

Social Signal Detection in Spontaneous Dialogue Using Bidirectional LSTM-CTC

Hirofumi Inaguma¹ Koji Inoue¹ Masato Mimura¹ Tatsuya Kawahara¹ Graduate School of Informatics Kyoto University, Japan

Introduction

Goals

- To detect social signals robustly on <u>the event-level</u> rather than the frame-level

What's social signals?

Speech cues (this study)

- Laughter
- ◆ Filler
- Backchannel
- Disfluency

Visual cues

- **♦** Facial expressions
- Gestures
- Postures
- **♦** Gaze

Social signal detection [Schuller+'13]

- Useful for understanding speakers
- ✓ Informative for dialog systems to behave like human
- Rich annotation

Related works: frame-wise classifiers

- Does not directly lead to the event-unit detection [Gosztolya+'15]
- Frame-level target labels are required (|inputs| = |outputs|)
- Post-processing are required (threshold or HMM etc.)
 - → CTC can solve all these problems!

Approach

Bidirectional Long-Short Term Memory (BLSTM)

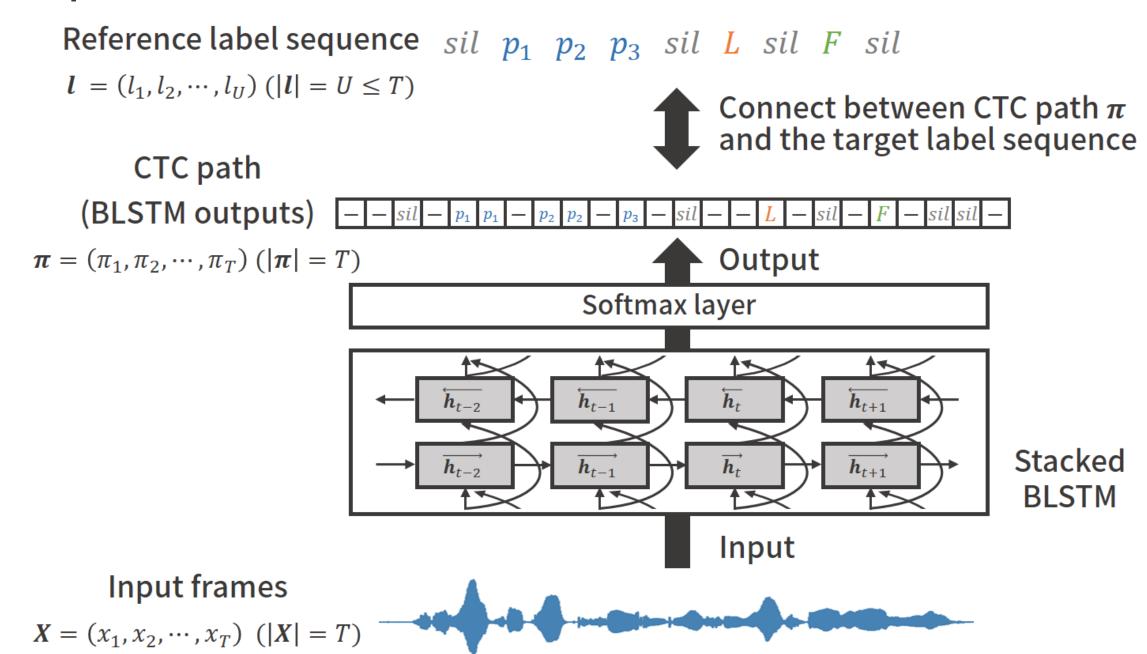
✓ Aim for the accurate detection by using the future context

Connectionist Temporal Classification (CTC) [Graves+'06]

- ✓ A loss function which can optimize sequence labeling <u>where the</u> input and the target label sequence have different lengths
- ✓ Works together with RNNs
- ✓ Removes the need to conduct segmentation
- ✓ Has potential of improving robustness of detection (spike prediction)

Key idea of CTC

- 1. Introduction of a *blank* label (−) (the network emits no labels)
- 2. Allow repetitions of the same labels

