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ABSTRACT
This paper presents a statistical multipich analyzer based
on a source-filter model that decomposes a target music
audio signal in terms of three major kinds of sound quan-
tities: pitch (fundamental frequency: F0), timbre (spectral
envelope), and intensity (amplitude). If the spectral enve-
lope of an isolated sound is represented by an all-pole filter,
linear predictive coding (LPC) can be used for filter esti-
mation in the linear-frequency domain. The main problem
of LPC is that although only the amplitudes of harmonic
partials are reliable samples drawn from the spectral enve-
lope, the whole spectrum is used for filter estimation. To
solve this problem, we propose an infinite superimposed
discrete all-pole (iSDAP) model that, given a music signal,
can estimate an appropriate number of superimposed har-
monic structures whose harmonic partials are drawn from
a limited number of spectral envelopes. Our nonparamet-
ric Bayesian source-filter model is formulated in the log-
frequency domain that better suits the frequency character-
istics of human audition. Experimental results showed that
the proposed model outperformed the counterpart model
formulated in the linear frequency domain.

1. INTRODUCTION

Statistical modeling of music audio signals based on ma-
chine learning techniques is a hot topic in the field of music
signal analysis. In particular, nonnegative matrix factoriza-
tion (NMF) has often been used for multiple fundamental
frequency (F0) estimation (multipitch analysis) and source
separation [1–4, 7, 14, 15, 17, 21–26]. The standard NMF
approximates a nonnegative spectrogram (matrix) as the
product of two nonnegative matrices: a set of basis spec-
tra and a set of the corresponding activations. An efficient
multiplicative-updating (MU) algorithm was proposed for
minimizing a cost function that measures the approxima-
tion error [18]. This was later found to be maximum like-
lihood estimation of a particular probabilistic model [5].

Statistical source-filter models, which were inspired by
the simplified model of the speech production mechanism,
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Figure 1. Overview of infinite superimposed discrete all-
pole (iSDAP) modeling: We take the infinite limit as both
the numbers of sources and filters, I and J , go to infinity.

have often been proposed for representing musical instru-
ment sounds [7,14,25]. The pitches and timbres of musical
instrument sounds are well characterized by fine structures
(sources) and spectral envelopes (filters) in the frequency
domain. Since the human auditory system is sensitive to
spectral peaks and formants, the spectral envelope of each
frame is usually modeled by an all-pole frequency transfer
function (frequency response of an autoregressive (AR) fil-
ter) [14]. A classical method of all-pole spectral envelope
estimation called linear predictive coding (LPC) [16] cor-
responds to maximum likelihood estimation of a particular
probabilistic model under a strong assumption that source
signals have the flat spectrum (white noise).

The composite autoregressive (CAR) modeling [17] is
a promising statistical approach that overcomes the limi-
tation of classical source-filter modeling in the framework
of NMF. A given audio spectrogram is decomposed into
specified numbers of fine structures (sources) and spectral
envelopes (filters). A key feature of this approach is that
source spectra themselves can be estimated (not limited
to white noise) at the same time as all-pole spectral enve-
lope estimation. The probabilistic interpretation of source-
filter NMF makes it possible to formulate a nonparamet-
ric Bayesian extension called infinite CAR (iCAR) model-
ing that can automatically choose the appropriate numbers
of sources and filters according to a given audio spectro-
gram [26]. Another useful extension is to restrict source
spectra to harmonic structures by using parametric func-
tions [26]. The F0s of source spectra can be estimated in a
principled maximum-likelihood framework.

Conventional methods of source-filter NMF including
CAR [7,14,17,25,26] have two major problems as follows:
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1. All the frequency bins are taken into account for
spectral envelope estimation although only the am-
plitudes of harmonic partials can be regarded as re-
liable samples from spectral envelopes.

2. Linear-frequency spectrograms given by short-time
Fourier transform (STFT) are used for all-pole mod-
eling although log-frequency spectrograms given by
wavelet or constant-Q transform better suit the fre-
quency characteristics of human audition.

