IMPROVING OOV DETECTION AND RESOLUTION WITH EXTERNAL LANGUAGE MODELS IN ACOUSTIC-TO-WORD ASR

Hirofumi Inaguma Masato Mimura Shinsuke Sakai Tatsuya Kawahara Graduate School of Informatics, Kyoto University, Japan

Background

Acoustic-to-word end-to-end ASR

Pros

- Extremely simplified architecture / training and decoding pipelines
- ◆ Fast decoding (applicable for the real time usage)
- ◆ Extract word-level representations → dialogue, keyword spotting

Cons

- ◆ Data sparseness due to infrequent words
- ◆ Fixed word entry → out-of-vocabulary (OOV) problem
- > Pre-training with a phoneme-level model [Audhkhasi 2017]
- Multi-task learning (MTL) with an auxiliary character-level ASR (A2C) task [Li 2017, Ueno2018]
- > OOV tokens are further recovered from character-level hypothesis [Li 2017, Ueno2018]
 - → A2W models are now open-vocabulary (at least)

Problem of A2W ASR

- > OOV detection is difficult
- → A2W is more likely to recognize OOV words (often infrequent words) incorrectly as other words in the predefined vocabulary
- → Confused with in-vocabulary words with similar pronunciation
- → They cannot be recovered by the A2C model
- > Infrequent words should be recognized by the A2C model
- → A2C is more flexible than A2W for recognizing rare words
- > How to detect OOV words accurately...
 - ⇒ External LM trained with a large text has a role to detect them?

Proposed method

◆ External LM integration for OOV detection (infrequent word recognition)

- Restrict the external LM vocabulary to that of the A2W model
- > External LM has the better ability to detect OOV words based on contextual information since it is trained with a large-scale text
- Probability of the <OOV> class is boosted and OOV words get easier to be detected during inference
 - **→** Increase the number of <OOV> tokens in the hypothesis
- → These <OOV> tokens are recovered by the A2C model

