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Abstract

Reverberant environment poses a problem in
speech recognition application where perfor-
mance degrades drastically depending on the
extent of reverberation. Thus, it is impor-
tant to employ front-end speech processing,
such as dereverberation to minimize its ef-
fect. Most dereverberation techniques used
to address this problem enhance the reverber-
ant waveform prior to speech recognition. Al-
though the speech quality is improved, this
approach treats the front-end speech enhance-
ment and the recognizer independently. In this
paper, we present an approach that treats both
dereverberation and speech recognition inter-
dependently. In our proposed approach, the
dereverberation parameters are optimized to
improve the likelihood of the acoustic model.
The system is capable of adaptively fine-tuning
these parameters jointly with acoustic model
training. Additional optimization is also im-
plemented during decoding of the test utter-
ances. Experimental results show that the pro-
posed method significantly improves the recog-
nition performance over the conventional ap-
proach with a relative improvement of 5%.

1 Introduction

In hands-free speech recognition applications, the ob-
served speech signal at the microphone is smeared by
a phenomenon known as reverberation. This is due to
the reflection of the speech signal inside a closed space
(i.e. room). The smearing varies significantly with the
property and dimension of the room. The recognition
performance of a reverberant test utterance using a re-
verberant model is significantly degraded compared to
the performance of non-reverberant test utterance with a
non-reverberant model. Thus, it is imperative to counter
the negative effect of reverberation both the test data
and the acoustic model.
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Figure 1: Measured impulse response energy.

We have proposed a single channel framework derever-
beration technique based on multi-band Spectral Sub-
traction (SS) [1][2]. Similar approach based on single-
band SS has been proposed in the work of [3]. In
the multi-band SS dereverberation technique, the late
reflection of the observed reverberant signal is sup-
pressed through multi-band SS, whereas the early rever-
berant part (early reflection), more likely to vary with
microphone-speaker distance, is handled through Cep-
strum Mean Normalization (CMN) [4] [5]. The extent of
suppressing the effects of the late reverberant signal is
a function of the multi-band coefficients which are opti-
mized using Minimum Mean Square Error (MMSE) cri-
terion. Although this scheme works well, this criterion is
inclined in optimizing the effect of dereverberation in the
waveform level. Typically, this is a speech enhancement
approach which improves the quality of the signal prior
to acoustic modeling and recognition. This set-up treats
the speech enhancement and recognition independently.

In this paper, we propose to treat these two inter-
dependently by optimizing the dereverberation param-
eters based on the speech recognizer. Instead of just
using the MMSE, we modified the criterion to directly
optimize the likelihood of the recognizer. In this paper,
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Figure 2: Late reflection boundary identification using
recognition experiments and the measured room impulse
response.

the optimization process of the dereverberation param-
eters is embedded in the acoustic model training. As a
result, the dereverberation parameters are updated to-
gether with the acoustic model. This kind of approach,
where front-end speech processing is optimized for recog-
nition is shown to be effective with promising results in
microphone array applications [6][7] and in Vocal Tract
Length Normalization (VTLN) [8][9][10].

The organization of the paper is as follows; in section
2, we discuss the background of reverberation including
its mathematical model as a function of early and late
reflection. We also discuss the concept of multi-band
SS based on the MMSE criterion as a dereverberation
scheme. In section 3, we present the optimization in the
acoustic model training phase. This involves optimiza-
tion of the multi-band SS parameters based on the like-
lihood. In section 4, the optimization during decoding is
presented. Experimental results are given in section 5,
and we will conclude this paper in section 6.

2 Dereverberation Scheme

In this section, we discuss the significance of the room
impulse response and its effect in the context of early
and late reflection. In addition, we explain its charac-
teristics relative to the Hidden Markov Model (HMM)
structure. Consequently, we present the mathematical
concept of multi-band Spectral Subtraction as a derver-
beration technique used in suppressing the effects of the
late reflection.

2.1 Reverberation and Impulse Response

A reverberant speech signal contains the effects due to
the early and late reflection. Room impulse response
gives a good insight of reverberation and is often used to
experimentally create a reverberant speech. When re-
ferring to the early reflection, we include by definition
the direct speech signal and the overlapping of speech at
earlier time. The late reflection however, is the collec-
tive overlapping of reflected speech at much later time.
The following are the characteristics of the early and

late reflection based on the energy plot of the measured
impulse response h(n)shown in Figure 1:

(1) Early reflection has higher energy compared to the
late reflection. Thus the speech signal in this region
is dominant.

