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Background: End-to-end ASR

* Input sequence (speech): x = (x4, ..., XT)

* Output sequence (transcription): y = (y¢, ..., V1)

== Microsoft

"

Time-synchronous model (|x| = |y])

e Connectionist temporal classification (CTC) [Graves et al., 2006]
* RNN-Transducer (RNN-T) [Graves et al., 2013]
e Recurrent neural aligner (RNA) [sak et al., 2017]
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Label-synchronous model (|x| # |y])

* Attention-based sequence-to-sequence (S2S) [Bahdanau et al., 2016]
 Transformer [Vaswani et al., 2017]
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Streaming: easy
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Streaming: difficult
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Streaming attention-based S2S ASR

Neural Transducer pailty et al.,2015]
e Perform attention mechanism for a fixed size of block

Hard monotonic attention (raffel et al., 2017]

* Learn to detect token boundaries via stochastic binary decision
* Extension: Monotonic chunkwise attention (MoChA) [Chiu et al., 2018]
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Triggered attention (moritz et al, 2018]
e Perform global attention over encoder memories trurp

* Good results
e Efficient training

Adaptive computation steps (ACS) (Lietal, 2018]

* Learn how many tokens to generate with encoder outputs e ™~
And more...

Continuous Integrate-and-Fire (CIF) pong et al, 2019] +  Windowing approaches
* Fine-grained version of ACS e Reinforcement learning
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MoChA (test time)

e.g., w = 4 (chunk size: 4) e ~
al'? B . . Attend (ai'j = 1)
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Encoder outputs h = (h4, ..., h7)

1. Monotonic attention: whether to attend or not

2. Chunkwise attention: soft attention over a small window
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O : Attend at (i — 1)-th step

: Not attend
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Encoder outputs h = (hq, ...
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Delayed token generation problem

REF: add an event for dinner tomorrow at seven thirty p m

Goal
Minimize perceived latency
as much as possible
while keeping accuracy

Output labels (<)

g & 8

100
Time [frame]

* Decision boundaries (yellow dots) are delayed from the actual acoustic boundary

1. Unidirectional encoder (lacking the future information)

2. Sequence-level criterion (utilizing as many future frames as possible to maximize the log-likelihood)
* This leads to increasing user perceived latency

»Similar behaviors have been reported in CTC [saketal., 2015 and RNN-T (ietat, 2019
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Evaluation metric: latency

* Definition: difference between time-index of a predicted boundary and that of
the gold boundary

Corpus-level latency (averaged per token)

N |y¥|

1 _
Acorpus = ©n K Z z(blk . bfc)
k=1 1Y"I

k=1i=1

Utterance-level latency (averaged per utterance)

N 1y~
- - Lk K
Autterance = 77 k (b —b;)
N & |y
k=1 =1

e Report (1) average, (2) median, (3) 90-th, and (4) 99-th percentile

* Teacher-forcing when calculating latency to match the sequence lengths



/ Marginalize \
A

Proposed methods

OO 00O
O

O : Attend (a;_ ;)
O Not attend
O : Attend (ai,j)

Qa
o |3
S
O
) O

P e e e e e e e e e e e e e e e e e i T T T T T i e e e

Leverage hard alignments on the encoder side

* Multi-task w/ framewise CE (MTL-CE)
* Pre-training w/ framewise CE (PT-CE)
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! Leverage hard alignments on the decoder side ™

S2S CE loss Lg;g

Expected latency loss LyinLT

A

Linear 1

Encoder

* Minimum latency training (MinLT)

* Delay constrained training (DeCoT)

Frame CE
layer

\
1
1
1
}
1
1
[}
1
1
}
1
1
[}
1
1
}
1
1
[}
1
1

~

DI ——— - = e = e e = e e e e e e e e e e e e e e e e e = e —-—————

Hard alignments

The acoustic model
in the hybrid system

Leveraging hard alignments extracted from the hybrid system
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1. Multi-task learning w/ framewise CE (MTL-CE)

Train both branches
from scratch

@ Objective function

o O

Liotal = (1 — Acp)Ls2s(Yx) + AcgLce(A]x) (0 < Acg < 1)
MoChA Frame CE

* Motivation: align encoder outputs to the true acoustic location

Inference
@ Insert linear bottleneck layers !
* Inspired by the CTC acoustic model [vu et al., 2018] MoChA Frame CE
Decoder layer

