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Background: End-to-end ASR -
Minimize I (reference)
- " ~ ¥ (prediction)
Time-synchronous model (|x| = |¥]) ]
e Connectionist temporal classification (CTC) [Graves et al., 2006] —_—
e RNN-Transducer (RNN-T) [Graves et al., 2013] : Ei >R
e Recurrent neural aligner (RNA) [sak et al., 2017]
K y o -\/\/\/\_ X = (xl, ...,xT)
O

Low accuracy
Streaming: easy

Label-synchronous model (|x| # |y])

e Attention-based RNN encoder-decoder [Bahdanau et al., 2016]

 Transformer [vaswaniet al., 2017] .

O
\_ The entire encoder outputs are required to generate the initial token ) O

High accuracy
Streaming: difficult

* RNN-T is dominant for streaming E2E-ASR in the industry
» Memory-consuming, thus requires distributed training and small vocabulary etc.
» Large search space because of frame-wise predictions



Streaming attention-based models

Neural Transducer paity et al2015]
e Perform attention mechanism for a fixed size of block

Hard monotonic attention (raffel et al,, 2017] o

o O

Simple
* Good results

e Efficient training

* Linear time decoding

* Learn to detect token boundaries via stochastic binary decision
e Extension: Monotonic chunkwise attention (MoChA) [Chiu et al., 2018]

Triggered attention (voritz et al., 2018]

* Perform global attention over encoder memories truncated by CTC spikes

Adaptive computation steps (ACS) (Lietal, 2018)

* Learn how many tokens to generate with encoder outputs

Continuous Integrate-and-Fire (CIF) [pong et al,, 2019]
e Fine-grained version of ACS

/

And more...

 Windowing approaches
* |ncremental decoding

* Reinforcement learning

\_




Hard monotonic attention (HMA) raffer+ 20171

Test time

Not
differentiable

hj: encoder state
s;: decoder state

e j= MonotonicEnergy(hj,Si)
pi;j = a(e; ;) (selection probability)

Zi,j~Bernoulli(pi,j) (lei,j — 1, Ci = h])

Training time

J j—1
aijj = Dij 2 di—1k 1_[(1 — Di l)
k-1 l=k
- (1 — Pi,j—l) ::1 + @1,

/Points \

e Linear-time decoding O(T) during inference
 HMA has options to

(1) stop at the current frame j

(2) move forward to the next framej + 1
* Introduce a binary decision process z; ; to

/

K decide whether to attend to hj or not

pi,j = a(el-,j + 8), ENN(O,].)

Calculate expected
alignments a; ;
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MoChA (test time) (chius 2018 [ @ e, - 1

e.g., w = 4 (chunk size: 4) Q : Not attend (z; ; = 0)
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Encoder outputs h = (h4, ..., hy)

1. Monotonic attention: whether to attend or not

2. Chunkwise attention: soft attention over a small window
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O : Attend at (i — 1)-th step

MoChA (training time) ichiu+ 2018)

Marginalize O : Not attend
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Encoder outputs h = (hy, ..., ht) ~ Pij Z (“l Lk 1_[(1 pll))
O o

S
Can be implemented _ i,j—1
efficiently in parallel with j — (1 pl,J—l) Pij1 + Xi-1,j
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Optimization problem R o
bij-1 S Ai—-1,j
bij = U(el,])

1. Yjea;j = 1isnot satisfied during training -

* a;; is NOT globally normalized over the whole encoder outputs {hj}j=1,

» a; j is not a valid probability distribution
» a; j attenuates quickly during marginalization
» Selection probability p; ; is not learnt well
* Enlarge the mismatch between training and test time

2. Alignment errors are propagated to later token generation
* a;;j depends on past alignments

* Backward algorithm cannot be used for @; ; Problematic for long and
» a; ; is not a valid probability distribution noisy speech utterances

» Autoregressive decoder

* Model needs to learn (1) a proper scale of a; j and (2) accurate decision
boundaries (j s.t.a; ; = 1) at the same time



