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ABSTRACT
This paper presents an ultimate extension of nonnegative matrix fac-
torization (NMF) for audio source separation based on full covari-
ance modeling over all the time-frequency (TF) bins of the com-
plex spectrogram of an observed mixture signal. Although NMF has
been widely used for decomposing an observed power spectrogram
in a TF-wise manner, it has a critical limitation that the phase val-
ues of interdependent TF bins cannot be dealt with. This problem
has been solved only partially by several phase-aware extensions of
NMF that decompose an observed complex spectrogram in an time-
and/or frequency-wise manner. In this paper, we propose correlated
tensor factorization (CTF) that approximates the full covariance ma-
trix over all TF bins as the sum of the Kronecker products between
basis covariance matrices over frequency bands and the correspond-
ing ones over time frames. All the TF bins of the complex spectro-
gram of each source signal are estimated jointly in an interdependent
manner via Wiener filtering. We discuss how to reduce the compu-
tational cost of CTF and report the results of comparative evaluation
of CTF with its special cases such as NMF and positive semidefinite
tensor factorization (PSDTF).

Index Terms— Source separation, nonnegative matrix factor-
ization, nonnegative tensor factorization, positive semidefinite tensor
factorization, correlated tensor factorization.

1. INTRODUCTION

Nonnegative matrix factorization (NMF) [1] has widely been used
for source separation of monaural audio signals. It approximates a
nonnegative matrix (e.g., power spectrogram) as the product of two
nonnegative matrices (a set of basis spectra and a set of the corre-
sponding activation patterns). Under an assumption that the time-
frequency (TF) bins of the complex spectrogram of each source sig-
nal independently follow isotropic complex Gaussian distributions,
a variant of NMF that independently evaluates the approximation er-
rors at all the TF bins according to the Itakura-Saito (IS) divergence
(IS-NMF) [2] is known as a theoretically reasonable choice for fac-
torizing the power spectrogram of the mixture signal. Using the two
nonnegative matrices obtained by IS-NMF, the complex spectrogram
of the mixture signal can be decomposed into the sum of source spec-
trograms, where the phase values of each source spectrogram remain
the same as those of the mixture spectrogram. This severely lim-
its the quality of time-domain signals recovered from the estimated
source spectrograms. Although a “consistent” complex spectrogram
corresponding to a time-domain signal can be estimated from a mag-
nitude spectrogram without phase information [3,4], the consistency
does not always mean the sound quality.

This study was partially supported by JSPS KAKENHI No. 26700020
and No. 16H01744 and JST ACCEL No. JPMJAC1602.

Table 1. Comparison between several phase-aware variants of NMF
proposed for complex spectrogram decomposition.

Phase Inter-time Inter-frequency
Method estimation representation representation
IS-NMF [2]
CNMF [5] �
TSF [10] Implicitly modeled in the time domain
HR-NMF [9] � Recursively modeled in the TF domain
LD-PSDTF-F [13] � Correlated
LD-PSDTF-T � Correlated
LD-CTF (ours) � Correlated Correlated

Several phase-aware extensions of NMF have recently been pro-
posed for directly decomposing the complex spectrogram of a mix-
ture signal (Table 1). Complex NMF (CNMF) [5], for example, fac-
torizes the magnitude spectrogram of a mixture signal at the same
time of estimating the phase spectrograms of source signals such that
the sum of the complex source spectrograms is close to the complex
mixture spectrogram. To improve the separation performance, phase
evolution or unwrapping constraints have been incorporated into the
framework of CNMF [6, 7]. High-resolution NMF (HR-NMF) uses
an NMF-based non-stationary autoregressive (AR) model for repre-
senting the dynamics of each frequency band [8]. It was further ex-
teneded to represent the interdependency of TF bins by using a TF-
dimensional AR moving-average (ARMA) model [9]. Another no-
ticeable extension is time-domain spectrogram factorization (TSF)
that directly decomposes a mixture signal based on the NMF-style
approximation of the magnitude spectrogram [10–12]. Although the
interdependency over TF bins can be implicitly taken into account,
the statistical characteristics of source and mixture signals has not
been clarified in term of probabilistic modeling.

