‘oward low-latency and accurate
simultaneous interpretations from speech

Hirofumi Inaguma
Ph.D. candidate, Kyoto University, Japan
12/09/2020

Agenda

€ Streaming end-to-end automatic speech recognition (ASR)
* Monotonic chunkwise attention (MoChA) [chiu+ 2018
* How to reduce latency with alignment information?

* Where to apply? (encoder/decoder)
» Minimum Latency Training Strategies for Streaming Sequence-to-Sequence ASR [ICASSP 2020]

e Leverage CTC alignment (hybrid ASR-free)
» CTC-synchronous Training for Monotonic Attention Model [Iinterspeech2020]

€ Non-autoregressive end-to-end speech translation: A first study
e Conditional masked language model (CMLM) [Ghazvininejad+ 2019]

* How to estimate target lengths from speech directly?
» Orthros: Non-autoregressive End-to-end Speech Translation with Dual-decoder [under review]

Background: Hybrid ASR system

* Traditional approach (still dominant in production system)

Acoustic model (AM) Language model (LM)
P(x|y)|P(y)
P(y|x) :‘—ILI

P(x)

* Inference
y =arg max P(y

y
= arg max P(x

X)
y)P(y)

y

y (word)-> p (pronounce)-> s (HMM state)

@ Rare words, low-resource, module update (customization)

© Expertized knowledge

Yy = (ylr""yU)
(reference)

Y (prediction)

0 p— m<—> :|||9

>
o)

% q
=

I

~

=

-

=

~

—/

Background: End-to-end ASR system

* Learn a direct mapping function @ (x) to maximize P(y|x)

@ Quick development, scalability

@ Rare words, low-resource, customization

& Time-synchronous model (|x| = |y|)
* Connectionist temporal classification (CTC) [Graves+ 2006]

* RNN-Transducer (RNN-T) [Graves+2013]

* Recurrent neural aligner (RNA) (sak+2017]

RNN-T

Joint network

/\

Prediction Encoder
network T

t
W

History

Encoder-decoder

@ Label-synchronous model (|x| # |y])

e Attention-based RNN encoder-decoder [Bahdanau+ 2016]

e Transformer [Vaswani+ 2017]

0\
CTC
= Decoder
Encoder Encoder
1 1

Wi Wi

Streaming ASR

* Transcribe speech before a speaker finalizes their turn

e Applications
v'Live captioning
v'Dialogue system
v'Simultaneous translation

* RNN-T is dominant in the industry
@ Stable inference thanks to frame-wise prediction

Memory-consuming training (-> small mini-batch size)
v Distributed training (a log of GPUs)
v Efficient implementation (not publicly available in general)
v Small vocabulary size etc. are required

Large search space due to frame-wise predictions (slow inference)

Challenges in label-synchronous streaming ASR

* Why label-sync. models instead of RNN-T?
»Small memory consumption
»Small search space (fast inference)

* Challenges in label-sync. streaming models

1. Need to modify the decoding scheme

»The whole encoder outputs are required to generate the first token in
general seg2seq models

2. Poor performance for long-form speech
» Exposure bias (not occur in frame-synchronous models such as RNN-T)

Streaming attention-based encoder-decoder models

Learn when to generate the next token (segment audio) on the encoder side

/ Flexible audio segmentation policy \
@ Triggered attention [Moritz+ 2018]
Global attention over past encoder outputs truncated by CTC spikes

€ Adaptive computation steps (ACS) [Li+ 2018]
Learn how many tokens to generate with encoder outputs (halting mechanism)

€ Continuous Integrate-and-Fire (CIF) [Dong+ 2019]
Fine-grained version of ACS

Simple framework
e Good results

e Efficient training
 Linear time inference

Fixed audio segmentation policy
@ Neural Transducer [Jailty+ 2015]
Attention mechanism for a fixed size of block

(

U N—
O
Learn when to generate the next token (segment audio) on the decoder side And more...
. . . _ * Windowing approaches
€ Monotonic chunkwise attention (MoChA) [Raffel+ 2017], [Chiu+ 2018] + Incremental decoding

Learn to detect token boundaries via stochastic binary decision * Reinforcement learning

~

MoChA (test time) (chius 2018 [@ e, - 1

Q : Not attend (z; j = 0)
\ % %

O
@ Not differentiable
N

e.g., w = 4 (chunk size: 4)

:81,:
,82,: -
>
o
=1
23'3’8 hj: encoder state
' s;: decoder state
e ;= MonotonicEnergy(h-, S-)
Encoder outputs h = (hq,...,hy) W v/ 7
. . pij = o(e; ;) (selection probability)
1. Hard monotonic attention [raffel+ 2017): Whether to attend or not _
z; j~Bernoulli(p; ;)

2. Chunkwise attention: soft attention over a small window of size w

4)
O : Attend at (i — 1)-th step

MoChA (training time) ichiu+ 2018)

Marginalize O : Not attend

A

O Q b Q Q Q\ Q O KO:Attendati-thstep /

| CoEEEREo ¢

Output y

@ @ O0O0O0O0O O R
OO0 0O OO sy e
: puz<al 1k1_[(1 pll)>

Encoder outputs h = (h4, ..., ht) b
Calculate expected oo
alignments a Can be implemented i,j—1
efficiently in parallel with j B (1 o pi,j—l) Pij-1 + ®i-1,j

Lookahead latency and accuracy trade-off in streaming ASR

e Future information (lookahead) is very important to improve accuracy

 Large lookahead leads to large algorithmic latency
» Can be controlled on demand

WER vs. latency on TEDLIUM2

WER

Lookahead frame [ms]

10

Delayed token generation problem

REF: add an event for dinner tomorrow at seven thirty p m

Goal
Minimize perceived latency
while keeping accuracy

Output labels (<)

g & 8

100
Time [frame]

e Decision boundaries () are delayed from the corresponding acoustic boundary
1. Unidirectional encoder (lacking the future information)
2. Sequence-level criterion (utilizing as many future frames as possible to maximize the log-likelihood)

* Increase user perceived latency
» Similar behaviors have been reported in CTC [sak+2015] and RNN-T [Li+ 2019]

11

Proposed methods

* Leverage external frame-level alignments extracted from the hybrid

ASR system

* Investigate where to apply alignment information to streaming
encoder-decoder model

»Encoder side
1. Multi-task learning with frame-wise CE
2. Pre-training with frame-wise CE

» Decoder side
3. Delay constrained training (DeCoT)
4. Minimum latency training (MinLT)

12

Overview

/ Marginalize \

A
OO O O

Alignment ;_4

Output y

O : Attend (a;—4 ;)
~ O : Not attend
K Encoder outputs h O :attend (a)