MoChA Frame CE
Decoder layer
Encoder

Encoder




2. Pre-training with framewise CE (PT-CE) = Microsort
@ 2-staged training
* Motivation

»Start training from well-alighed encoder representations
» Do not have to tune the CE weight Acg
* No linear bottleneck layers
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|  Decoder \
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Initialized with
., random values
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Proposed methods
!/ MargiTalize \ |'/ Leverage hard alignments on the decoder side
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/! Leverage hard alignments on the encoder side Erame CE

layer

* Multi-task w/ framewise CE (MTL-CE)

Linear 1 Linear 2
* Pre-training w/ framewise CE (PT-CE) !
\/ | The acoustic model
\ Encoder ! in the hybrid system
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3. Delay constrained training (DeCoT)

: Attend at (i — 1)-th ste
Marginalize O ( ) g

{ \ @ Q : Not attend
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Alignment,
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Encoder outputs h = (hq, ..., hy) [

b;: gold boundary

a.,._l ]
_ _ _ Di,j ((1 — pi,j—1)% + ai—l,j) (U < b; +96)
Remove inappropriate paths whose boundaries surpass the actua Pij-1

acoustic boundary more than fixed acceptable latency § [frames] \ 0 (otherwise)

I ai'j = <
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3. Delay constrained training (DeCoT)

Regularization with quantity loss
* Add a regularization term to keep Z]- aj =1
* Originally proposed in CIF [pongetal., 2019] with a different motivation

L: the number of tokens in the reference
L
Lqua = |L — ZZ a;j |
i=1j=1

Liotal = Ls2s + Aqualqua (Aqua = 0)
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4. Minimum latency training (MinLT)

@ Objective function
 Directly minimize the expected latency Lyin T by utilizing hard alignments A
Expected boundary

L T
1 _ (b;: refernce boundary for i-th token)
LMinLT = —z |Z]“i,j — by
e~

Liotal = Ls2s + AMinLTLMinLT (AMinLT = 0)

* Motivation: reduce latency flexibly
> DeCoT assumes the fixed latency for each token

&® Related work

* Latency loss has been investigated in simultaneous NMT [Arivazhagan et al., 2019]
* Non-silence frames are not distributed uniformly over the input speech in ASR




Experimental condition
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Train: Cortana voice assistant (3.4k hours)

Data Validation: Sampled disjoint 4k utterances form the training set
Test: 5.6k utterances
Feature 80-dim log-mel fbank (3 frame stacked, 30ms per frame)
Output unit Mixed units (34k vocabulary)

Architecture

Offline: 512-dim (per direction) 6-layer BiGRU encoder
Streaming: 1024-dim 6-layer GRU encoder
Decoder: 512-dim 2-layer GRU

Optimization

Adam

Decoding

Beam width: 8, no LM

* Word-level alignments: A = (a,, ..., ar) ({a;};=1,. r: one-hot vector)
» Divide duration based on the ratio of the character length of each subword

e Start DeCoT and MinLT from the baseline MoChA (warm start training)
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Enhance monotonic attention with 1D convolution

e.g., k = 5 (lookahead: 2, 60ms)

alz 1
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Encoder outputs h = (h4, ..., h7)
hj — VVC * h] (VVC = Rdxdxk)

@ Motivation
* Leveraging the surrounding frames for robust binary decision
k: kernel size, d: unit size



Results: Baseline

BiGRU global attention
Offline UniGRU global attention
BiGRU MoChA (chunk: 4)

7.01
8.44
8.09

UniGRU MoChA (chunk:4)
Streaming

+ 1D-convolution (baseline)

10.37
9.93

\

* Huge gaps between (1) bidirectional <-> unidirectional

(2) offline <-> streaming S2S

e 1D-convolution layer improved the streaming MoChA by 4.24% relatively

Microsoft



Results: Alignments on the encoder side

Baseline MoChA 9.93 my, 11.65 10.00 ™~ 21.39 44.29
MTL-CE (Acg = 0.1) 10.21 5.630\ 0.84 8.00 ) 19.42 46.54
MTL-CE (Acg = 0.3) 10.48 / 8.78 6.00 / 19.69 47.96
MTL-CE (Acg = 0.5) 11.11 8.36 5.00 21.21 49.86
PT-CE 12.74 10.49 7.00 22.90 48.65