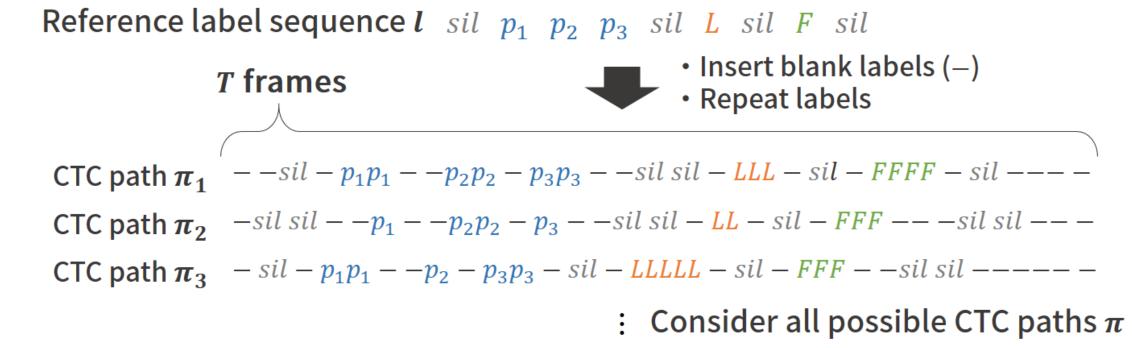


CTC Training

- ✓ Minimize $L_{CTC} = -\ln p(\boldsymbol{l}|\boldsymbol{X})$
- ✓ Marginalize p(l|X) by a summation of probability distribution of <u>all</u> <u>possible frame-level alignments</u>

$$p(l|X) = \sum_{\pi \in \Phi^{-1}(l)} p(\pi|X) = \sum_{\pi \in \Phi^{-1}(l)} \prod_{t=1}^{T} y^{t}_{\pi_{t}}$$

- ✓ Decompose $p(\pi|X)$ based on the conditional independence assumption
- ✓ Compute p(l|X) efficiently with the forward-backward algorithm



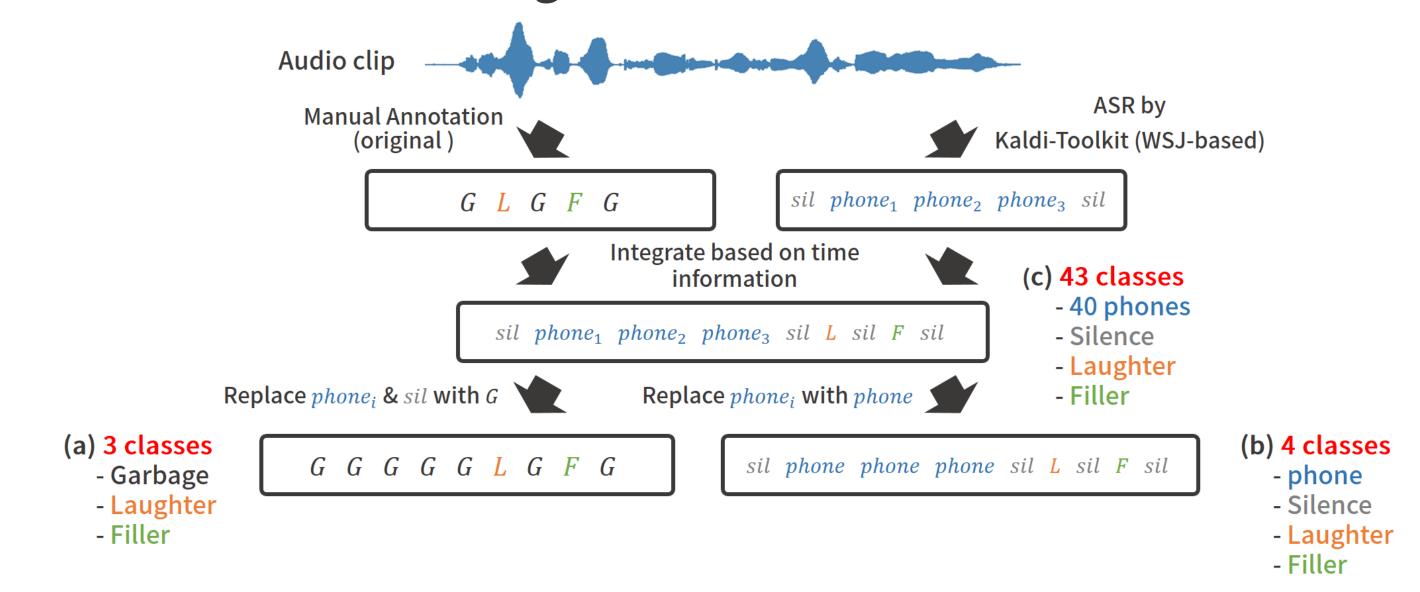
CTC Decoding

- 1. Remove repetitions
- 2. Remove all blank labels

Experiments

The SSPNet Vocalization Corpus (SVC)

- ✓ Used in Interspeech 2013 ComParE (total 8.4h) [Schuller+'13]
- ✓ Laughter, Filler, Garbage (speech and silence)
- ✓ Not transcripts available in SVC
- ✓ Target labels corresponding to acoustic events in the input are required (speech or silence)
- Generation of training labels for CTC

