ 0 if (P ′

i (t, f) − TA(t, f) ≥ Ψ) ,
1 otherwise, (6)

where Ψ is a negative constant, which is set to −12.5
[dB] in this paper.
Total distance Γi is calculated by integrating local
distance γi in the time-frequency domain, weighted
by w:

Γi =
10∑

t=1

2048∑
f=1

w(t, f) γi(t, f). (7)

To determine whether the target drum sound oc-
curred at a time corresponding to spectrum segment
P ′

i , distance Γi is compared with threshold ΘΓ. If
Γi < ΘΓ, we conclude that the target drum sound
occurred. The ΘΓ is automatically determined using
Otsu’s thresholding algorithm Otsu (1979).

2.2 Design Policy

We use two different distance measures between the tem-
plate adaptation and matching methods. In the adapta-
tion method, it is desirable to detect only semi-pure drum
sounds that have little overlap with other sounds. Those
drum sounds tend to result in a good adapted template that
includes few frequency components of other sounds. Be-
cause it is not necessary to detect all the onset times of the
target drum sounds, the distance measure does not need
to consider spectral overlapping of other sounds. In the
matching method, on the other hand, we used Goto’s dis-
tance measure because it is necessary to exhaustively de-
tect all the onset times even if the target drum sounds are
overlapped by other sounds.

3 EVALUATION
To fairly evaluate multiple drum-sound transcription algo-
rithms and compare their results, Audio Drum Detection
Contest was held as a track of MIREX2005.

3.1 Conditions

The drum types to be transcribed are the bass drum (BD),
snare drum (SD), and hi-hat cymbals (HH). The test set
was consisted of 30-[s] fragments and entire musical per-
formances which were sampled from many genres. A rep-
resentative random subset (20% of all available files) of
the data was available to all participants in advance of the
evaluation. Participants should only use the data made
available to all participants by the organizers. To evaluate
results, F-measure (harmonic mean of the recall and preci-
sion rates) was calculated for each of three drum types, re-
sulting in three F-measure scores and their average score.



Table 1: Evaluation results (F-measures and runtime).
Participant Total BD SD HH Runtime*
Yoshii, K. 0.670 0.728 0.702 0.574 8534 [s]
Tanghe, K. 0.611 0.688 0.555 0.601 1337 [s]
Dittmar. C. 0.588 0.606 0.581 0.585 673 [s]
Paulus, J. 0.499 0.527 0.430 0.587 1137 [s]
Gillet, O. 0.443 0.598 0.428 0.334 21248 [s]
*We cannot directly compare the runtime because differ-
ent machines with different OSs and CPUs were used.

Table 2: Feature-based classification methods.
Participant Feature sets Compression Decision
Tanghe, K. MFCC etc. - SVM
Dittmar. C. Band energy etc. LDA kNN
Paulus, J. MFCC etc. PCA HMM
Gillet, O. MFCC etc. - SVM

3.2 Observation

The test results are shown in Table 1. AdaMast yielded the
best total score and became a winner of this-year’s contest.
Although the runtime of AdaMast is comparatively long,
AdaMast is fast enough to complete the processing within
the playing time of the target signal. It is interesting that
only AdaMast is based on a template-matching method,
which uses drum-sound spectrograms as templates.

On the contrast, the four systems other than AdaMast
use feature-based classification methods. Table 2 shows
an overview of these systems. The features they used are
similar to those proposed by Herrera et al. (2002). In gen-
eral, LDA is more suitable than PCA to compress the fea-
ture dimension for the purpose of improving the classi-
fication capability. Since Tanghe’s and Gillet’s systems
use SVM, the compression is not necessary. To extract
quasi (semi-pure) drum-sound spectrograms, Dittmar’s
system used non-negative ICA and a method motivated by
our template-updating concept, and Gillet’s system used
noise-space-projection method. Among these four sys-
tems, Tanghe’s one yielded the best score. Although the
high generalization capability of SVM can be effectively
utilized by extracting many kinds of features, there still
remains the generalization limitation.

In our observation, we think the existence of an adap-
tation mechanism is more critical than the methodological
difference. If the template-adaptation part of AdaMast is
disabled, the results will become much worse. The top
three systems in Table 2 do not have adaptation mecha-
nisms of general feature models. Sandvold et al. (2004)
reported on the large improvement of the performance by
using localized feature models. However, to create the
reliable localized models, they used correct drum-type la-
bels. In other words, a criterion for evaluating the relia-
bility of each onset from a different viewpoint is needed.
A solution of this difficult problem is included in future
work. In addition, it is necessary to address musical pieces
which do not include the sounds of all the drum types.
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