(2) Early reflection has a more dynamic value as com-
pared to the late reflection which tend to be static
over time. This characteristic implies that the effect
of the late reflection can be approximately treated
as constant. Since late reflection is a result of the
overlapping of the speech signal in a much later
time, a static energy means that as the distance
between the speaker and the microphone increases,
the characteristic of the late reflection remains rel-
atively the same. Hence, a single impulse response
measurement is enough to represent the different
microphone-speaker locations. This treatment can-
not be applied to the early reflection as its dynamic
nature suggests that is sensitive to microphone-to-
speaker locations.

(3) When considering a 3-state HMM architecture
which has a 25 msec window and 10 msec window
period, the early reflection occurs within the HMM
architecture is designed to handle. Whereas, late
reflection falls outside of the analysis framework.

Based on the arguments above, it is reasonable to ar-
gue that it would be beneficial to remove only the effect
of late reflection through signal processing (i.e. using
Spectral Subtraction) and retain the effect of the early
reflection. The latter is more dependent with speaker-
microphone distance, thus removing it together with the
late reflection would require different impulse response
measurement depending on the different microphone-
speaker locations. In addition, the early reflection can
be handled by the model-based system (HMM) through
Cepstral Mean Normalization [4] [5].

2.2 Spectral Subtraction-based
Dereverberation

In this section we outline the conventional dereverbera-
tion technique based on multi-band SS [1][2]. The speech
signal has a strong correlation within each local time
frame due to articulatory constraints. However, this cor-
relation is lost according to articulatory movements [3].
As a result, it is established that early and late reflection
are uncorrelated. Thus the reverberant speech signal
z(n) can be modeled as

z(n) = zp(n) +xr(n), (1)

where 2 (n), z1(n) are the uncorrelated early and late
reflection components of the reverberant signal x(n). If
we denote s(n) as clean speech, and the measured room
impulse as h(n) = [hg(n),hr(n)] where early compo-
nents hg(n) and late components hr(n) of the whole
sample h(n) are identified in advance, Eq (1) can be
written as,
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Figure 3: Block diagram of the proposed optimization technique in the acoustic training phase.

x(n) = hg *s(n) + hy * s(n). (2)

The boundary of the early and late reflection is very
important in our model. Figure 2 is used in identifying
the said boundary, where the horizontal axis represents
the length of the impulse response and the vertical axis
shows the recognition performance. It is obvious in this
figure that the steep decrease in the performance starts
at 70 ms which suggests the beginning of the effect of
the late reflection. The steep decrease is attributed to
the fact that the recognizer cannot deal with reverbera-
tion that fall outside of the 3-state HMM structure (i.e.
caused by zr(n)). Moreover, the insignificant decrease
in the recognition performance within 70msec suggest
that the recognizer can handle the effect due to zg(n).

In the SS-based dereverberation, we are only inter-
ested in recovering g (n) from x(n). Thus, we use spec-
tral subtraction to remove the effect of zp(n). Theo-
retically, it is possible to remove entirely the effect of
the whole impulse response h(n), but robustness to the
microphone-speaker location cannot be achieved since
the early components hg(n) have high energy and is de-
pendent on the distance between the microphone and
speaker as explained in [1] [2]. In the multi-band SS ap-
proach, the effect of zg(n) is addressed through Cepstral
Mean Normalization (CMN), which can be handled by
the recognizer as it falls within the frame. Thus, only
xr,(n) is removed through the multi-band SS as its effect
falls outside the frame in which the recognizer operates.
The power spectra of zg(n) can be obtained through the

multi-band SS,

X(F P = BXa(F DR
\Xp(f,7)| = if [X(f,7)[* — 6k XL(f, 7)|° >0
B1XL(f,7)|* otherwise

3)
for f € By where By, is the corresponding band, with
3 the flooring coefficient. | X (f,7)|? and | XL (f, )| are
the power spectra of the reverberant signal and its late
reflection, respectively. The values of § coefficients are
derived through an offline training which minimizes the
error of the estimate | X (f,7)| under the MMSE crite-
rion. Details in the choice of the number of bands, the
values of § coefficients (through offline training), and the
effective identification of the late components of the im-
pulse response hz,(n) are discussed in [1] [2].