P e e e e e e e e e e e e e e e e e i T T T T T i e e e

/! Leverage hard alignments on the encoder side

* Multi-task w/ framewise CE (MTL-CE)
* Pre-training w/ framewise CE (PT-CE)

e e e e e e e e e e e e e e e e e e e E e e e e E e e e e e E e e e e e E e e e e e M e e e e e M e e e e e E e e e e e E e e e e e E e e e e e e e e e e

Leveraging word alignments extracted from the hybrid system

Leverage hard alignments on the decoder side ™

S2S CE loss Lgag

Expected latency loss LyiinLT

A

Linear 1

Encoder

* Minimum latency training (MinLT)

* Delay constrained training (DeCoT)

Frame CE
layer

\
1
1
1
}
1
1
[}
1
1
}
1
1
[}
1
1
}
1
1
[}
1
1

~

DI ——— - = e = e e = e e e e e e e e e e e e e e e e e = e —-—————

Word alignments

The acoustic model
in the hybrid system

13

1. Multi-task learning w/ framewise CE (MTL-CE)

Train both branches
from scratch

@ Objective function

o O

Liotal = (1 — Acp)Ls2s(Yx) + AcgLce(A]x) (0 < Acg < 1)
MoChA Frame CE

* Motivation: align encoder outputs to the true acoustic location

Inference
@ Insert linear bottleneck layers !
* Inspired by the CTC acoustic model [vu+ 2018] MoChA Frame CE
decoder layer

MoChA Frame CE
decoder layer
Encoder

Encoder

14

2. Pre-training with framewise CE (PT-CE)

& 2-staged training

* Motivation

»Start training from well-aligned encoder representations

» Do not have to tune the framewise CE weight A¢cg
* No linear bottleneck layers

—————
-

- ~~

7 Frame CE || | MoChA
layer ; \| decoder
/ %
/ y ‘ O \
Encoder 2 O
Initialized with
Stage-1

\~__———‘

random values

O

Ke)

15

Overview

/ Marginalize \

A
OO O O

Alignment ;_4

O : Attend (a;_1,5)
- O : Not attend
K Encoder outputs h O :attend (a)

P e e e e e e e e e e e e e e e e e i T T T T T i e e e

/! Leverage hard alignments on the encoder side

* Multi-task w/ framewise CE (MTL-CE)
* Pre-training w/ framewise CE (PT-CE)

- = = = e = e = = e = e e e e e e e e e e e e e e e e e

Leverage hard alignments on the decoder side ™

S2S CE loss Lgag

Expected latency loss LyiinLT

decoder .

DI ——— - - -

Linear 1 Linear 2

* Minimum latency training (MinLT)

\
1
1
1
}
1
1
[}
1
1
}
1
1
[}
1
1
}
1
1
[}
1
1

Delay constrained training (DeCoT)

~

- = = = e e e e e e e e e e e e e —-—————

Word alignments

Frame CE
layer

\/

Encoder

The acoustic model
! in the hybrid system

e M e e Em e E e mm e e Em e e e e e M e e m e E e e e e e M e e e M e e e e e mm e M e e e e e e e e e

16

3. Delay constrained training (DeCoT)

Marginalize

() @ O : Not attend
emove
O O O O O o O . Attend at i-th step

OQO

O : Attend at (i — 1)-th step

O O |
O 0000000
O 0000000

N
5
Q
5

O

Decayed quickly
because));a; < 1

b;: gold boundary

f

Encoder outputs h = (hq, ..., hy) Qi
@ = Pij (1- pi,j—l)p"—_ +aj—qj | G <Db;+9)
* Remove inappropriate paths whose boundaries surpass the actual b L1
: : 0 (otherwise)
acoustic boundary more than a fixed acceptable latency & [frames] \

17

3. Delay constrained training (DeCoT)

Quantity regularization
* Add a regularization term to keep Z]- a;;j =1
e Originally proposed in CIF [pong+ 2019] with a different motivation

U: the number of tokens in the reference
U T
LQUA — |U — Z a; j | (quantity |OSS)
—

=1 j=1

Liotal = Ls2s + Aqualqua (Aqua = 0)

18

4. Minimum latency training (MinLT)

@ Objective function
* Directly minimize the expected latency LyinLT
Expected boundary

u T
1
LMinLT = Ez |Zjai,j — b;| (b;: reference boundary for i-th token)
i=1 j=1

Liotal = Ls2s + AMinLTLMinLT (AMinLT = 0)

* Motivation: reduce latency more flexibly
» DeCoT assumes the fixed latency for each token

¥ Related work

e Latency loss has been investigated in simultaneous NMT [Arivazhagan+ 2019]
* Non-silence frames are not distributed uniformly over the input speech in ASR

19

Experimental condition

Train: Microsoft Cortana voice assistant (3.4k hours)
Data Validation: Sampled disjoint 4k utterances form the training set
Test: 5.6k utterances

Feature 80-dim log-mel fbank (3 frames stacked, 30ms per frame)

Output unit Mixed units (34k)

Offline: 512-dim (per direction) 6-layer BiGRU encoder
Architecture Streaming: 1024-dim 6-layer GRU encoder
Decoder: 512-dim 2-layer GRU

Optimization Adam

Decoding Beam width: 8, no LM

* Word-level alignments-> subword-level alignments
* Divide duration per word by the ratio of the character length of each subword

* Warm start training
e Start DeCoT and MinLT from the baseline MoChA to stabilize training

20

Evaluation metric: Token emission latency

* Averaged time difference between a predicted boundary I;Z\‘ and the gold
boundary b}

Corpus-level latency (averaged per token)

N |y¥|

1 —
Acorpus = ©n K E § (blk — bZ{)
k=1 |y |

k=1i=1

e Report 50-th (TEL@50) and 90-th percentile (TEL@90)

* Perform teacher-forcing when calculating latency to match the sequence lengths

21

Results: Alignments on the encoder side

Corpus-level latency [ms] ({)

WER [%] ({)

TEL@50 TEL@90
Baseline MoChA 9.93 =™y 300 "™\ 642
+ MTL-CE (Acg = 0.1) 10.21 5.6j 240 40%\ 583
+ MTL-CE (Acg = 0.3) 10.48 180 / 591
+ MTL-CE (Acg = 0.5) 11.11 150 637
+ PT-CE 12.74 210 687

* MTL-CE reduced latency in proportion to Acg while degrading WER slightly
* PT-CE also reduced latency but degraded WER too much

e Contrastive results to previous works using CTC + framewise CE objective
» MoChA is a label-synchronous model
» Frame-wise CE on the encoder is not compatible with label-wise CE on the decoder

22

Results: Alignments on the decoder side

Corpus-level latency [ms] ({)

WER [%] ({)