To solve these problems, we propose a new statistical
approach to source-filter NMF called infinite superimposed
discrete-all pole (iSDAP) modeling. Our approach is based
on a well-known technique called discrete all-pole (DAP)
modeling [8] that takes into account only the peaks of har-
monic partials for spectral envelope estimation. To deal
with polyphonic music audio signals, however, we need to
separate individual harmonic structures and estimate their
F0s (positions of discrete harmonic partials). A major con-
tribution of this study is to extend the DAP modeling for
dealing with an arbitrary number of superimposed harmonic
structures in a similar way to the iCAR modeling. This en-
ables us to decompose a log-frequency spectrogram into
appropriate numbers of pitches (F0s), timbres (spectral en-
velopes), and their volumes by leveraging the frequency-
scale-free characteristics of the DAP modeling.

2. RELATED WORK

This section reviews probabilistic models of source-filter
decomposition, NMF, and source-filter NMF as a basis of
formulating the iSDAP model. Most conventional models
are formulated in the linear frequency (STFT) domain.

2.1 Linear Predictive Coding (All-pole Modeling)
The linear predictive coding (LPC) [16] is a signal model-
ing method that can be used for estimating the spectral en-
velope of an observed spectrum. The underlying assump-
tion is that the corresponding audio signal x = {xm}1

m=�1
(a local signal {xm}M

m=1 is infinitely repeated) follows a
P -order autoregressive (AR) process as follows:

xm = �
P

X

p=1

apxm�p + sm i.e.,
P

X

p=0

apxm�p = sm, (1)

where a = [a0, · · · , aP ]T is a vector of AR coefficients
(a0 = 1) and {sm}M

m=1 is a set of prediction errors. Eq. (1)
can be interpreted in terms of source-filter modeling, i.e.,
when x is a speech signal, s is an excitation signal gener-
ated by the vocal cords (source) and a represents the reso-
nance characteristics of the vocal tract (filter).

Eq. (1) can be regarded as a linear system (governed by
a) that takes s as input and then gives x as output. Since
Eq. (1) is a convolution of a with x, we can say

A(z)X(z) = S(z) i.e., X(z) = S(z)F (z), (2)

where X(z) and S(z) are the z-transforms of x and s, re-
spectively, which are given by

X(z) =
1
X

m=�1
xmz�m and S(z) =

1
X

m=�1
smz�m, (3)
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Figure 2. Spectral envelopes estimated by LPC and DAP.

and F (z)
def
= 1

A(Z) is an all-pole transfer function given by

F (z) =
1

A(z)
=

1
PP

p=0 apz�p
. (4)

Letting 2⇡ m
M = !m and substituting z = ei!m into Eq. (2),

we get the Fourier-transform representation as follows:

X(ei!m) = S(ei!m)F (ei!m), (5)

where {X(ei!m)}M
m=1 is the complex spectrum of the ob-

served signal x, {S(ei!m)}M
m=1 is that of the source signal

s, and {F (ei!m)}M
m=1 is the frequency characteristics of

the all-pole transfer function.
The goal of LPC is to estimate a set of AR coefficients

a under a strong unrealistic assumption that the source sig-
nal s is Gaussian white noise. This means that S(ei!m) is
complex Gaussian-distributed as follows:

S(ei!m) ⇠ Nc(0, �2), (6)

where �2 is the power of the white spectrum of the source
signal s. Using Eq. (5) and Eq. (6), we get

X(ei!m) ⇠ Nc(0, �2|F (ei!m)|2). (7)

Letting Xm = |X(ei!m)|2 and Fm = |F (ei!m)|2, we
briefly rewrite Eq. (7) as follows:

Xm ⇠ Exponential(�2Fm), (8)

where {Xm}M
m=1 is the power spectrum of the observed

signal x and {Fm}M
m=1 is the spectral envelope of {Xm}M

m=1,
as shown in Figure 2. Eq. (8) defines the probabilistic model
of LPC. {Fm}M

m=1 (i.e., a) and �2 can be estimated in a
maximum-likelihood manner [16].

The main problem of LPC is that if we analyze a pitched
sound derived from a periodic source signal (e.g., vibration
of strings), the estimated envelope {Fm}M

m=1 loosely fits
the observed spectrum {Xm}M

m=1 and its peaks (formants)
tend to be biased to the positions of harmonic partials. This
is because all M frequency bins are used for all-pole mod-
eling although in reality only the amplitudes of harmonic
partials can be considered to be reliable samples from the
spectral envelope.

