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Abstract—This paper describes an ultimate covariance-aware
multichannel extension of nonnegative matrix factorization (NMF)
for blind source separation (BSS). A typical approach to BSS is to
integrate a low-rank source model with a full-rank spatial model
as multichannel NMF (MNMF) based on full-rank spatial covari-
ance matrices (CMs) or its efficient version named FastMNMF
based on jointly-diagonalizable spatial CMs do. The NMF-based
phase-unaware source model, however, can deal with only the pos-
itive cooccurrence relations between time-frequency bins. To over-
come this limitation, we propose an efficient multichannel exten-
sion of correlated tensor factorization (CTF) named FastMCTF
based on jointly-diagonalizable temporal, frequency, and spatial
CMs. Integration of the jointly-diagonalizable full-rank source
model proposed by FastCTF with the jointly-diagonalizable full-
rank spatial model proposed by FastMNMF enables us to com-
pletely consider the positive and negative covariance relations
between frequency bins, time frames, and channels. We derive
a convergence-guaranteed parameter estimation algorithm based
on the multiplicative update and iterative projection and exper-
imentally show the potential of the proposed method.

I. INTRODUCTION

Blind source separation (BSS) of multichannel mixture spec-
trograms (complex-valued three-mode tensor having the time,
frequency, and channel axes) plays a vital role for audio event
detection and noisy speech recognition. In general, the inter-
channel (spatial) covariance structure has mainly been used for
BSS. In independent component analysis (ICA) [1] assuming
that the time-frequency (TF) bins of source spectrograms to
follow independent non-Gaussian distributions, for example, a
linear demixing filter (transform matrix) is estimated at each
frequency such that the channels are made independent after
applying the demixing filter to the mixture spectrograms. ICA,
however, suffers from the permutation problem; one needs to
align the orders of sources between frequency bins by focusing
on the temporal, frequency, and spatial features of sources.

The permutation problem has recently been tackled concur-
rently with spatial filtering by integrating a source model rep-
resenting the TF structure of sources with a spatial model rep-
resenting the inter-channel structure of source images. To rep-
resent the higher-order inter-frequency correlations of source
spectra, an extension of ICA called independent vector analy-
sis (IVA) [2], [3] assumes source spectra to follow multivariate
complex non-Gaussian distributions. If particular spectral pat-
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Fig. 1. An overview of BSS methods based on time, frequency, and spatial
covariance matrices.

terns (e.g., musical instrument sounds) appear repeatedly in a
source spectrogram, its power spectral densities (PSDs) have
low-rank structure and can thus be approximated as the sum of
products between a fewer number of basis PSD patterns and
that of the corresponding temporal envelopes in the framework
of nonnegative matrix factorization (NMF) [4].

A versatile BSS method called Multichannel NMF (MNMF)
integrates an NMF-based source model with a spatial model
using rank-1 or full-rank spatial covariance matrices (CMs) [5],
[6] Although the full-rank spatial model can represent rever-
berant and diffuse sounds [7], MNMF tends to get stuck at
bad local optima because of the large degree of freedom. To
mitigate this problem, spatial CMs are restricted to rank-1 and
jointly-diagonalizable matrices in independent low-rank matrix
analysis (ILRMA) [8] and an efficient version of MNMF called
FastMNMF [9], [10], respectively. A common feature of these
methods is that spatial filters are estimated such that source
spectrograms are made independent and low-rank.

The fundamental limitation of the NMF-based source model
based on the positive coocurrence relations between TF bins
is that the positive and negative covariance relations, which
could help to solve the permutation problem, are not consid-
ered. To overcome this limitation, one can use a covariance-
aware extension of NMF such as positive semidefinite tensor
factorization (PSDTF) [11] and correlated tensor factorization
(CTF) [12]. In CTF, the empirical CM over all TF bins is

306978-9-0827-9705-3 EUSIPCO 2020



approximated as the sum of Kronecker products between a
fewer number of temporal CMs and that of the corresponding
frequency CMs. Although CTF is an ultimate low-rank decom-
position technique, its over-parametrization nature and huge
computational complexity prevent stable parameter estimation.
To solve this problem, an efficient version of CTF named in-
dependent low-rank tensor analysis (ILRTA) [13] (a.k.a. Fast-
CTF) based on jointly-diagonalizable temporal and frequency
CMs was proposed for single-channel BSS.