TEL@50 TEL@90

Global attention (offline) 8.44 N/A N/A
Baseline MoChA 9.93 300 642
+ DeCoT (6 = 4, 120ms) 20.25 30 287
+ DeCoT (6 = 8, 240ms) 14.35 150 210
+ DeCoT (6 = 12, 360ms) 114077 210 298 "4
+ DeCoT (8 = 16, 480ms) 9.13 240 “0% 352
+ DeCoT (8 = 24, 720ms) 8.87 270 434
+ DeCoT (& = 32, 960ms) 9.17 300 497
+ MinLT 9.70 180 319

+ DeCoT (6 = 16) 12.75 120 239

» DeCoT: large WER reduction and moderate latency reduction (tail part)
 MinLT: small WER reduction and large latency reduction (entire)

* Combination of DeCoT and MinLT reduced latency further, but degraded WER too much

Alignment visualization

" REF: add an event for dinner tomorrow at seven thirty p m
a = = . . .

an

event
for
dinner

~* Predicted boundary

tomorrow
at

seven
thirty

Output labels (<)

an
event

for

dinner
tomorrow
at

seven
thirty

Output labels («)

]

Time [frame]

Baseline MoChA

DeCoT (6 = 16)

24

Summary: alignment information from hybrid ASR

* Alignment information is beneficial when applying it
on the decoder side

@ This is NOT purely end-to-end

* Can we remove the dependency to hybrid ASR system
for alignment extraction?

»CTC alignment

25

-

Optimization problem R o
bij-1 S Ai—-1,j
bij = U(el,])

1. Yjea;j = 1isnot satisfied during training -

* a;; is NOT globally normalized over the whole encoder outputs {hj}j=1,

» a; j is not a valid probability distribution
» a; j attenuates quickly during marginalization
» Selection probability p; ; is not learnt well
* Enlarge the mismatch between training and test time

2. Alignment errors are propagated to later token generation
* a;;j depends on past alignments

* Backward algorithm cannot be used for @; ; Problematic for long and
» a; ; is not a valid probability distribution noisy speech utterances

» Autoregressive decoder

* Model needs to learn (1) a proper scale of a; j and (2) accurate decision
boundaries (j s.t.a; ; = 1) at the same time

Related work: Joint CTC-attention im+ 2017

e Auxiliary CTC loss encourages the monotonicity between input and

output alignments

Objective function of encoder-decoder model

Lsys = —logP(ylx) = — XL, logP (y;|y<i, x)

Multitask learning with CTC objective

Liotal = (1 - ACtC)LSZS + AcecLete (0 < Acte < 1)

CTC loss

%
[’SZS I
2
|

y (reference)

Y (prediction)

S2S decoder

CTC layer

\/

Encoder

t

W X

27

Comparison of boundary positions: CTC vs. MoChA

«,f,:z_‘ |)" . - . — Predicted boundary

Baseline

Decision boundaries of MoChA ghif‘t
to the right side (future) from the
corresponding CTC spikes T

Proposed

-

e (CTC assumes conditional independence
» Robust to past alighments
e CTC |leverages the backward algorithm as well
k » CTCis more accurate than MoChA in terms of alignments

28

Proposed method: CTC-synchronous training (CTC-ST)

* Leverage CTC’s posterior spikes as reference boundaries for MoChA

* MoChA is trained to mimic the CTC model to generate the similar decision
boundaries

Objectlve function CTC boundary Expected MoChA boundary
U T
1 ctc .
Lsync =52|bi _ZJai,jl
i=1 j=1

U
Important regularization
Lquale_zzai,jl _
: for baseline model

Liotal = (1 - Actc)Lmocha + ActeLete + Aquanua + Asyncl:sync (Async = 0)

* Unless otherwise noted, Aqua is set to O when using CTC-ST 2

Extraction of CTC alignments

* Encoder network is shared between both branches
* Both branches are jointly optimized
e CTC alignments are extracted via forced alignment over the transcription

CTC paths
—
- 0-0-0-0-O- O0000O0
. 000000 = 000000
- 000000 000000
2+ om 00000
— -000000 00000 O
Most probable CTC path i@ re00000 - @\;8\3;8
T =[-CC—AAA—TT—]
MoChA decoder CTC layer Forced alignments w/ the forward-
backward algorithm
\/ (on-the-fly alignment generation
Use the leftmost index Encoder w/ current parameters)
t

#=[-C——A———T —< eos >] i

Curriculum learning strategy

* Applying CTC-ST from scratch is inefficient because Z]T-=1 a;; < 1in
the early training stage
» Difficult to estimate the expected boundaries Z]T-zljai,j accurately
» Propose curriculum learning strategy composed of two stages

p
Stage-1 (expected to learn a proper scale of «;)

* Train BLSTM encoder + MoChA with quantity regularization until convergence

"

Stage-2 (expected to learn boundary location)

* |nitialize with model parameters in stage-1
* Train latency-controlled BLSTM (LC-BLSTM) encoder + MoChA with CTC-ST

NOTE: When using the unidirectional LSTM encoder, the same encoder is used in both stages

31

Combination with SpecAugment

SpecAugment [park+ 2019]
* On-the-fly data augmentation method over input log-mel filterbank features

e Zero out successive frames in time and frequency bins

Recap
dij-1
a;j=(1-pij-1) — + a1

Problem of SpecAugment for MoChA ij-1

* Recurrency of a; j can be easily collapsed after the masked region

* The naive MoChA did not obtain any gains with SpecAugment

* CTC can estimate boundaries accurately even right after the masked region thanks
to the conditional independence assumption per frame

e CTC-ST is expected to improve the effectiveness of SpecAugment for MoChA

32

Experimental condition

Corpus
Feature

Output unit

Architecture

Optimization

Loss weight

Decoding

TEDLUM?2 (210h, lecture), Librispeech (960h, read)

80-dim log-mel fhank

BPE10k units

Offline:

4-layer CNN -> 512-dim (per direction) 5-layer BLSTM encoder
Streaming:

4-layer CNN -> 512-dim 5-layer LC-BLSTM encoder or

4-layer CNN -> 1024-dim 5-layer unidirectional LSTM encoder

Decoder: 1024-dim 1-layer LSTM
w: 4 (window size for chunkwise attention in MoChA)

Adam

Acte = 0.3, Aqua = 1.0, Agync = 1.0

Beam width: 10, shallow fusion with external 4-layers of LSTM-LM

33

Main results: TEDLIUM?2 (210h)

Latency-controlled BLSTM
LC-BLSTM-N,;+ N,

hop size |ookahead frame

(ms) (ms)

Dzz.z%(t)

INnit

D 12.0% (1)

D 13.9% (1)

D 12.3% (1)

Model WER [%]
BLSTM - Global attention (T1) 9.5
. BLSTM - MoChA 12.6
Offline _ o
+ Quantity regularization (T2) 9.8
/ + CTC-ST 10.2
jalization | UnILSTM - MoChA 150
) Initialization
+ CTC-ST 13.2
/| LC-BLSTM-40+20 - MoChA 12.2
Streaming + CTCT-ST 10.5
< LC-BLSTM-40+40 - MoChA (T5) 11.3
+ CTC-ST (T6) 9.9
\| + Quantity regularization 10.1