System overview

◆MTL with an auxiliary character-level ASR task

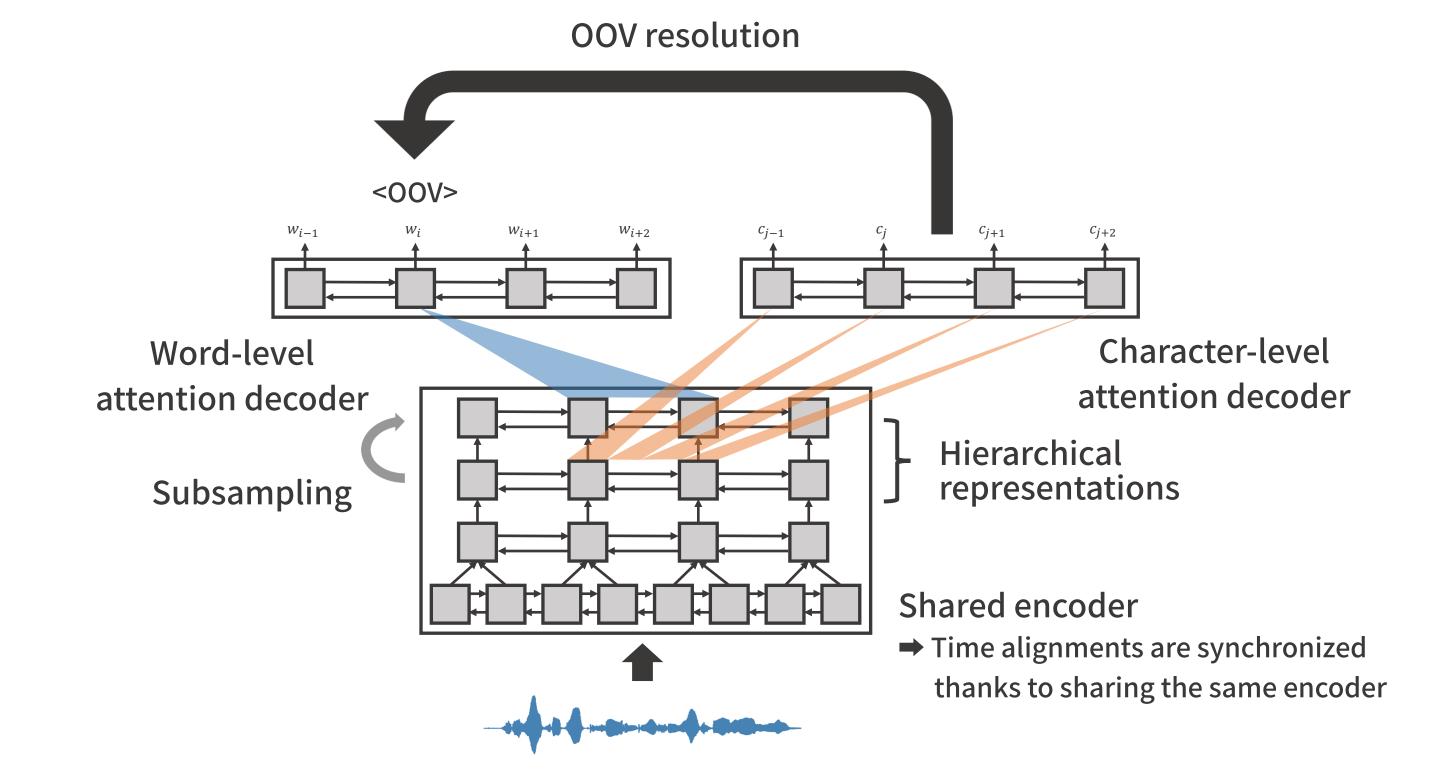
 $\mathcal{L}(x, y^{w}, y^{c}; \theta^{w}, \theta^{c}) = -\lambda \log P(y^{w}|x) - (1 - \lambda) \log P(y^{c}|x)$ λ : tunable parameter $(0 \le \lambda \le 1)$

OOV resolution by character-level hypothesis

Replace <00V> tokens with the corresponding character from the A2C model by computing a position where attention distributions are most overlapped between the A2W and A2C models

Word-level RNNLM integration (shallow fusion)

 $\widehat{y^{\mathrm{w}}} = \operatorname{argmax}_{y^{\mathrm{w}}} \{ log P_{\mathrm{A2W}}(y^{\mathrm{w}}|x) + \beta \ log P_{\mathrm{WLM}}(y^{\mathrm{w}}) + \gamma \ coverage \}$



Experimental Evaluations

Corpus

- 1. Switchboard
 - ASR: 300h
 - RNNLM: 2000h (+ Fisher)
- 2. CSJ (Japanese lecture corpus)
 - ASR: 240h (APS)
 - RNNLM: 600h (+ SPS)

◆Architecture

- ✓ A2W: 5-layer BLSTM encoder + 1-layer LSTM decoder (320 memory cells)
- ✓ A2C: 4-layer BLSTM encoder + 1-layer LSTM decoder
- RNNLM: 2-layer LSTM (512 memory cells)
- \checkmark λ =0.5, β =0.3, γ =0.6/0.2
- ✓ Beam width: 5 (A2W), 1 (A2C)

♦ Results on Switchboard

Model	Resolving OOV	RNNLM	WER (#OOV)			
			SWB	СН	Ave.	
Word CTC	-	×	20.26 (240)	42.32 (358)	31.29	
A2W (baseline)		×	18.99 (154)	38.46 (222)	28.73	
	-	300h	18.45 (<mark>319</mark>)	38.13 (<mark>463</mark>)	28.47 4	
		2000h	18.35 (<mark>322</mark>)	38.13 (<mark>490</mark>)	28.24	
	×	×	18.35 (183)	37.54 (267)	27.95	
A2W + A2C (MTL)		×	18.18 (")	37.40 (//)	27.79	
	×	300h	17.76 (349)	37.26 (513)	27.51	
		300h	17.43 (")	36.99 (//)	27.21	
	×	2000h	17.40 (<mark>346</mark>)	37.00 (<mark>546</mark>)	27.20	
		2000h	17.11 (")	36.71 (")	26.91	