In this paper we propose an efficient BSS method named
fast multichannel CTF (FastMCTF) that integrates a FastCTF-
based source model using jointly-diagonalizable temporal and
frequency CMs with a full-rank spatial model using jointly-
diagonalizable spatial CMs. FastMCTF can thus be viewed as
a covariance-aware extension of FastMNMF and as a multi-
channel extension of FastCTF (Fig. 1). Using the minorization-
maximization principle, we derive a convergence-guaranteed
covariance estimation algorithm consisting of multiplicative
update and iterative projection [3] as in [13]. Finally, the time-
frequency-channel (TFC) elements of each source image are
inferred at once by decomposing a multichannel mixture spec-
trogram with a big Wiener filter based on the huge TFC CMs
of source images. This process is equivalent to element-wise
Wiener filters for a linearly-transformed mixture spectrogram,
in which all elements are made independent and low-rank
thanks to the joint diagonalizability of temporal, frequency,
and spatial CMs.

II. RELATED WORK

This section reviews single- and multi-channel BSS methods
in terms of temporal, frequency, spatial covariance modeling
(Fig. 1). Versatile BSS methods have been developed based on
the independence, low-rankness, and/or nonnegativity of audio
signals. Let M , F , and T be the number of channels, that of
frequency bins, and that of frames.

Most studies assume the independence of TF bins. In theory,
discrete Fourier transform (DFT) of infinitely-long stationary
signals yields independent frequency components. In reality,
when short-time Fourier transform (STFT) is applied to non-
stationary signals, the inter-frequency covariance is induced
by the non-stationary characteristics of a target signal, which
could be a useful clue for BSS. In addition, adjacent frames
are strongly correlated with each other because STFT yields
a redundant representation of a target signal.

A. Single-channel BSS

A standard approach to single-channel BSS is to use NMF
based on the independence and low-rankness of sources. Under
an assumption that source spectrograms follow complex Gaus-
sian distributions, NMF based on the Itakura-Saito divergence
(IS-NMF) [4] is theoretically justified. Using TF-wise Wiener
filters based on the parameters of NMF, a mixture spectrogram
is decomposed into the sum of source spectrograms while the
phase information is not changed. The quality of separated
source signals is thus limited.

To solve this problem, we have developed covariance-aware
BSS methods based on the independence and positive semidef-
initeness of sources. While NMF [4] assumes that each time-
frequency bin of a source spectrogram follows a complex Gaus-
sian distribution, PSDTF [11] assumes that each time or fre-
quency axis-aligned slice follows a multivariate complex Gaus-
sian distribution with a temporal or frequency CM (PSDTF-T
or PSDTF-F). CTF [12] assumes that the entire source spec-
trogram follows a multivariate complex Gaussian distribution.
Using a Wiener filter with the huge TF CMs of source spectro-
grams, complex source spectrograms with appropriate phase
information can be estimated. Although CTF is a mathemat-
ically ultimate extension of NMF, it is computationally pro-
hibitive and extremely sensitive to initialization because of its
over-parametrization nature. The computational complexities
of NMF, PSDTF-T, PSDTF-F, CTF are given by O(TF ),
O(T 3F ), O(TF 3), and O(T 3F 3), respectively.

To solve this problem, efficient covariance-aware BSS meth-
ods that restrict temporal and/or frequency CMs to jointly-
diagonalizable ones have been proposed. An efficient version
of CTF called FastCTF [13], for example, was proposed with
a convergence-guaranteed parameter estimation algorithm [3].
Concurrently and independently, transform-learning NMF (TL-
NMF) [14] was proposed for low-rank decomposition in an
optimized domain. While NMF is generally performed in the
frequency domain, TL-NMF finds an optimal transform better
than DFT such that a spectrogram-like representation in the
new domain fits NMF. An efficient version of PSDTF-F called
FastPSDTF-F [15] was also proposed with an optimization
algorithm having no convergence guarantee. Interestingly, a
matrix optimized for jointly diagonalizing frequency CMs in
FastPSDTF-F can be interpreted as a transform matrix of TL-
NMF and both methods are special cases of FastCTF based on
jointly-diagonalizable temporal and frequency CMs. The com-
putational complexity of FastPSDTF-T, FastPSDTF-F, Fast-
CTF is O(TF (T + F )).