* Combination of CTC-ST and quantity regularization was not effective

» CTC-ST has a similar effect to improve the scale of a;;

e Curriculum learning was effective

Results of curriculum learning Quantity

regularization

Liotal = (1 - Actc)Lmocha + ActcLete + Aquanua + AsyncLsync

CTC-ST

Quantity CTC-ST WER [%]
regularization

LC-BLSTM-40+40 - MoChA v - 12.3
(from scratch) _ v 10.9
16.9
LC-BLSTM-40+40 - MoChA v - 11.3
(from BLSTM - MoChA)) v 99
v v 10.1

* Seeding by BLSTM- MoChA was effective

e Combination of CTC-ST and quantity regularization was not effective
» CTC-ST has a similar effect to improve the scale of a;;

e Curriculum learning was effective
» Quantity regularization (stage-1)-> CTC-ST (stage-2)

35

Results with SpecAugment r«

w_l

Maximum frequency mask size T Maximum time mask size

Model F T WER [%]
Transformer [Karita+ 2019] 30 40 8.1
BLSTM - Global attention [zeyer+ 2019] N/A N/A 8.8
Offline
- - 9.5
BLSTM - Global attention
27 100 8.1
- - 11.3
LC-BLSTM-40-+40 - MoChA 27 100 12.8
(seed: BLSTM - MoChA) 27 50 11.0
, 13 50 11.2
Streaming
- - 9.9
27 100 9.0 13.1% (1)
+ CTC-ST
27 50 8.6
13 50 9.0

* MoChA did not benefit from SpecAugment w/o CTC-ST

e CTC-ST was robust to the input mask size

* Achieved the comparable performance to the offline model (8.1 vs. 8.6) 36

WER vs. input sequence length

351 —e— BLSTM - Global attention (T1)
—e— BLSTM - MoChA (T2)

—e— LC-BLSTM - MoChA (T5)
—e— + CTC-ST (T6)

301

251

20

WER

151

10

5 10 15 20
Input length [sec.]

 CTC-ST improved WER for long-form utterances

25

30

37

Results on Librispeech (960h)

) 8.3/4.7% (1)

j> 11.3/6.2% (1)

10.2/18.7% (1)

\
o+

WER [%]
Test-clean Test-other
BLSTM - global attention 3.1 9.5
+ SpecAugment (F = 27, T = 100) 2.8 7.6
Offline
BLSTM - MoChA 3.6 10.5
+ Quantity regularization (T2) 3.3 10.0
f UniLSTM - MoChA 5.3 14.5
+ CTC-ST D nitatization 4.7 13.6
Initialization\ + SpecAugment 4.2 11.2
LC-BLSTM-40+40 - MoChA 4.1 11.2
+ SpecAugment (F = 13,T = 50) 4.0 9.5
Streaming + SpecAugment (F = 27, T = 50) 4.8 9.3
+ SpecAugment (F = 27,T = 100) 5.0 9.7
< + CTC-ST 3.9 11.2
+ SpecAugment (F = 13,T = 50) 3.6 9.4
+ SpecAugment (F = 27, T = 50) 3.5 9.1
+ SpecAugment (F = 27, T = 100) 3.6 9.2

38

Comparison with previous works on Librispeech

WER [%]
Test-clean Test-other
LSTM - MoChA + MWER [Kim+ 2019] 5.6 15.6
LSTM - MoChA + {BPE, char}-CTC + SpecAugment [Garg+ 2019] 4.4 15.2
LSTM - MoChA + CTC-ST + SpecAugment (ours) 4.2 11.2
LC-BLSTM - sMoChA [Miao+ 2019] 6.0 16.7
LC-BLSTM - MTA [Miao+ 2020] 4.2 12.3
LC-BLSTM - MoChA + CTC-ST (ours) 3.9 11.2
+ SpecAugment 3.5 9.1

39

Hybrid ASR alignment vs. CTC alignment (TEDLIUM?2)

T SpecAugment is used

Corpus-level latency [ms] ({)

Alignment WER [%] ({)
TEL@50 TEL@90
- UniLSTM MoChA 15.0 280 680
+ CTC-ST 13.2 160 360
CTC

+ CTC-ST 7 11.6 200 360
+ DeCoT (6 = 12, 480ms) T 11.2 200 320
+ DeCoT (6 = 16, 640ms) t 11.0 280 440
Hybrid ASR | + DeCoT (6 = 20, 800ms) T 11.3 240 400
+ DeCoT (8 = 24, 960ms) t 11.7 280 480
+ MinLT t 11.7 240 360

e CTC-ST not only improves WER but also reduces token emission latency

e CTC-ST is as good as DeCoT/MIinLT for latency reduction w/o external alignment

Hybrid ASR alignment vs. CTC alignment (Librispeech)

T SpecAugment is used

. WER [%] (1) Corpus-level latency [ms] ({)
Alignment
test-clean test-other TEL@50 TEL@90
- UniLSTM MoChA 5.3 14.5 360 560
+ CTC-ST 4.7 13.6 240 400
CTC
+ CTC-ST T 4.2 11.2 280 400
+ DeCoT (6 = 16, 640ms) T 4.3 11.5 320 440
Hybrid ASR
+ MinlLT T 4.7 11.8 320 480

* When training data is large, CTC alignment is very accurate and reliable

41

Non-autoregressive
End-to-end Speech Translation

Background: End-to-end speech translation (E2E-ST)

Target translation
Pros. t
 Simplified architecture Heet
_ _ Translation decoder
e Avoid error propagation from ASR module
* Low-latency inference I
* Endangered language documentation

Cons. I
e Lack of supervised training data Bl ey

Source speech

Speech encoder

* Most previous works focused on improving translation quality

e E2E-ST is conceptually suitable for fast decoding than cascaded systems
»However, such evaluation has not been investigated so far

43

Low-latency E2E-ST

Low-latency /
inference \

Simultaneous, streaming

Decoding speed-up, offline
(this work)

44

Autoregressive (AR) sequence generation

€ Notation
* X = (x4, ..., xy) (input speech) “oprb-poes English speech
* Y = (yq,...,yy) (target translation) Danke (German)

® SIré¢ SIc STC ; : _
Y>" =1 - Yn,,) (source transcription) Thank you (english)
@ Autoregressive decoder

»Decompose a probability distribution of Y given X into a chain of conditional
probabilities from left to right

N
PIX) = | | PuOily<s X)
i=1

» Optimized with cross-entropy loss L = —logP,+(Y|X)
» Finish decoding after generating <eos>

45

Non-autoregressive (NAR) sequence generation

¥ \Vlotivation

* AR left-to-right decoding still suffers from slow inference

* Incremental decoding does not enjoy the computational power of GPU/TPU
» Toward parallel sequence generation

& Non-autoregressive decoder jcus 2018
» Assume conditional independence among output tokens

N
POIX) = | | Prar i)
=1

» Predict target length in advance
e.g., Fertility model, linear classifier etc.