2.2 Discrete All-pole Modeling
The discrete all-pole (DAP) modeling [8] is a well-known
spectral envelope estimation method that was proposed for
solving the problem of LPC. Since DAP is an extension of
LPC, the probabilistic model of DAP has the same form
as Eq. (8). A key feature of DAP is that Eq. (8) is defined
over only a partial set of frequency bins, ⌦, as follows:

Xm ⇠ Exponential(�2Fm) m 2 ⌦, (9)
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where if ⌦ = {1, · · · , M}, DAP reduces to LPC. To esti-
mate the spectral envelope of a harmonic spectrum, we can
take into account only the discrete frequencies of harmonic
partials. The estimated envelope passes close to the peaks
of harmonic partials (Figure 2). To maximize the likeli-
hood given by Eq. (9), an efficient algorithm was proposed
for alternately optimizing a and �2 [8]. It was later found
as a multiplicative updating algorithm [1, 14].

The main limitation of DAP is that the F0 and its over-
tones of an observed spectrum {Xm}M

m=1 should be given
in advance for defining a set of discrete frequencies to be
considered, ⌦. To analyze polyphonic music audio signals
consisting of superimposed harmonic structures, we need
to separate harmonic structures and estimate their F0s.

2.3 Composite Autoregressive Modeling

The composite autoregressive (CAR) modeling [17] is a
variant of source-filter NMF that is used for decomposing a
linear-frequency mixture spectrogram into I fine structures
(sources) and J spectral envelopes (filters), as shown in
Figure 3. Let X be an M ⇥N power spectrogram, where
M is the number of frequency bins and N is the number of
frames. The nonnegative matrix X is factorized into three
kinds of “factors” S, F , and H as follows:

Xmn ⇡
I

X

i=1

J
X

j=1

SimFjmHnij
def
= Ymn, (10)

where {Sim}M
m=1 is the linear-frequency power spectrum

of source i, {Fjm}M
m=1 is that of filter j, and Hnij is the

gain of a pair of source i and filter j at frame n. All these
variables should be estimated from X .

2.3.1 Original Formulation

The probabilistic model of CAR can be formulated by pre-
cisely modeling source signals in a statistical manner. To
avoid the unrealistic assumption of LPC that each source
signal is Gaussian white noise (Eq. (6)), we assume

Si(e
i!m) ⇠ Nc (0, Sim) , (11)

where {Si(ei!m)}M
m=1 is the complex spectrum of source

i. Using Eq. (5) and Eq. (11), we get

Xijmn(ei!m) ⇠ Nc (0, SimFjmHnij) , (12)

where {Xijmn(ei!m)}M
m=1 is a latent complex spectrum

generated from source i and filter j at frame n. Using the
reproducing property of the Gaussian and Eq. (10), we get

Xmn(ei!m) ⇠ Nc (0, Ymn) , (13)

where {Xmn(ei!m)}M
m=1 is the observed complex spec-

trum at frame n. Eq. (13) is equivalent to

Xmn ⇠ Exponential (Ymn) , (14)

where E[Xmn] = Ymn is satisfied and {Xmn}M
m=1 and

{Ymn}M
m=1 are the power spectra of frame n.

This means that the Itakura-Saito (IS) divergence is the-
oretically justified as a cost function that evaluates the error
between Xm and Ym in Eq. (10) [17]. In general, however,
optimization algorithms tend to get stuck in bad local min-
ima because the IS divergence is not convex w.r.t. Ymn.
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Figure 3. Overview of composite autoregressive (CAR)
modeling defined in the linear frequency domain.

2.3.2 Several Extensions

Another probabilistic model of CAR was proposed by us-
ing the Kullback-Leibler (KL) divergence instead of the IS
divergence as a cost function for a practical reason [26].
Instead of Eq. (14), we assume

Xmn ⇠ Poisson (Ymn) , (15)

where E[Xmn]=Ymn holds. {Xmn}M
m=1 and {Ymn}M

m=1

are the amplitude spectra of frame n because KL-NMF
models are usually formulated in the amplitude domain by
assuming the amplitude additivity [10, 18].

A nonparametric Bayesian extension called infinite CAR
enables us to automatically estimate appropriate numbers
of sources and filters according to the observation X [26].
This technique is based on gamma process NMF [15].