B. Multichannel BSS

Integration of source and spatial models has been considered
to be a promising approach to multichannel BSS. MNMF, for
example, originally integrates an NMF-based source model
with a rank-1 spatial model [5]. Although no specific source
model was considered, a full-rank spatial model was proposed
for representing the inter-channel characteristics of source im-
ages [7] (called full-rank spatial covariance analysis (FCA) in
[9], [16]). Another MNMF was then proposed for integrating
an NMF-based source model with a full-rank spatial model [6].
MNMF, however, suffers from the initialization sensitivity and
the large computational complexity.

A remedy for this problem is to restrict full-rank spatial
CMs to jointly-diagonalizable ones. FastFCA [16], [17] and
FastMNMF [9], [10], for example, were derived by incorpo-
rating the joint diagonalizability constraint into FCA [7] and
MNMF [6], respectively. Another approach is to use rank-
1 spatial CMs in exchange for the severe loss of the spatial
modeling ability as in IVA [3] and ILRMA [8].
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Covariance-aware extensions of ILRMA have recently been
proposed for handling the temporal and frequency CMs of
sources. Integrating a PSDTF-based source model with the
rank-1 spatial model yielded independent positive semidefinite
tensor analysis (IPSDTA) [18], which was further extended
to ILRMA-F [19] based on jointly-diagonalizable frequency
CMs and ILRMA-T [19] based on jointly-diagonalizable tem-
poral CMs inspired by a dereverberation method called the
weighted prediction error (WPE) [20]. Integrating these two
methods finally yielded ILRMA-FT [21], which, however, still
uses the restrictive rank-1 spatial model and considers the TF
covariance structure only partially for deriving an optimization
algorithm.

Our FastMCTF has the same motivation as ILRMA-FT, but
is the first method that can consider the full covariance struc-
ture of three-mode tensors spanned by the time, frequency, and
channel axes. The computational complexity of FastMCTF is
O(TFM(T + FM +M)) at a manageable level.

III. EXISTING METHODS

This section introduces CTF [12] and FastCTF [13] used for
single-channel BSS and MNMF [6] and FastMNMF [10] used
for multichannel BSS as the basis of the proposed method.

A. Single-channel BSS

Our goal is to decompose a mixture spectrogram S ∈ CT×F

to the sum of K basis spectrograms {Sk ∈ CT×F }Kk=1. Let
s ∈ C

TF and sk ∈ C
TF be vectors obtained by serializing S

and Sk in the frequency-major manner, respectively. Here sk
is assumed to follow a multivariate complex Gaussian distri-
bution with a CM Yk ∈ STF

+ as follows:

sk | Yk ∼ NC(sk | 0,Yk). (1)

Using the additivity s =
∑

k sk, we have

s | Y ∼ NC(s | 0,Y), (2)
where Y =

∑
k Yk. The log-likelihood of Y to be optimized

for the observed mixture s is given by
log p(s | Y)

c
= − log |Y| − tr(XY−1), (3)

where X = ssH. The maximization of Eq. (3) is equivalent to
the maximization of the log-det (LD) divergence given by

DLD(X|Y) = − log
∣∣XY−1

∣∣+ tr
(
XY−1

)− TF, (4)
Once Y is estimated, sk can be inferred from s by using a

multivariate Wiener filter as follows:

p(sk | s,Y) = NC

(
sk | YkY

−1s,Y −YkY
−1Yk

)
. (5)

Finally, inverse STFT is applied to E[sk] = YkY
−1s.