Quantity regularization

e Add a regularization term to encourage Z]- a;j =1

U

T
qua=|U zzai,jl

i=1j=1

Ltotal = (1 _ ACtC)LSZS + Actchtc + Aquanua (Aqua = 0)

e Quantity loss is not effective on large-scale data (3.4k hours) [inaguma+ 2020], but
helpful for small and medium size data (<1k hours)



Preliminary: Comparison of boundary positions (CTC vs.MoChA)

«,f,:z_‘ | )" . - . — Predicted boundary

Baseline
w/ quantity
regularization

Decision boundaries of MoChA ghif‘t
to the right side (future) from the
corresponding CTC spikes T

Proposed

s 1 HOF i

e (CTC assumes conditional independence
» Robust to past alignments
e CTC leverages the backward algorithm as well
k » CTC is more accurate than MoChA in terms of alignments




Proposed method: CTC-synchronous training (CTC-ST)

e Leverage CTC’s posterior spikes as reference boundaries for MoChA

* MoChA is trained to mimic the CTC model to generate the similar
decision boundaries

e External alignments from hybrid ASR are not required (inaguma+ 2020]

ObjeCtive function CTC boundary Expected MoChA boundary
1 U T

Lsync = 52 |b;_:tc - Zjai,j |

i=1 1

j=

Liotal = (1 - Actc)Lmocha + ActeLete + Aquanua + Asyncl:sync (Async = 0)

* Unless otherwise noted, Aqy, is set to 0 when using CTC-ST
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Extraction of CTC alignments

* Encoder network is shared between both branches
e Both branches are jointly optimized
e CTC alignments are extracted via forced alignment over the transcription

CTC paths m
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MoChA decoder CTC layer Forced alignments w/ the forward-
backward algorithm
\/ (on-the-fly alignment generation
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Curriculum learning strategy

* Applying CTC-ST from scratch is inefficient because Z]T-=1 a;; < 1in
the early training stage
» Difficult to estimate the expected boundary positions Z]T-zljai,j accurately
» Propose curriculum learning strategy composed of two stages

Stage-1 (expected to learn a proper scale of ;)
* Train BLSTM encoder + MoChA with quantity regularization until convergence

Stage-2 (expected to learn boundary location)

* |nitialize with model parameters in stage-1
* Train latency-controlled BLSTM (LC-BLSTM) encoder + MoChA with CTC-ST

NOTE: When using the unidirectional LSTM encoder, the same encoder is used in both stages
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Combination with SpecAugment

SpecAugment [park et al., 2019]
* On-the-fly data augmentation method over input log-mel filterbank features

e Zero out successive frames in time and frequency bins

Recap
dij-1
a;j=(1-pij-1) — + a1

Problem of SpecAugment for MoChA ij-1

* Recurrency of a; j can be easily collapsed after the masked region

* The naive MoChA did not obtain any gains with SpecAugment

e CTC can estimate boundaries accurately even right after the masked region thanks
to the conditional independence assumption per frame

e CTC-ST is expected to improve the effectiveness of SpecAugment for MoChA
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Experimental condition

Corpus
Feature

Output unit

Architecture

Optimization

Loss weight

Decoding

TEDLUM?2 (210h, lecture), Librispeech (960h, read)

80-dim log-mel fhank

BPE 10k units

Offline:

4-layer CNN -> 512-dim (per direction) 5-layer BLSTM encoder
Streaming:

4-layer CNN -> 512-dim 5-layer LC-BLSTM encoder or

4-layer CNN -> 1024-dim 5-layer unidirectional LSTM encoder

Decoder: 1024-dim 1-layer LSTM
w: 4 (window size for chunkwise attention in MoChA)

Adam

Acte = 0.3, Aqua = 1.0, Agync = 1.0

Beam width: 10, shallow fusion with external 4-layers of LSTM-LM
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Main results: TEDLIUM?2 (210h)