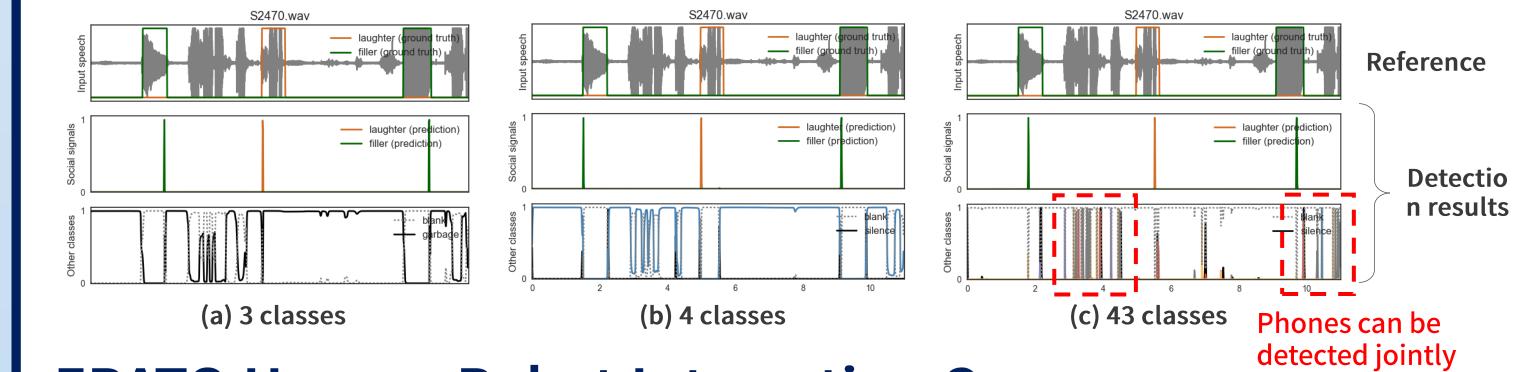


Results

Class	Model	Laughter			Filler			Ave.
Class		Prec.	Rec.	F_1	Prec.	Rec.	F_1	F_1
	AdaBoost-HMM [Gosztolya+ '15]	0.58	0.74	0.65	0.65	0.71	0.68	0.66
3	DNN-HMM	0.58	0.72	0.64	0.71	0.60	0.65	0.65
	(a) BLSTM-CTC	0.65	0.66	0.66	0.66	0.80	0.72	0.69
4	(b) BLSTM-CTC	0.60	0.49	0.54	0.59	0.78	0.67	0.61
43	(c) BLSTM-CTC	0.79	0.51	0.62	0.71	0.78	0.74	0.68

CTC outperformed the conventional frame-wise classifiers even without time information in the training stage

CTC outputs (posteriors)



ERATO Human-Robot Interaction Corpus

- ✓ Japanese face-to-face spontaneous dialog with an android ERICA, which was remotely operated
- √ 91 sessions (about 10 min/session, total 16.8h)
- ✓ Laughter, Filler, Backchannel, Disfluency
- √ 4 social signals + 83 Japanese kana characters + space
- Generation of training labels for CTC
- ✓ Insert each social signal label in front of the corresponding word

$word_1$ (Laughing $word_2$) $word_3$	$\rightarrow word_1 \ L \ word_2 \ word_3$
$word_1$ (Filler $word_2$) $word_3$	$\rightarrow word_1 F word_2 word_3$
$word_1$ (Backchannel $word_2$) $word_3$	\rightarrow word ₁ B word ₂ word ₃
$word_1$ (Disfluecy $word_2$) $word_3$	$\rightarrow word_1 D word_2 word_3$

Results

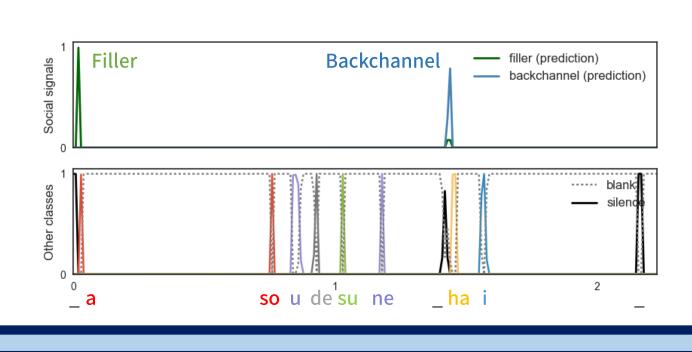
Social signals	Prec.	Rec.	F_1
Laughter	0.89	0.35	0.50
Filler	0.75	0.75	0.75
Backchannel	0.86	0.87	0.86
Disfluency	0.44	0.15	0.22

Social signals	CER (%)	
BLSTM-CTC (w/o social signals)	19.1	
BLSTM-CTC (w/ social signals)	18.6	

Joint-training with social signals improved character-level speech recognition accuracy

CTC outputs (posteriors)

CTC could capture relationships between social signals and subwords



Conclusions

Summary

- ✓ Robust social signal detection on the event-level by BLSTM-CTC
- Removed the need of pre-alignment and post-processing
- Outperformed the conventional frame-wise classifiers
- Alignments are generally matched with the actual timing of the occurrence of social signal events

Future work

- ✓ Evaluate with large dataset
- ✓ Attention-based detection