46

https://arxiv.org/abs/1711.02281

Modeling choice of NAR decoding

Single forward pass model (faster but less accurate)

Naive model Latent variable model Alignment model
NAT [Gu+ 2018] * FlowSeq [Ma+2019] e CTC [Libovicky+ 2018]

NAT-REG [Wang+ 2019] * Delta posterior [Shu+2020] e CRF [Sun+2019]
bag-of-ngram loss [Shao+ 2020]

Iterative refinement model (more accurate at the cost of speed)

/ Insertion-based model \ / Mask-based model \
* Levenshtein Transformer [Gu+ 2019] « Conditional masked language model (CMLM)
* Insertion-deletion Transformer [Ruis+ 2019] [Ghazvininejad+ 2019]
e KERMIT [Chan+ 2019] * Semi-autoregressive training (SMART) [Ghazvininejad+ 2020]
v InDIGO [Gu+ 2019] J e Aligned XE [Ghazvininejad+ 2020]
- S * Disentangled Context Transformer [Kasai+ 2020]
Energy-based model * Imputer [Saharia+ 2020]

| L+ ENGINE o200 A // i

https://arxiv.org/abs/1909.02480
https://arxiv.org/abs/1908.07181
https://arxiv.org/abs/1811.04719
https://arxiv.org/abs/1910.11555
https://arxiv.org/abs/1905.11006
https://arxiv.org/abs/2001.05540
https://arxiv.org/abs/1906.01604
https://arxiv.org/abs/1902.01370
https://arxiv.org/abs/1904.09324
https://arxiv.org/abs/2001.08785
https://arxiv.org/abs/2004.01655
https://arxiv.org/abs/2001.05136
https://arxiv.org/abs/2004.07437
https://arxiv.org/abs/1711.02281
https://arxiv.org/abs/1902.10245
https://arxiv.org/abs/1911.09320
https://arxiv.org/abs/2005.00850

Modeling choice in E2E-ST

* Single-pass model requires a copy of encoder output to initialize decoder input
@ Non-silence speech frames are NOT uniformly distributed over input speech

& Using intermediate prediction from ASR sub-module (e.g., CTC) contradicts the motivation to
alleviate error propagation by E2E modeling

* |terative refinement model can flexibly trade quality and latency during inference
by changing the number of iterations

e Want to keep trainability with auxiliary tasks (ASR/MT)

» Encoder-decoder architecture

We focus on conditional masked language model (CMLM) [Ghazvininejad+ 2019]
v’ Easy implementation
v Good translation performance

48

Proposed framework: Orthros

& Challenge: target length prediction from speech
* Flexible sequence length: pause, speaking rate, language etc.
* |X| > |Y| even after downsampling
* Rescoring multiple candidates from NAR model with separate AR model?

» Extra computation for speech encoding by AR model is not negligible Candidate
/\ selection
NAR decoder AR decoder
@ Proposed framework: Orthros \Emoder/
» AR and NAR decoders on the shared speech encoder i
» Unified architecture, trainable in an end-to-end fashion W\

»Select the most probable candidate from NAR decoder by scores from AR
decoder (AR decoder can generate scores in parallel)

49

System overview: Orthros

o

Autoregressive (AR) decoder]

Length estimation

{ CTC-based ASR] [Length]
predictor

~_ =

Candidate selection

N
ELLEHECHEEEEEE

1

Softmax

Feed Forward X Ngec

Multi-Head Encoder-Decoder Attention

e —_=

[Self-Attention layers]
X Nepc [CNN layers]
\ 1 J
Speech encoder

W

ﬂ

Multi-Head Self-Attention

Y- £ r 4 4 4 [| 1 AY Y N\ N\

(5]) G () G o) () () o) (o) () () o)

Non-autoregressive (NAR) decoder

—

50

CMLM: inference

‘ MaSk'prediCt algorithm [Ghazvininejad+ 2019]
* Alternate two operations (mask, predict) for a constant number of iterations T

. Yégsk c Y& 1D (masked tokens at t-th iteration, 1 <t < T)
. Y(t) =yt \ Yrggsk observed tokens at t-th iteration)
* |nitialize Yo(bg with [MASK]
1. Mask operation Predicted target length
* Mask out k; tokens having the lowest confidence scores ({A r-t
2. Predict operation
* Take the most probable token at every masked position i and update yl.(t) « yi(t_l)
yl.(t) = argmax P mim (Wl|YO({’;)S, X)
wWiEV
P < Pemim (17500 X)

CMLM: inference

@ Target length prediction
* Take top-I sequence lengths from length distribution Py,

@ Length parallel decoding

e Predict multiple [sequences having different lengths in parallel
> In actual implementation, perform batch-decoding, i.e., input/output tensor size: [, Nyax]

» Select the most probable sequence at the last iteration among [candidates

N
1
score = ﬁz: log }}F(:Trzﬂm
i=1

52

CMLM: training

@ Notation

* Yimask € Y (masked tokens in ground-truth Y)
* Yops € Y \ Yyask (Observed tokens inY)

& Training objective
* The number of masked tokens is sampled from uniform distribution U(1, N)

Lemim = — 2 logpcmlm(ylyobs'x)

YE€Ymask

53

Semi-autoregressive training (SMART) (chawininejas 2020

* Bridge the gap between training and test conditions by feeding output
from the model to the CMLM decoder

@ Procedure

1. Obtain prediction at all positions (Y') from the current model by feeding Y ps
2. Obtain new decoder input Yobs by applying random mask to ¥

. . . & CE loss

3. Train model to predict Y given Ygps R _

Mask y' @) Y

No gradient flow } }
Unlike original CMLM, cross-entropy loss is CMLM decoder CMLM decoder

calculated at all position regardless of mask F F

Mask ~
Yobs Yobs

& Training objective

Lemim = — 2 IOchmlm(:ﬂ?obs,X)
yey

54

Orthros: training

& Training objective
Ltotal — (1 o Acmlm)Lcmlm(ylx) + AarLar(le)

NAR decoder AR decoder

+/11lep (N|X) + Aasrﬁasr(ysrclx)

Length ASR
prediction

* Length prediction: L1, (N|X) = —logP,(N|X)
* ASR(CTC): Lasr (Y*'|X) = —logPetc (Y| X)

55

Orthros: inference

1. Mask-predict for T iterations

2. Candidate selection with AR decoder

e After the last iteration, feed outputs from the NAR decoder to the AR decoder
in parallel

e Obtain sequence-level scores from the AR decoder
e Pick up the most probable candidate among [candidates