Another extension of CAR is to force the amplitude
spectrum of each source {Sim}M

m=1 to have a harmonic
structure [26]. If the source signal is a train of periodic im-
pulses (an idealized model of the vocal chords), {Sim}M

m=1

has a harmonic structure consisting of equally-spaced har-
monic partials with the same weight. The optimal value
of the F0 can be estimated such that the likelihood given
by Eq. (15) is maximized. This technique of F0 estimation
has a potential to solve the limitation of DAP.

3. PROPOSED MODEL

This section presents a nonparametric Bayesian approach
called infinite superimposed discrete all-pole (iSDAP) mod-
eling for source-filter decomposition of wavelet spectro-
grams. Our model can estimate multiple F0s at each frame
and discover several kinds of instrument timbres (all-pole
spectral envelopes) from polyphonic music audio signals.
To achieve this, we integrate the technique of discrete all-
pole (DAP) modeling [8] into the framework of composite
autoregressive (CAR) modeling [17, 26] in a probabilistic
manner. The iSDAP model can be regarded as a Bayesian
extension of log-frequency source-filter NMF based on a
single filter [19], and has all of the following features:

1. Superimposed DAP modeling: Our model can esti-
mate the spectral envelope of each of harmonic struc-
ture contained in mixed sounds. The original DAP
model can deal with only isolated sounds [8].

2. Precise F0 modeling: Each frame is allowed to con-
tain a unique set of F0s (sources) for capturing fine
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fluctuations of F0s (e.g., vibrato). The original CAR
models [17,26] assume that a common set of source
spectra (semitone-level F0s) is shared over all frames.

3. Log-frequency modeling: Our source-filter model
can deal with wavelet spectrograms that suit the char-
acteristics of human audition by leveraging an ad-
vantage of DAP modeling that only discrete frequen-
cies are required for spectral envelope estimation.

4. Bayesian nonparametrics: Our model can estimate
effective numbers of sources and filters according to
a given spectrogram by allowing unbounded (infinite
in theory) numbers of sources and filters to be used.

3.1 Model Formulation

We explain a probabilistic model of iSDAP. Let X be an
M ⇥N log-frequency amplitude spectrogram with M fre-
quency bins and N frames. The nonnegative matrix X is
factorized in a similar way to Eq. (10) as follows:

Xmn ⇠ Poisson

0

@

I!1
X

i=1

J!1
X

j=1

✓ni�jWnijmHnij

1

A, (16)

where ✓ni is the local weight of source i at frame n, �j

is the global weight of filter j, and Hnij is the gain of a
pair of source i and filter j at frame n. {Wnijm}M

m=1 is
the amplitude spectrum derived from the source-filter pair
at frame n. Note that ✓ni and Wnijm are allowed to vary
over time to represent the F0 fluctuation unlike Eq. (10).
We aim to perform sparse learning of weight vectors ✓n =
[✓n1, · · · , ✓nI ]T and � = [�1, · · · , �J ]T when the number
of sources I and the number of filters J go to infinity.

3.1.1 Parametric Functions

As shown in Figure 4, we force the amplitude spectrum
{Wnijm}M

m=1 to have a harmonic structure as follows:

Wnijm =
R

X

r=1

SmnirFnijr, (17)

where R is the number of harmonic partials and {Smnir}M
m=1

is the monomodal spectrum of the r-th harmonic partial of
source i at frame n given by

Smnir = exp

✓

� 1

2�2
(fm � (µni + 1200 log2 r))2

◆

, (18)

where µni is the F0 [cents] of source i at frame n, fm is the
log-frequency [cents] corresponding to the m-th bin, and
�2 indicates energy diffusion around harmonic partials.

We then represent the weights of discrete harmonic par-
tials, {Fnijr}R

r=1, by using an all-pole transfer function in
the log frequency domain as follows:

Fnijr =
1

�

�

�

PP
p=0 ajpe�!nirpi

�

�

�

=
�

aT
j U(!nir)aj

�� 1
2, (19)

where aj ⌘ [aj0, · · · , ajP ]T , !nir is a normalized fre-
quency [rad] corresponding to the r-th harmonic partial of
source i at frame n, and U(!) is a (P +1)⇥(P +1) matrix
with [U(!)]pq = cos(!(p� q)). Note that Fnijr indicates
the value of amplitude (not power). The Poisson likelihood

Log-frequency [cents]

Am
pl
itu
de

・・・ ・・・

The all-pole spectral envelope determines the weights of harmonic partials

Figure 4. Composition of source i and filter j at frame n
in the log-frequency domain.