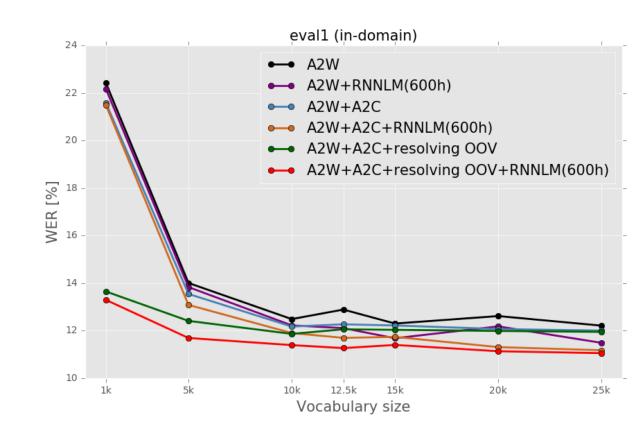
♦ Results on CSJ

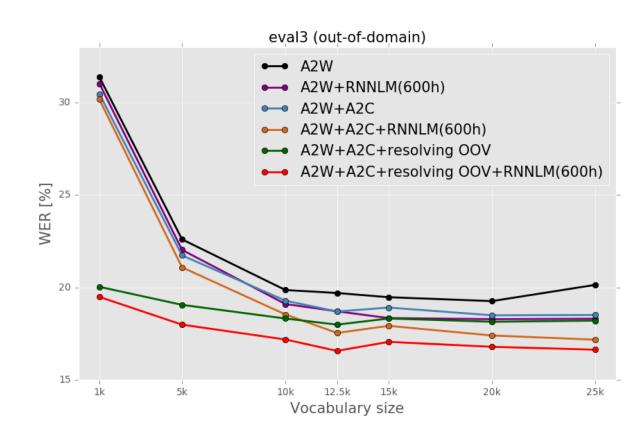
Model	Resolving OOV	RNNLM	WER (#OOV)			
Model			eval1	eval2	eval3*	Ave.
Word CTC	-	×	12.79 (352)	11.12 (469)	20.28 (662)	14.73
A2W (baseline)	-	×	12.89 (265)	10.25 (299)	19.70 (498)	14.28
	-	240h	12.20 (437)	9.73 (531)	19.49 (<mark>761</mark>)	13.80
	-	600h	12.11 (443)	9.65 (516)	18.71 (759)	13.49
A2W + A2C (MTL)	×	×	12.27 (252)	9.96 (334)	18.70 (521)	13.64
		×	12.06 (")	9.67 (")	17.99 (")	13.24
	×	240h	11.71 (441)	9.40 (534)	18.21 (<mark>782</mark>)	13.11
		240h	11.27 (")	8.85 (")	17.20 (")	12.44
	×	600h	11.70 (429)	9.29 (518)	17.54 (788)	12.85
		600h	11.27 (")	8.77 (")	16.57 (")	12.21

* eval3 is the out-of-domain set

- External RNNLM increases the number of recognized <00V> words
- > MTL with an A2C model improves WER
- MTL enhances the effectiveness of RNNLM thanks to generalization effects
- > Recovering <00V> words by the A2C model further improves WER
- MTL + RNNLM integration + OOV resolution was the best
- Effective especially for the out-of-domain sets

Analysis of the vocabulary size (CSJ)





- > MTL + OOV resolution is robust to the vocabulary size
- > MTL + RNNLM integration + OOV resolution is always effective

◆ Decoding speed (CSJ)

- With a single NVIDIA Titan GPU
- > RTF is small enough for the real-time usage
- Computational costSmall vocabulary: OOV resolution > RNNLM
- Large vocabulary: OOV resolution < RNNLM> A2W is faster than A2C