1 N
score = — log P;
N; g lL,ar

56

Experimental setting

@ Datasets
* Must-C En-De (229k pairs, 408h), En-Fr (275k pairs, 492h)
e Fisher-Call[Home Spanish (Es->En, 138k pairs, 170h)
* Libri-trans (En->Fr, 45k pairs, 100h)

& Model configuration

Implemented with ESPnet-ST [inaguma+ 2020 188! ESPIIBl
Transformer base/large (dmodel = 256/512,dgs = 2048, H = 4/8)
2-layers CNN->12-layers encoder, 6-layers decoder

Sequence-level knowledge distillation (Seq-KD) wim+ 20161 from text-based AR MT
model

e Vocabulary size
» AR: BPE8k (Must-C), 1k (Fisher-Call[Home, Libri-trans)
» NAR: BPE8k

57

https://www.aclweb.org/anthology/2020.acl-demos.34
https://www.aclweb.org/anthology/D16-1139/

Evaluation metric

@ Translation quality
* 4-gram BLEU

@ Inference speed
* GPU decoding with a NVIDIA TITAN RTX

* Decoding configuration

v AR: beam width b € {1,4}
v'NAR: iteration T € {4,10}, length beam width [=9
v Batch size: 1

e Averaged over 5 runs

58

Main results: Must-C En-De/En-Fr

Model SDE
BLEU Latency [ms] Speedup
Transformer (b=1) 21.54 175ms 1.54% 32.26
_ Transformer (b=4) 23.12 271ms 1.00% 33.84
Autoregressive
Transformer + Seq-KD (b=1) 23.88 - - 33.92
Transformer + Seq-KD (b=4) 24.43 - - 34,57
CTC (b=1) 19.40 13ms 20.84X 27.38
Orthros (CMLM, T=4) 18.78 - - 25.99
Orthros (CMLM, T=10+AR decoder) 19.62 - - 27.77
Orthros (CMLM T=10) 20.89 - - 28.74
Orthros (CMLM, T=10+AR decoder) 21.79 - - 30.31
Non-autoregressive | Orthros (SMART, T=4) 20.03 46 5.89% 27.22
Orthros (SMART, T=10+AR decoder) 21.08 61 4.44% 29.30
Orthros (SMART, T=10) 21.25 99 2.73X 29.31
Orthros (SMART, T=10+AR decoder) 22.27 117 2.44% 31.07
+ BPE8k -> BPE16k 22.88 117 2.31X 32.20
+ large (SMART, T=4+AR decoder, [=7) 22.54 59 4.59X 31.24
+ large (SMART, T=10+AR decoder, [=7) 23.92 113 2.39% 33.05

Semi-autoregressive training (SMART) N- D e/ E N- F I

* Improved BLEU significantly with no extra

latency during inference En-De
Latency [ms] Speedup
Transformer (b=1) 21.54 175ms 1.54% 32.26
_ Transformer (b=4) 23.12 271ms 1.00% 33.84
Autoregressive
Transformer + Seq-KD (b=1) 23.88 - - 33.92
Transformer + Seq-KD (b=4) 24.43 - - 34,57
CTC (b=1) 19.40 13ms 20.84X 27.38
Orthros (CMLM, T=4) 18.78 - - 25.99
Orthros (CMLM, T=10+AR decoder) 19.62 - - 27.77
Orthros (CMLM T=10) 20.89 - - 28.74
Orthros (CMLM, T=10+AR decoder) 21.79 - - 30.31
Non-autoregressive | | Orthros (SMART, T'=4) 20.03 46 5.89X% 27.22
Orthros (SMART, T=10+AR decoder) 21.08 61 4.44 % 29.30
Orthros (SMART, T=10) 21.25 99 2.73X 29.31
Orthros (SMART, T=10+AR decoder) 22.27 117 2.44 X 31.07
+ BPE8k -> BPE16k 22.88 117 2.31X 32.20
+ large (SMART, T=4+AR decoder, [=7) 22.54 59 4.59X 31.24
+ large (SMART, T=10+AR decoder, [=7) 23.92 113 2.39X 33.05

Candidates selection with AR decoder
Improved BLEU scores is significantly
This corresponds to performing one more iteration (about En-De

+15ms) Latency [ms] Speedup
CMLM does not have the ability to generate useful

sentence-level scores

Transformer + Seq-KD (b=1) 23.88 - - 33.92
Transformer + Seq-KD (b=4) 24.43 - - 34.57
CTC (b=1) 19.40 13ms 20.84% 27.38
Orthros (CMLM, T=4) 18.78 - - 25.99
Orthros (CMLM, T=10+AR decoder) 19.62 - - 27.77
Orthros (CMLM T=10) 20.89 - - 28.74
Orthros (CMLM, T=10+AR decoder) 21.79 - - 30.31
Non-autoregressive | Orthros (SMART, T=4) 20.03 46 5.89X% 27.22
Orthros (SMART, T=10+AR decoder) 21.08 61 4.44 % 29.30
Orthros (SMART, T=10) 21.25 99 2.73X 29.31
Orthros (SMART, T=10+AR decoder) 22.27 117 2.44X 31.07
+ BPE8k -> BPE16k 22.88 117 2.31X 32.20
+ large (SMART, T=4+AR decoder, [=7) 22.54 59 4.59% 31.24

+ large (SMART, T=10+AR decoder, [=7) 23.92 113 2.39% 33.05

Vocabulary size

e Large BPE vocabulary improved BLEU scores

* This was not true for AR models (shown in
the later slide)

-De/En-Fr

BLEU

En-De

Latency [ms]

Speedup

Transformer (b=1) 21.54 175ms 1.54% 32.26

_ Transformer (b=4) 23.12 271ms 1.00% 33.84
Autoregressive

Transformer + Seq-KD (b=1) 23.88 - - 33.92

Transformer + Seq-KD (b=4) 24.43 - - 34.57

CTC (b=1) 19.40 13ms 20.84% 27.38

Orthros (CMLM, T=4) 18.78 - - 25.99

Orthros (CMLM, T=10+AR decoder) 19.62 - - 27.77

Orthros (CMLM T=10) 20.89 - - 28.74

Orthros (CMLM, T=10+AR decoder) 21.79 - - 30.31

Non-autoregressive | Orthros (SMART, T'=4) 20.03 46 5.89X% 27.22

Orthros (SMART, T=10+AR decoder) 21.08 61 4.44 % 29.30

Orthros (SMART, T=10) 21.25 99 2.73X 29.31

Orthros (SMART, T=10+AR decoder) 22.27 117 2.44X 31.07

+ BPE8k -> BPE16k 22.88 117 2.31X 32.20

+ large (SMART, T=4+AR decoder, [=7) 22.54 59 4.59% 31.24

+ large (SMART, T=10+AR decoder, [=7) 23.92 113 2.39% 33.05

62

Large model -DG/EH-FF

* |Increasing model capacity was very
important for NAR models
This was not true for AR models (shown in
the later slide)