(KL-NMF) is considered to fit the amplitude domain rather
than the power domain [19].

3.1.2 Prior Distributions

We put gamma process (GaP) priors on infinite-dimensional
vectors ✓n and � as in [15, 26]. Specifically, we put inde-
pendent gamma priors on elements of ✓n and � as follows:

✓ni ⇠ Gamma
⇣↵✓

I
, ↵✓

⌘

, �j ⇠ Gamma
⇣↵�

J
, ↵�

⌘

, (20)

where ↵✓ and ↵� are hyperparameters called concentration
parameters. As J diverges to infinity, the vector � approx-
imates an infinite vector drawn from a GaP with ↵�. It is
proven that the effective number of filters, J+, such that
�j > ✏ for some number ✏ > 0 is almost surely finite [15].
If J is sufficiently larger than ↵� (J is often called a trun-
cation level in weak-limit approximation to infinite model-
ing), the GaP can be well approximated. The same reason-
ing can be applied to the GaP on ✓n. On the other hand,
we put a standard Gamma prior on Hnij as follows:

Hnij ⇠ Gamma(aH , bH), (21)

where aH and bH are shape and rate hyperparameters.

3.2 Variational Inference

The posterior over random variables p(✓, �, H |X;µ,a)
and parameters µ and a are determined such that a lower
bound L of the log-evidence log p(X;µ,a) is maximized.
Since this cannot be analytically computed, we use an ap-
proximate method called variational Bayes (VB), which re-
stricts the posterior to a factorized form given by

q(✓, �, H) =
Y

ni

q(✓ni)
Y

j

q(�j)
Y

nij

q(Hnij). (22)

Iteratively updating this posterior, we can monotonically
increase a lower bound of the log-evidence given by

log p(X; µ, a) � E[log p(X|✓, �, H; µ, a)]

+ E[log p(✓)] + E[log p(�)] + E[log p(H)]

� E[log q(✓)]� E[log q(�)]� E[log q(H)] ⌘ L0, (23)

where the first term can be further lower bounded by Jensen’s
inequality on the concave logarithmic function as follows:

E[log p(X|✓, �, H; µ, a)]

=
P

mn XmnE
h

log
P

ijr ✓ni�jSmnirFnijrHnij

i

�P

mnijr E
⇥

✓ni�jSmnirFnijrHnij

⇤

+ const.

�P

mnijr �mnijrXmnE
h

log ✓ni�jSmnirFnijrHnij

�mnijr

i

�P

mnijr E
⇥

✓ni�jSmnirFnijrHnij

⇤

+ const. (24)
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where �mnijr is a normalized auxiliary variable such that
P

ijr �mnijr = 1. The equality holds (i.e., the lower bound
of L0 is maximized) if and only if

�mnijr / exp(E[log(✓ni�jSmnirFnijrHnij)]). (25)

Using Eq. (24), the objective function of our model to be
maximized, L, is obtained as the lower bound of L0. For
convenience, we define Xmnijr and Ymnijr as

Xmnijr = �mnijrXmn, (26)
Ymnijr = E[✓ni�jSmnirFnijrHnij ]. (27)

3.3 Variational Bayesian Updating of ✓, �, and H

The VB updating rules are given by

q(✓) / exp(Eq(�,H)[log p(X, ✓, �, H ; µ, a)]),

q(�) / exp(Eq(✓,H)[log p(X, ✓, �, H ; µ, a)]), (28)
q(H) / exp(Eq(✓,�)[log p(X, ✓, �, H ; µ, a)]).

The variational posterior of each random variable is set to
be the same family as its prior distribution as follows:

q(✓ni) = Gamma(a✓
ni, b

✓
ni), q(�j) = Gamma(a�

j , b�
j ),

q(Hnij) = Gamma(aH
nij , b

H
nij). (29)

The variational parameters are given by

a✓
ni =

↵✓

I
+

X

mjr

Xmnijr, b✓
ni = ↵✓ +

X

mjr

E[�jHnij ]Wnijm,

a�
j =

↵�

J
+

X

mnir

Xmnijr, b�
j = ↵� +

X

mnir

E[✓niHnij ]Wnijm,

aH
nij = aH +

X

mr

Xmnijr, bH
nij = bH +

X

mr

E[✓ni�j ]Wnijm.