Positive semidefinite tensor factorization (PSDTF) [13, 14] is a
fundamental extension of NMF that can deal with both positive and
negative correlations over frequency bands under an assumption that
the complex spectrum of each source signal in each frame follows
a multivariate complex Gaussian distribution. While NMF approxi-
mates each of observed nonnegative vectors as the weighted sum of
basis nonnegative vectors, PSDTF approximates each of observed
positive semidefinite (PSD) matrices as the weighted sum of basis
PSD matrices. Among others, PSDTF based on the log-det diver-
gence (LD-PSDTF) is a natural multivariate extension of IS-NMF.
In IS-NMF, the power spectrum of a mixture signal at each frame
is approximated as the sum of basis power spectra. In LD-PSDTF,
the covariance matrix given by the product of the complex spectrum
and its conjugate transpose at each frame is approximated as the sum
of basis covariance matrices. Since the diagonal elements of inter-
frequency covariance matrices represent power spectra, LD-PSDTF
reduces to IS-NMF when all the covariance matrices are restricted to
diagonal matrices. A Wiener filter based on the covariance structures
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F-dimensional complex vector

LD-PSDTF-T (correlated time frames)

T-dimensional complex vector

LD-CTF (correlated TF bins)

FT-dimensional complex vector

Complex scalar

Complex mixture spectrogram

Given the complex spectrogram of a mixture signal s ∈ CFT (duration: 8.4 [s], sampling rate: 16 [kHz], window size: 512 [pts], hop size: 160 [pts], K = 3,
F = 256, T = 840), IS-NMF estimates a set of nonnegative basis vectors W = {wk ∈ RF

+}Kk=1 and a set of the corresponding nonnegative activation
vectors H = {hk ∈ RT

+}Kk=1. While LD-PSDTF-F estimates a set of PSD basis matrices V = {Vk ∈ SF+}Kk=1 and H, LD-PSDTF-F estimates W and a
set of PSD activation matrices U = {Uk ∈ ST+}Kk=1 (SM+ indicates a PSD cone of dimension M ). LD-CTF jointly estimates V and U .

Fig. 1. Comparison between IS-NMF, two versions of LD-PSDTF, and LD-CTF.

over frequency bands is used for estimating the complex spectra of
each source signal in a frame-wise manner. Such frequency-domain
decomposition exactly corresponds to time-domain decomposition,
resulting in high-quality estimation of source signals without post-
processing for phase estimation.

The complex spectrograms of real audio signals have not only
inter-frequency correlations but also inter-time correlations. In the-
ory, frequency bands can be made independent by applying Fourier
transform to infinitely-long stationary audio signals. In reality, short-
time Fourier transform (STFT) is used for non-stationary audio sig-
nals by assuming these signals to be locally stationary in short win-
dows. Since even short signals are not exactly stationary, frequency
bands having harmonic or adjacent relationships are inevitably cor-
related. In addition, time frames at which similar sounds occur are
strongly correlated. This means that LD-PSDTF is insufficient be-
cause only inter-frequency correlations are dealt with by indepen-
dently dealing with time frames. Note that if LD-PSDTF is applied
to the TF-transposed complex spectrogram of a mixture signal, only
inter-time correlations can be dealt with.

To overcome this limitation, we propose correlated tensor fac-
torization (CTF) that includes NMF and PSDTF as its special cases.
In this paper we discuss CTF based on the log-det divergence (LD-
CTF) for audio source separation. Fig. 1 shows comparison between
IS-NMF, two versions of LD-PSDTF, and LD-CTF. In LD-CTF, an
observed PSD matrix is approximated as the sum of the Kronecker
products between two kinds of basis PSD matrices. In audio source
separation, a big covariance matrix over all TF bins is approximated
as the sum of the Kronecker products between inter-frequency co-
variance matrices and the corresponding inter-time covariance ma-
trices. All the TF bins of the complex spectrogram of each source
signal can then be estimated jointly by using an one-time Wiener
filter that can consider the full TF covariance structure.