Autoregressive

En-De

Latency [ms]

Speedup

Transformer + Seq-KD (b=1) 23.88 - - 33.92
Transformer + Seq-KD (b=4) 24.43 - - 34.57
CTC (b=1) 19.40 13ms 20.84% 27.38
Orthros (CMLM, T=4) 18.78 - - 25.99
Orthros (CMLM, T=10+AR decoder) 19.62 - - 27.77
Orthros (CMLM T=10) 20.89 - - 28.74
Orthros (CMLM, T=10+AR decoder) 21.79 - - 30.31
Non-autoregressive | Orthros (SMART, T'=4) 20.03 46 5.89X% 27.22
Orthros (SMART, T=10+AR decoder) 21.08 61 4.44 % 29.30
Orthros (SMART, T=10) 21.25 99 2.73X 29.31
Orthros (SMART, T=10+AR decoder) 22.27 117 2.44X 31.07
+ BPE8k -> BPE16k 22.88 117 2.31X 32.20
+ large (SMART, T=4+AR decoder, [=7) 22.54 59 4.59% 31.24

+ large (SMART, T=10+AR decoder, [=7) 23.92 113 2.39% 33.05

63

Main results: Must-C En-De/En-Fr

En-De
Latency [ms] Speedup
Transformer (b=1) 21.54 175ms 1.54% 32.26
_ Transformer (b=4) 23.12 271ms 1.00% 33.84
Autoregressive

Transformer + Seq-KD (b=1) 23.88 - - 33.92

Transformer + Seq-KD (b=4) 24.43 - - 34.57

B 10 .40 13ms 20.84% 27.38

MASTB A , 18.78 i i 25.99
Achieved comparable BLEU scores to baseline

Transformer 19.62)) 2717

Seqg-KD boosted AR model’s performance further 20.89)) 28.74

This differs from MT: 21.79 - - 30.31

» MT: large AR teacher-> small AR student 20.03 46 5.89% 27.22

» E2E-ST: AR MT teacher -> AR E2E-ST student 21.08 61 4.44% 29.30

Orthros (SMART, T=10) 21.25 99 2.73X 29.31

Orthros (SMART, T=10+AR decoder) 22.27 117 2.44 X 31.07

+ BPE8k -> BPE16k 22.88 117 2.31X 32.20

+ large (SMART, T=4+AR decoder, [=7) 22.54 59 4.59X 31.24

+ large (SMART, T=10+AR decoder, [=7) 23.92 113 2.39X 33.05

Quality and latency trade-off on Must-C En-De

4,3) p ALAR
P> ARlarge
5 (4.5) /. A3:Cascade
’ 4.7) @ N4: Orthros (SMART, T=9 +AR)
’ () N4: Orthros (SMART, T=10)
(4,9) @ N4: Orthros (SMART, T=10 +AR)
4 () N4: Orthros (SMART, T=11)
@ N4: Orthros (SMART, T=15 +AR)
(10,1) @ 4.11) () N4: Orthros (SMART, T=10 +separate AR)
o ‘(11 1) N5: Orthros large (SMART, T=4 +AR)
_g (10,3) .1 Y @) N5: Orthros large (SMART, T=10 +AR)
$ 2 (107) Q@) 0<1d9~”55 @o7) (103) @
7 101172 @@,)7 L2 (105) @
7 (19,11) d Ta (10.7)
(10,15) @ "7 %911,11 (”’) (105) (107)m5 f109) (107) @
13
2 .(11,19()) '(10”115% (109) @ 2100,113;§
[1] [1] ((1] ’1@) @5) ((10,1
> > 21 ppl? G
1 131 4ﬁ4] -
11 A [5]
ikt 1A
{41} A {44 A
21.0 21.5 22.0 22.5 23.0 23.5 24.0

BLEU
D [b (E2E-ST)], @(T, 1), A[b (ASR), b (MT)]

65

Quality and latency trade-off on Must-C En-De

Baseline NAR model
e Larger length beam was not effective (4,5)
when AR decoder was NOT used

4
_ |10 @
=) QUL (103 @ ©3
O |
D7 107 @ @10
C% 10135%1(19’9)(’ (,15?173
(10.15) @ " (}9131),11 (Ul
S @ (11 ’
(1] 1
1 (.1 A
{41 A
21.0 21.5 22.0 22.5
BLEU

A1: AR

AR large

A3: Cascade

N4: Orthros (SMART, T=9 +AR)

N4: Orthros (SMART, T=10)

N4: Orthros (SMART, T=10 +AR)

N4: Orthros (SMART, T=11)

N4: Orthros (SMART, T=15 +AR)

N4: Orthros (SMART, T=10 +separate AR)
N5: Orthros large (SMART, T=4 +AR)
N5: Orthros large (SMART, T=10 +AR)

(10,3) @
(10,7) (10,5) @

QY e
&

3] 3
> - 4»{4]?[5]

{19} A
{44} A

23.5

eceeedop» vy

(107) @

(10,1 ﬁ
(2100,113

23.0 24.0

D [b (E2E-ST)], @(T, 1), A[b (ASR), b (MT)]

66

Quality and latency trade-off on Must-C En-De

Effectiveness of candidate selection

p ALAR
* Significantly improved BLEU scores for every length beam width [P> ARlarge
R : : : /. A3:Cascade
Lt—tnrg.e L is effective with AR decgder | | | ® N Orthvos (SVART T=0 7AR)
e Similar BLEU scores can be achieved with a smaller iteration T “(__N4: Orthros (SMART, T=10)
@ N4: Orthros (SMART, T=10 +AR)
4 ~(N4 Orthros (SMART, T=11)
N4: Orthros (SMART, T=15 +AR)
(10,1) / N4: Orthros (SMART, T=10 +separate AR)
o ND: ros large (SMART, T=4 +AR)
_g O ns: Ort:]ros large (SMART, T=10 +AR)
$ 3 (10,3) @
o
(105 @
n (10,7) 6@2 107) @
- Qg oo TR
By o
,13)
> [3]
1 1A > 4514]?[5]
’ {14} A
411 A 4,47 A
21.0 21.5 22.0 22.5 23.0 23.5 24.0

BLEU
D [b (E2E-ST)], @(T, 1), A[b (ASR), b (MT)]

67

Quality and latency trade-off on Must-C En-De

A1: AR
AR large
5 A3: Cascade
@ N4: Orthros (SMART, T=9 +AR)
N4: Orthros (SMART, T=10)

viv

Comparison with AR E2E models @ N4: Orthros (SMART, T=10 +AR)
* Orthros (N4) achieved the same BLEU as AR model (A1) with 3X speed- NHAO eI SRS
. . @ N4: Orthros (SMART, T=15 +AR)
up for greedy decoding and 1.5X speed-up for beam search decoding @ N4: Orthros (SMART, T=10 +separate AR)
R ‘ (11,1) N5: Orthros large (SMART, T=4 +AR)
> ’ N5: Orthros large (SMART, T=10 +AR)
©
o 3
- ffos i 0
%) 1 ; , : , (10,5)
(10,15)’(10’1353 , : , : ’ (10,7) @
1) & (10,9) @
2 2100’113%8
((10,1
> > ’
[3
(3] 4
1 — >[5] 4»}]»[5]
21.0 21.5 22.0 22.5 23.0 23.5 24.0