To estimate the effective number of filters J+, we per-
form sparse learning. If E[�j ] becomes sufficiently small
for some filter j, we degenerate it and J  J � 1. A simi-
lar treatment is applied to E[✓ni]. The proposed variational
algorithm is gradually accelerated per iteration.

3.4 Multiplicative Updating of µ and a

To estimate parameters µ and a, we use the multiplicative
update (MU) algorithm as in [1,14]. In general, to optimize
x, we represent the partial derivative of a “cost” function
C with respect to x as the difference of two positive terms,
i.e., @C

@x = R � R0. An updating rule of x is then given by
x R0

R x. Note that x becomes constant if the derivative is
zero, and is updated in the opposite direction of the deriva-
tive. In this study the cost function is the negative lower
bound of the log-evidence, �L.

First, we represent the partial derivative of �L with re-
spect to µmi as �@L

@µni
= Rni�R0

ni, where Rni and R0
ni are

positive terms given by

Rni =
X

mjr

(µni + 1200 log2 r)Xmnijr + fmYmnijr, (30)

R0
ni =

X

mjr

fmXmnijr + (µni + 1200 log2 r)Ymnijr,(31)

The updating rule of µni is given by

µni  R�1
ni R0

niµni. (32)

As in [1, 14], we then represent the partial derivative of
�L with respect to aj as �@L

@aj
= (Rj �R0

j)aj , where Rj

and R0
j are positive definite matrices given by

Rj =
X

mnir

XmnijrF
2
nijrU(!nir), (33)

R0
j =

X

mnir

YmnijrF
2
nijrU(!nir). (34)

The updating rule of aj is given by

aj  R�1
j R0

jaj . (35)

Finally, we forcibly adjust the scale of the filter Fnijr such
that ↵j0 = 1 for normalizing the filter. Although this step
violates the convergence of the optimization algorithm, it
was empirically found to work well.

3.5 Binary Piano-roll Estimation

To perform multipitch analysis, i.e., make a binary piano-
roll representation, we need to judge the existence of each
semitone-level pitch at each frame. Using a trained model,
we calculate an activation matrix V = {Vkn}88,N

k=1,n=1 over
pitch k and frame n (continuous-valued piano-roll repre-
sentation e.g., the middle figure of Figure 5) by accumu-
lating the expected amplitude of the first partial of source
i,

P

j E[✓ni�jFnij1Hnij ], into Vkn indicated by µni. Fi-
nally, the activation matrix V is normalized such that all
the elements sum to unity, i.e.,

P

kn Vkn = 1.
There are several approaches to binary piano-roll esti-

mation. The common approach is to make a binary deci-
sion based on a threshold ⌘. Another approach is to define
a hidden Markov model (HMM) and use the Viterbi-search
algorithm for estimating a sequence of hidden binary states
{Zkn}N

n=1 from a sequence of pitch-existence likelihoods
{V p

kn}N
n=1 for each pitch k, where p controls the dynamic

range. In our implementation, p = 0.2 and the transition
matrix is [0.8, 0.2; 0.01, 0.99] in the Matlab notation.

4. EVALUATION

We report comparative experiments that were conducted
for evaluating the performance of the iSDAP model in mul-
tipitch analysis of piano music. Since the proposed model
assumes that input mixture signals contain only harmonic
sounds, we also tested the use of harmonic and percussive
source separation (HPSS) [12] as a preprocessor.

4.1 Experimental Conditions

We used 30 pieces (labeled as ”ENSTDkCl”) selected from
the MAPS database [9] that contain stereo signals sam-
pled at 44.1 [kHz]. The audio signals were converted to
monaural signals and truncated to 30 [s] from the begin-
ning as in [2, 4, 21, 22, 24]. The amplitude spectrogram of
each piece over the frequency bins ranging from 0 [cents]
(16.325 [Hz]) to 12000 [cents] (16717 [Hz]) was obtained
by performing the wavelet transform with a Gabor wavelet,
a frequency interval of 10 [cents], and a shifting interval
of 10 [ms], i.e., M = 1200 and N = 3000. The other
quantities were I = 88, J = 3, R = 20, P = 13, and
� = 25. The priors were set to be less informative, i.e.,
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Figure 5. Analysis of MUS-mz 333 3 ENSTDkCl.