* MTL-CE reduced latency in proportion to Acg while degrading WER slightly

* PT-CE also reduced latency but degraded WER too much

* Contrastive results to previous works using CTC + framewise CE objective
»MoChA is a label-synchronous model
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Visualization of latency distribution (encoder) *
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Corpus-level latency
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—eo— MTL-CE (lambda=0.1)
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2500

20001

#Token

500

5 0 5 10 15 20
Utterance-level latency

#Utterance

5 10 15 20
Latency [frame (30ms)]



Results: Alignments on the decoder side

WER [%)]

Med.

Corpus-level [frame (30ms)]

90th

99th
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UniGRU global attention (offline) 8.44 N/A N/A N/A N/A
Baseline MoChA 9.93 11.65 10.00 21.39 44.29
DeCoT (6 = 4) 20.25 3.66 1.00 9.56 62.27
DeCoT (6 = 8) 14.35 4.60 | 20% 5.00 7.00 47.04
8.09 62.9%
DeCoT (6 = 12) 11.40 6.02 7.00 0o, 9.92 35.58
DeCoT (6 = 16) 9.13 6.63 8.00 11.71 16.43
DeCoT (8 = 24) 8.87 8.37 9.00 14.45 21.07
DeCoT (6 = 32) 9.17 9.79 10.00 16.54 27.01
MinLT 9.70 7.06 6.00 10.63 26.76

 DeCoT: large WER improvement and moderate latency reduction (tail part)

* MinLT: small WER improvement and large latency reduction (median)
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Visualization of latency distribution (decoder)
Corpus-level latency
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Ablation study: Decoder side

e Combination of DeCoT and MinLT reduced the latency, but degraded WER too
much

Corpus-level [frame (30ms)]

Model WER [%]
Ave. Med. 90th 99th
DeCoT (6 = 16) 9.13 6.63 8.00 11.71 16.43
+ MinLT 12.75 4.05 4.00 7.96 15.92

MinLT 9.70 7.06 6.00 10.63 26.76
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Ablation study: Decoder side

* Quantity loss was essential for DeCoT but not necessary for the baseline and
MinLT

Corpus-level [frame (30ms)]

WER [%]

Ave. Med. 90th 99th

Baseline MoChA 9.93 11.65 10.00 21.39 44.29
+ Quantity loss 10.30 11.24 10.00 20.39 36.01
DeCoT (6 = 16) 9.13 6.63 8.00 11.71 16.43
- Quantity loss 14.28 3.93 3.00 7.20 27.39
MinLT 9.70 7.06 6.00 10.63 26.76
+ Quantity loss 13.66 6.82 6.00 10.45 25.57




== Microsoft

Ablation study: Decoder side

* Warm start training from the baseline was effective for DeCoT and MinLT

Corpus-level [frame (30ms)]

WER [%]

Med. 90th 99th

Baseline MoChA 9.93 11.65 10.00 21.39 44.29
+ Warm start training 9.21 12.27 11.00 22.23 43.16
DeCoT (6 = 16) 9.13 6.63 8.00 11.71 16.43
- Warm start training 10.72 6.28 7.00 11.12 36.03
MinLT 9.70 7.06 6.00 10.63 26.76
- Warm start training 13.63 11.83 10.00 2141 45.06
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Alignment visualization
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REF: add an event for dinner tomorrow at seven thirty p m
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Conclusion

* Explored to leverage frame-level hard alignments extracted from the
hybrid system to reduce user perceived latency

e Alignments were effective for latency reduction on both sides, and
also improved ASR performance when applying on the decoder side

/ Marginalize
|
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Leverage hard alignments on the decoder side \‘.

i S2S CE loss Lgyg | | Expected latency loss LyinLT |
end (a MoChA *  Minimum latency training (MinLT) :
atten Decoder * Delay constrained training (DeCoT) |

___________________________________________

,' Leverage hard alighments on the encoder side Frame CE
1

The acoustic model
in the hybrid system

* Multi-task w/ framewise CE (MTL-CE)

* Pre-training w/ framewise CE (PT-CE)
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