We propose a majorization-minimization (MM) algorithm for it-
erative closed-form optimization of the basis matrices and show its
mathematically beautiful correspondence to an MM algorithm pro-
posed for IS-NMF. For a mixture spectrogram with T frames and
F frequency bands, the time complexity of LD-CTF with K bases
is O(KT 3F 3) while that of IS-NMF is O(KTF ) and that of LD-
PSDTF is O(KTF 3) or O(KT 3F ). To reduce the prohibitively big
complexity, we propose an approximate version of LD-CTF that re-
stricts the basis matrices to block-diagonal matrices. If the frequency
bands and time frames are split into I and J independent zones, re-
spectively, the MM algorithm becomes I2J2 times faster in theory.
We further discuss substantial complexity reduction based on ap-
proximate joint diagonalization (AJD) of the basis matrices. A key
idea is that LD-CTF in the time-frequency domain can be approxi-
mated as IS-NMF in another linearly-transformed domain in which
all the basis matrices are diagonalized. This implies a deep connec-
tion of LD-CTF to a classical approach to multichannel audio source
separation based on AJD of second-order statistics [15–17].

2. CORRELATED TENSOR FACTORIZATION

This section explains the general form of correlated tensor factor-
ization (CTF) and its application to source separation of monaural
audio signals from the viewpoint of statistical modeling.

2.1. Mathematical formulation
Given a PSD matrix X ∈ S

FT
+ as input data, we aim to approximate

X as the sum of the Kronecker products between two sets of PSD
matrices V = {Vk ∈ S

F
+}Kk=1 and U = {Uk ∈ S

T
+}Kk=1 as follows:

X ≈ Y
def
=

K∑
k=1

Vk ⊗Uk, (1)
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where ⊗ indicates the Kronecker product and F and T are positive
integers. For brevity, we define Yk = Vk ⊗ Uk such that Y =∑

k Yk . If all the PSD matrices are restricted to diagonal matrices
such that X = Diag(x), Vk = Diag(wk), and Uk = Diag(hk),
CTF given by Eq. (1) reduces to NMF given by

xft ≈ yft
def
=

K∑
k=1

wkfhkt, (2)

where xft is a nonnegative element indexed by 1 ≤ f ≤ F and
1 ≤ t ≤ T in x ∈ R

FT
+ . If either of V and U is restricted to

diagonal matrices, CTF given by Eq. (1) reduces to PSDTF given by

X ′
f ≈

K∑
k=1

wkfUk or X ′′
t ≈

K∑
k=1

hktVk, (3)

where X ′
f ∈ S

T
+ is a PSD matrix obtained by extracting the elements

related to index f from X and X ′′
t ∈ S

F
+ is a PSD matrix obtained

by extracting the elements related to index t from X .
One way of evaluating the approximation error between X and

Y is to use the Bregman matrix divergence [18] given by

Dφ(X|Y ) = φ(X)− φ(Y )− tr
(
∇φ(Y )T (X − Y )

)
, (4)

where φ is a strictly convex function on S
T
+. For example, the von

Neumann divergence and the log-det divergence are obtained as

DvN(X|Y ) = tr (X logX −X logY −X + Y ) , (5)

DLD(X|Y ) = − log
∣∣XY −1

∣∣+ tr
(
XY −1)− FT, (6)

when φ(Z) = tr(Z logZ−Z) and φ(Z) = − log |Z|, respectively
[19]. In this paper, we focus on LD-CTF that minimizesDLD(X|Y )
for audio source separation.