↵✓ = ↵� = aH = 1, and bH = Eemp[Xmn]�1. Since X
contained only piano sounds, the truncation level J = 3
worked well (two filters were degenerated in this experi-
ment, i.e., J+ = 1). The values of {µni}I

i=1 were initial-
ized as the frequencies corresponding to the 88 keys rang-
ing from 900 [cents] to 9600 [cents]. The value of each
↵jp (1  p  P ) was drawn from a Gaussian with a zero
mean and a small variance of 0.01. The variational poste-
riors were initialized as the corresponding priors.

The proposed model was tested under possible combi-
nations of preprocessing (with or without HPSS) and post-
processing (thresholding or Viterbi decoding). HPSS was
performed in the log-frequency domain. The model with a
single filter (J = J+ = 1) was also tested in a supervised
setting. A set of filter coefficients a1 was pretrained from
264 isolated sounds of the same or different piano (ENST-
DkCl in a closed test or SptkBGCl in an open test) by using
LPC, and kept constant during multipitch analysis.

The estimation results were evaluated in terms of the
frame-level recall/precision rates and F-measure as in [24]:

R =

P

n cn
P

n rn
, P =

P

n cn
P

n en
, F =

2RP
R + P , (36)

where rn, en, and cn are the numbers of ground truth, es-
timated and correct pitches on frame n, respectively. The
threshold ⌘ was determined as ⌘ = 10�1.3 without HPSS
and ⌘ = 10�1.5 with HPSS.

4.2 Experimental Results

The experimental results shown in Figure 5 and Table 1 in-
dicate the great potential of the iSDAP model. The model
supervised in the open condition (67.3%) significantly out-
performed the iCAR model formulated in the linear fre-
quency domain (48.4%) [26] and tied with the state-of-
the-art methods, e.g., harmonic NMF (67.7%) [24], NMF
with group sparsity (71.3%) [21], and NMF with Hellinger

Filter learning HPSS HMM R P F
Unsupervised 55.3 57.9 56.6

3 62.2 60.2 61.2
3 62.4 64.3 63.4
3 3 67.4 64.2 65.8

Supervised 3 62.4 67.0 64.4
(open test) 3 3 69.9 64.5 67.3
Supervised 3 59.4 69.1 63.9
(close test) 3 3 67.4 67.8 67.6

Table 1. Experimental results of multipitch analysis for 30
piano pieces labeled as ENSTDkCl.
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Figure 6. All-pole filters learned from isolated sounds or a
piano piece (mixed sounds) in the log-frequency domain.

sparse coding (66.5%) [22]). While many recent methods
need to pretrain a dictionary of basis spectra for reasonable
decomposition [2,4,21,24], our model works well (65.8%)
even in the completely unsupervised condition. As shown
in Figure 6, a filter learned from a music signal dropped
faster than the pretrained filters because the model failed to
capture higher-order overtones even in the log-frequency
domain due to the strong inharmonicity of piano sounds.
Nonetheless, the learned filter acted as an effective con-
straint on the relative weights of harmonic partials.

There would be much room for improving the perfor-
mance. KL-NMF [18] and IS-NMF [10] are special cases
of �-divergence NMF [11, 20] with � = 1, 0, respectively.
It was reported that the use of an intermediate divergence
with � = 0.5 significantly improves the performance by
about 5% [24]. Similar findings were reported in the con-
text of source separation [13]. This calls for the use of the
Tweedie likelihood instead of the Poisson likelihood [6].

5. CONCLUSION

We presented a new nonparametric Bayesian approach to
source-filter NMF called infinite superimposed discrete all-
pole (iSDAP) modeling that can decompose a wavelet spec-
trogram into three kinds of factors, i.e., harmonic sources,
all-pole filters, and time-varying gains of source-filter pairs.
Our model clearly outperformed its counterpart called the
iCAR model formulated in the linear frequency domain.
One important research direction is to build a unified model
of harmonic and percussive sounds. To bridge the gap be-
tween multipitch analysis and music transcription, we plan
to incorporate a prior distribution on the time-frequency
positions of musical notes into a Bayesian framework.
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