D [b (E2E-ST)], @(T, 1), A[b (ASR), b (MT)]

68

Quality and latency trade-off on Must-C En-De

Large model
* Increasing parameters did not improve the
AR model so much

A1: AR

AR large

A3: Cascade

N4: Orthros (SMART, T=9 +AR)

N4: Orthros (SMART, T=10)

N4: Orthros (SMART, T=10 +AR)

N4: Orthros (SMART, T=11)

N4: Orthros (SMART, T=15 +AR)

N4: Orthros (SMART, T=10 +separate AR)

N5: Orthros large (SMART, T=4 +AR)

() NS5: Orthros large (SMART, T=10 +AR)

(10,5) @
(10,7) @
| w00 @
2 oY) | 15) (10,11
1013§ ‘

’F] [(10,15)@

1 {4] 5]

21.0 21.5 22.0 22.5 23.0 23.5 24.0
BLEU

D [b (E2E-ST)], @(T, 1), A[b (ASR), b (MT)]

69

Quality and latency trade-off on Must-C En-De

S vs. Cascade system (ASR->MT)
e Cascade systems were much slower than E2E
models

@U11) (10,3

{1.1} A

(4 41

A1: AR
AR large

v

A3: Cascade

>

N4: Orthros (SMART, T=9 +AR)

N4: Orthros (SMART, T=10)

N4: Orthros (SMART, T=10 +AR)

N4: Orthros (SMART, T=11)

N4: Orthros (SMART, T=15 +AR)

N4: Orthros (SMART, T=10 +separate AR)

N5: Orthros large (SMART, T=4 +AR)

(10,3) @

(10,7) (10,5) @

\ '1‘6,@@) (10,9 @
(10,15)

&

[3}
[31 p- 4]
[5] 4»{1 > >

|SLEIL |

21.0 21.5 22.0 22.5
BLEU

X Y
23.0

D [b (E2E-ST)], @(T, 1), A[b (ASR), b (MT)]

23.5

N5: Orthros large (SMART, T=10 +AR)

(107) @

(10,1 ﬁ
(2100,113

24.0

70

Quality and latency trade-off on Must-C En-De

Candidate selection with external AR encoder-
decoder vs. unified architecture (proposal)
e The unified architecture showed smaller
latency with better BLEU scores
» No overhead for speech encoding
» Smaller memory consumption
(10,4 » Smaller parameters

A1: AR

AR large

A3: Cascade

N4: Orthros (SMART, T=9 +AR)

N4: Orthros (SMART, T=10)

N4: Orthros (SMART, T=10 +AR)

N4: Orthros (SMART, 1=11)

N4: Orthros (SMART, T=15 +AR)

N4: Orthros (SMART, T=10 +separate AR)

opelejper vv

o 4 . N5: Orthros large (SMART, T=4 +AR)
_g whtey (10; 3 ©10 5 () N5: Orthros large (SMART, T=10 +AR)
L A e s—
Q : s
o (Y9, 11,7 (10,5) @
¥ (10,15) “0113%1)%(;((”’3) (10.5) 1o (107) @
(,(13)’ (10,7) ?)@13 (10,9) @
2 @ (11,1 10,1 (10, — 1001131k
1 U YU) ke |
> 21 ppp T
Blp 4 [3{4] [5]
1 51 >
21.0 21.5 22.0 22.5 23.0 23.5 24.0
BLEU

D [b (E2E-ST)], @(T, 1), A[b (ASR), b (MT)]

71

Results: Fisher-Call[Home Spanish/Libri-trans

BLEU
Fisher-CallHome Spanish
Fisher- CallHome- Libri-trans

test evitest
Transformer (b=1) 48.38 18.07 16.52
_ Transformer (b=4) 48.49 18.90 16.84

Autoregressive

Transformer + Seq-KD (b=1) 50.34 19.09 15.91
Transformer + Seq-KD (b=4) 50.32 19.81 16.44
CTC (b=1) 45.97 15.91 12.10
Orthros (CMLM, T=4) 46.03 16.71 12.90
Orthros (CMLM, T=10+AR decoder) 47.80 18.28 13.69
Orthros (CMLM T=10) 48.56 18.60 14.68
Non-autoregressive | Orthros (CMLM, T=10+AR decoder) 49.98 19.71 15.43
Orthros (SMART, T=4) 45.89 17.39 14.17
Orthros (SMART, T=10+AR decoder) 48.73 19.25 14.99
Orthros (SMART, T=10) 47.09 18.25 15.11
Orthros (SMART, T=10+AR decoder) 50.07 20.10 16.08
+ BPE8k -> BPE16k 50.18 19.88 16.22

72

Ablation study on Fisher-CallHome dev set

Orthros BPE8k 4576 | 49.01 | 46.88 | 50.28
- Seq-KD 4436 | 47.42 | 44.25 | 49.50
- AR decoder 45.53 - 46.94
+ length prediction w/ CTC | 45.41 | 48.18 | 46.79 | 50.05

* Seg-KD was beneficial (multi-modality problem was alleviated)
 Joint training with AR decoder itself had no impact on BLEU scores
* Linear classifier-based length prediction was better than the CTC-based one
> CTC-based length prediction: [N — |é|, N + Iél], where N = |aNg]
(a: hyperparameter, N,,-.: ASR hypothesis length obtained by CTC greedy decoding)

73

Effect of vocabulary size on Fisher-CallHome dev set

54
mm AR
BN Orthros (SMART, T=10)

50 WM Orthros (SMART, T=10 +AR)
48
(NN
o 4
4
4
40
1k 2k 4k 8k 16k 32k

Vocabulary size

52

N

N

AR models have a peak around BPE1k (due to data sparseness, 170h)
e Candidate selection with AR decoder is always effective regardless of BPE size

* Orthros + candidate selection continued to improve until BPE16k
» Most tokens in vocabulary are “complete” word
»Complementary effect on the conditional independence assumption

74

Conclusion and future work

* Perceived latency reduction for streaming encoder-decoder ASR
e Alignment information is effective on the decoder side
 CTC alignment is as good as alignment from hybrid ASR system

* Fast non-autoregressive decoding for E2E-ST, Orthros
» AR decoder + NAR decoder on shared speech encoder

» Candidate selection with AR decoder was very effective to estimate target
lengths

»Reached comparable translation quality to SOTA AR E2E-ST models with more
than 2X latency reduction

75