2.2. Parameter estimation

We derive a convergence-guaranteed MM algorithm that iteratively
and alternately optimizes V and U such that DLD(X|Y ) is mono-
tonically non-increasing during iterations. To do this, we use two in-
equalities described below. First, a strictly concave function f(Z) =
log |Z| over SM

+ can be upper bounded by a tangent plane (first-order
Taylor expansion) at arbitrary Ω as follows:

log |Z| ≤ log |Ω|+ tr(Ω−1Z)−M, (7)

where the equality holds iff Ω = Z. Second, a strictly convex
function g(Z) = tr(Z−1A) over SM

+ with any A ∈ S
M is upper

bounded as follows [20]:

tr
((∑K

k=1 Zk

)−1

A

)
≤

K∑
k=1

tr
(
Z−1

k ΦkAΦH
k

)
, (8)

where {Zk ∈ S
M
+ }Kk=1 is a set of arbitrary PSD matrices, {Φk}Kk=1

is a set of auxiliary matrices such that
∑

k Φk = IM,M , and the
equality holds iff Φk = Zk(

∑
k′ Zk′)−1, where IM,M represents

the M ×M identity matrix. Using Ineqs. (7) and (8), DLD(X|Y ) is
upper bounded as follows:

DLD(X|Y )
c≤ log |Ω|+

K∑
k=1

tr
(
Ω−1Yk

)
+

K∑
k=1

tr
(
Y −1

k ΦkXΦH
k

)

def
=M(Ω,Φ,V ,U), (9)

where Ω ∈ S
FT
+ and {Φk ∈ S

FT
+ }Kk=1 are auxiliary variables such

that
∑

k Φk = IFT,FT . The equality of Eq. (9) holds true, i.e., the
majorization functionM(Ω,Φ,V ,U) is minimized, iff

Ω = Y and Φk = YkY
−1. (10)

Under a condition that Ω and Φ are known, we estimate V and
U that maximizeM(Ω,Φ,V ,U). Letting the partial derivative of
M(Ω,Φ,V ,U) with respect to Vk equal to zero and substituting
Eq. (10), the updating formula for Vk is given by

Vk ← P−1
k #(VkQkVk), (11)

where Pk ∈ S
F
+ and Qk ∈ S

F
+ are given by

Pk = (IF,F ⊗ 1T
T )

(
(1F,F ⊗UT

k )� Y −1
)
(IF,F ⊗ 1T ),

Qk = (IF,F ⊗ 1T
T )

(
(1F,F ⊗UT

k )� Y −1XY −1
)
(IF,F ⊗ 1T ).

Similarly, the updating formula for Uk is given by

Uk ← R−1
k #(UkSkUk), (12)

where Rk ∈ S
T
+ and Sk ∈ S

T
+ are given by

Rk = (1T
F ⊗ IT,T )

(
(V T

k ⊗ 1T,T )� Y −1
)
(1F ⊗ IT,T ),

Sk = (1T
F ⊗ IT,T )

(
(V T

k ⊗ 1T,T )� Y −1XY −1
)
(1F ⊗ IT,T ).

Note that 1M represents the M -dimensional all-one vector, � indi-
cates the element-wise product (Hadamard product), and # indicates
the geometric mean of two PSD matrices [21–23] defined as follows:

A#B = A
1
2

(
A− 1

2BA− 1
2

) 1
2
A

1
2 = A(A−1B)

1
2 . (13)

The updating rules for LD-CTF given by Eqs. (11) and (12) are
found to be natural extensions of multiplicative updating (MU) rules
for IS-NMF based on the IS divergence between both sides in Eq. (2)
[24], which are given by

wkf ← wkf

√
qkf
pkf

= p−1
kf #(wkfqkfwkf ), (14)

hkt ← hkt

√
skt
rkt

= r−1
kt #(hktskthkt), (15)

where pkf =
∑

t hkty
−1
ft , qkf =

∑
t hktxfty

−2
ft , rkt=

∑
f wkfy

−1
ft ,

and skt =
∑

f wkfxfty
−2
ft . Interestingly, IS-NMF is based on the

geometric mean of two nonnegative scalars while LD-CTF is based
on that of two PSD matrices.