3 Optimization of Dereverberation
Parameters for Acoustic Modeling

The conventional approach adopts MMSE in deriving
the coefficients used in dereverberation. The derived co-
efficients are used to process the reverberant signal, and
then the acoustic model is trained using the enhanced
data. We present two methods that optimize the dere-
verberation parameters jointly with acoustic modeling.
This principle is also applied during actual recognition
which will be discussed in Section 4. The two methods
are explained as follows:

3.1 Batch Optimization Method

The proposed optimization of the multi-band SS is
shown in Fig. 3. We opt to optimize each band sequen-
tially starting from the first band m = 1 to m = M. The
band coefficient to be optimized is allowed to change



Table 1: System specifications

Sampling frequency 16 kHz
Window Frame length 25 ms
Window Frame period 10 ms

Pre-emphasis 1-0.97271

Feature vectors

12-order MFCCs,
12-order A MFCCs
l-order A E

HMM 8000 Gaussian pdfs
Training database Male and Female Adult by JNAS
Test data Male and Female Adult by JNAS

Table 2: Basic Recognition Results

Methods 200 msec | 600 msec
(A) No processing 68.6 % 44.0%
(B) Conventional: MMSE 80.1 % 62.3%
(C) Batch (training only) 81.3 % 64.3%
(D) Incremental (training only) 82.4 % 65.4%
(E) Batch (training/decoding) 83.1 % 66.1%
(F) Incremental (training/decoding) | 84.5 % 67.5%

within a close neighborhood n/A where n = 1...N and
A = 0.02. The reverberant observation data x is dere-
verberated using the multi-band SS. The rest of the
bands are fixed to the MMSE-based estimates except
for the band to be optimized. Thus, if the band to be
optimized is band m = 1, we generate a set of coeflicients
d(L,n) = [ (D) mmse + n N, 82 mmse, 6(m)mvse
sy O(M)pmsk], and execute SS using the generated
coefficients. The resulting data zg(d(1,n)) are evaluated
using the HMM-based acoustic model which is trained
with data processed with MMSE-based SS parameters,
denoted as A\ = Aymse. A Likelihood score is com-
puted for each of the data processed with different SS
conditions. Based on this result, §(m),p: that has the
corresponding highest likelihood score is selected. The
whole process from SS to likelihood evaluation is ap-
plied to all M bands independently. After all of the
bands are optimized, the set of optimal SS coeflicients
[0(L)opts - 6(M)opt] is used to process the reverberant
data and proceed to acoustic model training. The result-
ing acoustic model will be used in the actual recognition.

3.2 Incremental Optimization Method

We extend the above batch optimization method. The
additional process introduced is shown in dashed lines
in Fig 3. Right after the optimal coefficient of band 1 is
found, the acoustic model is re-estimated using the up-
dated SS parameters. The newly re-estimated model A\;
is then used in the likelihood evaluation block for band
2, and this process is iterated until §(M)ep: is found for
the Mth band. This approach, referred to as incremental
optimization method, has the same principle with the
batch method, except for the incremental updates of the
HMM parameter A in every band. In the batch method,
we fixed A = Ayyrsg all throughout the bands. The in-

cremental re-estimation allows us to treat each band in-
terdependently in a sequential manner as opposed to the
batch optimization method where each band is treated
independently.

4 Optimal Parameter Selection During
Decoding

Further optimization is implemented during actual
recognition. Using the acoustic model processed with
the optimal multi-band SS parameters in section 3, we
evaluate a likelihood given a dereverberated test utter-
ance. The reverberant test data are processed in the
same manner as the optimization of the bands in the
acoustic training phase, producing a set of processed ut-
terances. These utterances are then evaluated with the
acoustic model. The corresponding multi-band coeffi-
cient that gives the highest likelihood is selected for each
band which is similar to that shown in Fig 3, and used
for the final recognition. Since the dereverberation based
on the multi-band SS depends on the room impulse re-
sponse measurement, it is possible that the initial con-
dition of the room impulse response used in training the
model is not maintained in the actual recognition. Thus,
the additional optimization during decoding is beneficial
to the system in minimizing the mismatch between the
actual test data and the acoustic model.