LSTM - standard attention 11.9
BLSTM - standard attention (T1) 9.5
Offli BLSTM - MoChA 12.6
ne © D 22.2% (1)
+ Quantity regularization (T2) 9.8
/ + CTC-ST 10.2
.. [
INIt. LSTM - MoChA . 15.0
i init. 12.0% (1)
Latency-controlled BLSTM \ + CTC.ST ) 13.2 >
LC-BLSTM-N;+ N, /| LC-BLSTM-40+20 - MoChA 12.2 > 13.9% (1)
hop size |ookahead frame Streaming + CTCT-ST 10.5 '
LC-BLSTM-40+40 - MoChA (T5 11.3
(ms) (ms) < oChA {T5) > 12.3% (1)
+ CTC-ST (T6) 9.9
(Nt Quantity regularization 10.1

* Combination of CTC-ST and quantity regularization was not effective
» CTC-ST has a similar effect to improve the scale of a;;

e Curriculum learning was effective



Results with SpecAugment r«

Rr_J

Frequency mask size T Time mask size

Model F T %WER
Transformer [Karita et al., 2019] 30 40 8.1
BLSTM - standard attention [zeyer et al., 2019] N/A N/A 8.8
Offline o<
BLSTM - standard attention '
27 100 8.1
- - 11.3
LC-BLSTM-40-+40 - MoChA 27 100 12.8
(seed: BLSTM - MoChA) 27 50 11.0
, 13 50 11.2
Streaming
- - 9.9
27 100 9.0 13.1% (1)
+ CTC-ST
27 50 8.6
13 50 9.0

* MoChA did not benefit from SpecAugment w/o CTC-ST

e CTC-ST was robust to the input mask size

* Achieved the comparable performance to the offline model (8.1 vs. 8.6) 16



WER distributions as a function of sequence length

351 —e— BLSTM - Global attention (T1)
—e— BLSTM - MoChA (T2)

—e— LC-BLSTM - MoChA (T5)
—e— + CTC-ST (T6)
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251

20

WER
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e CTC-ST improved WER for long utterances



Results on Librispeech (960h)

%WER
Test- Test-
clean other
BLSTM - standard attention 3.1 9.5
+ SpecAugment (F = 27, T = 100) 2.8 7.6
Offline
BLSTM - MoChA 3.6 10.5
+ Quantity regularization (T2) 33 10.0
LSTM - MoChA > o 5.3 14.5
+ CTC-ST i 4.7 13.6
+ SpecAugment (F = 13,T = 50) 4.2 11.2
it /| LC-BLSTM-40+40 - MoChA 4.1 11.2
_ + SpecAugment (F = 27, T = 100) 5.0 9.7
Streaming
+ SpecAugment (F = 13,T = 50) 4.0 9.5
< + CTC-ST 3.9 11.2
+ SpecAugment (F = 27, T = 100) 3.6 9.2
+ SpecAugment (F = 27, T = 50) 35 9.1
\.| +SpecAugment (F = 13,T = 50) 3.6 9.4

) 8.3/4.7% (1)
) 11.3/6.2% (1)

10.2/18.7% (1)
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Comparison with previous works

Test-
clean

%WER

Test-
other

LSTM - MoChA + MWER [Kim et al,. 2019] 5.6 15.6
LSTM - MoChA + {BPE, char}-CTC + SpecAugment [Garg et al., 2019] 4.4 15.2
LSTM - MoChA + CTC-ST (ours) 4.2 11.2
LC-BLSTM - sMoChA [Miao et al, 2019] 6.0 16.7
LC-BLSTM - MTA [Miao et al., 2020] 4.2 12.3
LC-BLSTM - MoChA + CTC-ST (ours) 3.9 11.2
+ SpecAugment 3.5 9.1
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Conclusion

* Improving optimization of MoChA with CTC-synchronous training

e Leveraged CTC alignments as an effective guide for MoChA to correct
error propagation from past decision boundaries

e CTC-ST significantly improved recognition performances especially for
long utterances

e CTC-ST can bring out the full potential of SpecAugment for MoChA

e Explicit interaction between CTC and MoChA on the decoder side
»Joint CTC/Attention is performed on the encoder side
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