2.3. Statistical audio source separation
We explain application of LD-CTF to audio source separation and re-
veal a probabilistic generative model underlying LD-CTF. Let sk =
[Sk11, · · · , Sk1T , · · · , SkF1, · · · , SkFT ]

T ∈ C
FT be a long vector

obtained by serializing the complex spectrogram Sk ∈ C
F×T of

source k over F bands and T frames in a row-major manner, which
is assumed to follow a centered multivariate complex Gaussian dis-
tribution with covariance matrix Yk ∈ S

FT
+ as follows:

sk|Yk ∼ Nc(0,Yk), (16)

where the full covariance structure over all TF bins can be taken into
account unlike IS-NMF and LD-PSDTF. Similarly, let s ∈ C

FT be a
vector listing all the TF bins of the complex spectrogram S ∈ C

F×T

of a mixture signal containing the K source signals. Assuming the
additivity of complex spectrograms, s =

∑
k sk, and using Y =∑

k Yk . the reproductive property of the Gaussian distribution gives

s|Y ∼ Nc(0,Y ). (17)

The log-likelihood function for observed data s is thus given by

log p(s|Y )
c
= − log |Y | − tr(XY −1)

c
= − DLD(X|Y ), (18)

where X def
= ssH . LD-CTF is thus found to correspond to maximum

likelihood estimation of the probabilistic model given by Eq. (17).
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Once V and U are estimated by LD-CTF for given s, the latent
variable sk can be inferred by Wiener filtering as follows:

p(sk|s,V ,U) = Nc

(
sk

∣∣∣YkY
−1s,Y − YkY

−1Yk

)
. (19)

The time-domain signal of source k is obtained by applying the in-
verse STFT to the complex spectrogram E[sk] = YkY

−1s.
One approximate way of accelerating LD-CTF is to force each

of V and U to have the same block-diagonal structure. More specif-
ically, the TF domain is split into rectangular blocks by a grid. This
means that the TF correlations are taken into account in each block,
but all blocks are assumed to be independent from each other. If F
bands and T frames are split into I and J zones, respectively, the
MM algorithm becomes I2J2 times faster in theory. Note that it is
not necessary to let all IJ blocks have the same size and associate
adjacent frequency bands or frames into the same block. Therefore,
it would be better to associate strongly-correlated frequency bands
(e.g., harmonic partials) with the same block.

2.4. Discussions and future directions
A future direction of this study is to develop fast LD-CTF based on
approximate joint dinagonalization (AJD). For any linear transfor-
mation matrices A ∈ C

F×F and B ∈ C
T×T , Eq. (17) leads to

ASBH |V ,U ∼ Nc

(
0,

∑K
k=1 AVkA

H ⊗BUkB
H
)
. (20)

If both AVkA
H and BUkB

H are diagonal matrices for ∀k, LD-
CTF for S is equivalent to IS-NMF for ASBH . In the multichan-
nel scenario, AJD of inter-channel covariance matrices has been pro-
posed for recovering independent sources [15–17]. LD-CTF can be
approximated as combination of IS-NMF and AJD of V and U for
recovering low-rank and independent sources in the monaural case.
This behavior is similar to independent low-rank matrix analysis (IL-
RMA) [25] based on combination of IS-NMF and independent vec-
tor analysis (IVA) in the multichannel case. This implies the exis-
tence of an approximate algorithm that integrate IS-NMF and AJD
in a unified probabilistic framework.

Another direction is to apply LD-CTF to a higher-mode ten-
sor having strong correlations in each mode (e.g., user-item-context
data in recommender systems [26]). LD-CTF for a big vector x ∈
C

D1D2···DM obtained by serializing an M -mode tensor is given by

x ∼ Nc

(
0,

∑K
k=1 V

(1)
k ⊗ V

(2)
k ⊗ · · · ⊗ V

(M)
k

)
, (21)

where V
(m)
k ∈ S

Dm
+ is a PSD matrix in mode m of dimension Dm.