5 Experimental Evaluation

For evaluation of the proposed method, we used the
training database from Japanese Newspaper Article Sen-
tence (JNAS) corpus. The test set is composed of 200 ut-
terances taken outside of the training database. Recog-
nition experiments are carried out on the Japanese dic-
tation task with 20K-word vocabulary. System specifi-
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Figure 5: Performance when used in adaptation

cation is summarized in Table 1. The language model is
a standard word trigram model. We experimented us-
ing two reverberant conditions: 200 msec and 600 msec.
Reverberant data were made by convolving the clean
database with the measured room impulse response [11].
The measured room impulse response contained flutter
echo which is inherent of the actual room acoustics. In
this experiment we use total number of bands M = 5
which is consistent to that of the former work [1][2].

5.1 Recognition Performance

Table 2 shows the basic recognition performance (word
accuracy) of the proposed method in 200 msec and 600
msec reverberant conditions. (A) is the performance for
reverberant test data (without dereverberation) using a
clean acoustic model. (B) is for the conventional MMSE-
based approach when both the test and training data are
dereverberated with the conventional MMSE-based SS.
(C) and (D) are the results of the proposed optimization
for the batch and incremental methods, respectively. It
is confirmed that the proposed front-end dereverbera-
tion optimization considering acoustic likelihood is more
effective than the conventional MMSE-based method.
And the incremental model update performs better than
the batch training. In (E) and (F), we show that the
performance of the system is further improved when op-
timization is also applied in the decoding process. Thus,
optimizing dereverberation in both the acoustic model-

ing phase and decoding phase result in a synergetic effect
in improving recognition accuracy. As a whole, we have
achieved a relative 5% improvement over the baseline
MMSE-based method.

5.2 Robustness of the Proposed Method

We also performed experiments regarding the robust-
ness of the proposed approach. In real environment con-
dition, it is possible that room impulse response may
have considerably changed due to the additional pres-
ence/absence of physical fixtures inside the room which
were absent during the measurement causing a mismatch
between the acoustic model and the test data. By using
different impulse responses in creating the reverberant
test data and the training data, we simulate a mismatch
of the reverberant condition and investigate the robust-
ness of the proposed method as shown in Fig. 4. It is
apparent that the change in the recognition performance
from (matched) to (mismatched) is much smaller under
the proposed method than in the conventional approach
using MMSE criterion. We note that unlike the conven-
tional method, the proposed approach is capable of opti-
mizing the dereverberation parameters during the actual
recognition which can further minimize mismatch.

5.3 Evaluation with MAP and MLLR

Then, we extend the proposed optimization technique
to the adaptation scheme like MAP and MLLR. In this



case, we execute an iterative MAP and MLLR, and in
each iteration we optimize the dereverberation parame-
ters together with the 50 adaptation utterances. Recog-
nition results shown in Figure 5 demonstrates that the
proposed approach is effective in conjunction with adap-
tation, especially with MLLR, and the advantage over
the conventional method is maintained after the adap-
tation.

5.4 Faster Implementation of the Proposed
Optimization Technique

The proposed optimization process outlined in Fig 3 that
uses HMM in evaluating the likelihood is confirmed to
be effective in optimizing the dereverberation parame-
ters. However, this process takes a lot of time and it is
desirable to replicate the same performance in a shorter
period of time. We try to use Gaussian Mixture Model
(GMM) with 64 mixture components instead of HMM
in finding the optimal parameters. A separate HMM is
trained /updated only after the optimal parameters are
found through GMM. This means that GMM is used for
the optimization process and HMM is used for the actual
speech recognition. This approach has been shown to be
effective in VTLN [10].

In Fig. 6, we show the result for using both GMM and
HMM in finding the optimal multi-band SS parameters.
We can observe a negligible difference in word accuracy
between GMM and HMM. With the GMM implemen-
tation, we reduced optimization time up to 10%. This
implementation makes decoding in section 4 practical.

6 Conclusion

We have presented the front-end dereverberation tech-
nique which is optimized based on the likelihood of
the speech recognizer. The proposed is applied to the
acoustic model training phase and the actual decoding
phase. Both effects are confirmed, realizing significantly
better performance than the conventional MMSE-based
method which optimizes the parameters independent of
speech recognition. We have also presented a method
of speeding up the optimization process through the use
of GMM which renders the decoding to be fast. In our
future works, we will expand the current approach to
an unknown room impulse response, where we can re-
place the room acoustics dependency with recognizer-
based optimization in enhancing the reverberant speech
signal for robust speech recognition.
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