If all V (m)
k ’s are diagonal, LD-CTF reduces to nonnegative tensor

factorization (NTF) [27]. In the task of decomposing x into the sum
of latent components {xk}Kk=1, LD-CTF could be a powerful alter-
native to CANDECOMP/PARAFAC (CP) decomposition [28, 29].
In LD-CTF, each xk is allowed to take a full-rank tensor as follows:

xk ∼ Nc

(
0,V

(1)
k ⊗ V

(2)
k ⊗ · · · ⊗ V

(M)
k

)
. (22)

In CP decomposition without no additive noise, on the other hand,
each xk is restricted to a rank-1 tensor as follows:

xk = x
(1)
k ⊗ · · · ⊗ x

(M)
k , (23)

where x
(m)
k ∈ C

Dm is a basis vector of component k in mode m.
Note that x(m)

k ∼ Nc(0,V
(m)
k ) is often assumed as a prior. In this

case, Eq. (22) cannot be obtained if x(m)
k ’s are marginalized out.

3. EVALUATION

This section reports comparative evaluation of LD-CTF with its spe-
cial cases such as IS-NMF and LD-PSDTF.

Table 2. Separation performance [dB].
IS-NMF LD-PSDTF LD-CTF

(P,Q) (1, 1) (256, 1) (1, 840) (128, 10) (64, 20) (32, 40)
SDR 18.88 21.58 21.04 19.68 20.60 20.21
SIR 24.14 27.01 24.67 25.29 26.17 25.45
SAR 20.45 23.14 23.50 21.47 21.47 22.15

840

840

256

256

Fig. 2. Result of block-diagonal LD-CTF with (P,Q) = (64, 20).

3.1. Experimental conditions
We synthesize a mixture signal of 8.4 s sampled at 16 [kHz] by con-
catenating three isolated piano tones (C4, E4, and G4) and four kinds
of chords (C4+E4, C4+G4, E4+G4, and C4+E4+G4) of 1.2 s. STFT
with a Gaussian window of 512 pts and a shifting interval of 160 pts
was used for calculating the complex spectrogram S ∈ C

F×T with
F = 840 and T = 256.

We tested the block-diagonal version of LD-CTF with K = 3.
The number of frequency bands and that of time frames in each TF
block was set to (P,Q) = (1, 1): IS-NMF, (256, 1): LD-PSDTF-F,
(1, 840): LD-PSDTF-T, (128, 10), (64, 20), or (32, 40). The num-
ber of iterations was 100 and all the variants were initialized with
the results of IS-NMF. BSS Eval Toolbox [30] was used for mea-
suring the source-to-distortion ratio (SDR), source-to-interferences
ratio (SIR), and sources-to-artifacts ratio (SAR) of separated signals.

3.2. Experimental results
As shown in Table 2, LD-CTF with (256, 1) (LD-PSDTF-F) out-
performed IS-NMF and LD-CTF with (1, 840) (LD-PSDTF-T) also
worked well. This indicates the great potential of full LD-CTF that
deals with strong correlations between the frequencies of harmonic
partials and those between time frames with large activations (Fig. 1).
While block-diagonal LD-CTF was better than IS-NMF, it was worse
than LD-PSDTF because the phase values of different blocks were
inconsistent and the strong long-term correlations over frequency
bands and time frames cannot be taken into account. Fig. 2 shows the
results with (64, 20). To improve the performance of block-diagonal
LD-CTF, it would be reasonable to cluster all the frequency bands in-
cluding harmonic partials into the same block. This approach, how-
ever, could not be used for a larger value of K.

4. CONCLUSION
This paper presented an ultimate low-rank approximation technique
called CTF that generalizes NMF [1, 2], PSDTF [13, 14], and NTF
[27] and relates to CP decomposition [28, 29]. We focused on LD-
CTF based on the log-det divergence for audio source separation and
proposed the MM algorithm with block-diagonal approximation for
faster computation. To achieve the substantial speed-up of LD-CTF,
we plan to develop a unified probabilistic model integrating IS-NMF
with AJD-based space identification [15–17]. One of the difficulties
of LD-CTF lies in optimization because the number of parameters,
K(F 2 + T 2), is much larger than that of observed TF bins, FT .
To draw the full potential of such an over-parameterized method, it
would be necessary to use regularization techniques. We also plan to
derive a variant of CTF based on the von Neumann divergence as a
counterpart of NMF based on the Kullback-Leibler (KL) divergence
and fomulate a multichannel extension of LD-CTF for representing
the time-frequency-channel interdependency.
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