1) Correlated Tensor Factorization (CTF): CTF aims to
approximate observed X ∈ STF

+ as the sum of Kronecker
products between a set of temporal CMs H = {Hk ∈ S

T
+}Kk=1

and a set of the corresponding frequency CMs W = {Wk ∈
SF+}Kk=1 as follows (Fig. 2):

X ≈ Y =
K∑

k=1

Hk ⊗Wk, (6)

where Yk = Hk ⊗Wk. Let [z] denote a diagonal matrix
whose diagonal elements are given by a nonnegative vector
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Fig. 2. Covariance-aware low-rank spectrogram modeling based on CTF.

z. If Hk = [h̃k] and Wk = [w̃k], CTF reduces to NMF [4].
If Hk = [h̃k] or Wk = [w̃k], CTF reduces to PSDTF-F or
PSDTF-T [11], respectively. Eq. (4) can be minimized with re-
spect to W and H by using a convergence-guaranteed iterative
optimization algorithm [12] with a complexity of O(T 3F 3).

2) FastCTF: FastCTF tries to find an optimal domain other
than the TF domain such that all elements are made indepen-
dent and low-rank for justifying NMF. Specifically, H and W
are assumed to be jointly diagonalizable as follows:

Hk = R−1[h̃k]R
−H, Wk = P−1[w̃k]P

−H, (7)

where R = [r1, · · · , rT ]H ∈ CT×T and P = [p1, · · · ,pF ]
H ∈

CF×F are non-singular matrices called diagonalizers (not lim-
ited to unitary matrices unlike [14]) and h̃k ∈ R

T
+ and w̃k ∈

RF
+ are nonnegative vectors. Eq. (6) is rewritten as

X ≈ Y = Υ−1

(
K∑

k=1

[h̃k]⊗ [w̃k]

)
Υ−H, (8)

where Υ is given by
Υ = R⊗P ∈ C

TF×TF . (9)

Using Eq. (8) and Eq. (9), Eq. (2) gives

Υs ∼ NC

(
Υs | 0, [h̃k]⊗ [w̃k]

)
. (10)

We can thus say that while all elements of s or S are correlated,
the elements of Υs or RSPT are independent. Eq. (4) can
be minimized w.r.t. H, W, P, and R by using a convergence-
guaranteed algorithm with a complexity of O(T 2F+TF 2) [13].

B. Multichannel BSS

Our goal is to decompose a multichannel mixture spectro-
gram S ∈ C

T×F×M to the sum of N source images {Sn ∈
CT×F×M}Nn=1. Let s ∈ CTFM and sn ∈ CTFM be vec-
tors obtained by serializing S and Sn in the channel- and
frequency-major manner, respectively. As in Section III-A, sn
is assumed to follow a multivariate complex Gaussian distri-
bution with a CM Yn ∈ STFM

+ as follows:

sn | Yn ∼ NC(sn | 0,Yn). (11)
Using the additivity s =

∑
n sn, we have

s | Y ∼ NC(s | 0,Y), (12)

where Y =
∑

n Yn. The log-likelihood and cost function of
Y are the same as Eqs. (3) and (4), respectively. Once Y is
estimated, sn can be inferred with a Wiener filter as follows:

p(sn | s,Y) = NC

(
sn | YnY

−1s,Y −YnY
−1Yn

)
. (13)

Finally, inverse STFT is applied to E[sn] = YnY
−1s.
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1) Multichannel NMF (MNMF): Assuming the TF indepen-
dence, channel-axis-aligned slices of Sn, {sntf ∈ CM}T,F

t,f=1,
are assumed to follow independent multivariate Gaussian dis-
tributions. In MNMF, Yn ∈ S

TFM
+ is a block-diagonal matrix

whose (t, f)-th block, Yntf ∈ SM+ , is given by

Yntf =

K∑
k=1

h̃nkf w̃nkfGnf , (14)

where
∑K

k=1 h̃nkf w̃nkf represents the PSD of source n at
time t and frequency f (low-rank source model) and Gnf

represents the spatial CM of source n at frequency f (full-rank
spatial model). [h̃nk] ∈ RT

+ and [w̃nk] ∈ RF
+ are basis vectors

and the corresponding activations of source n, respectively. X
is thus approximated by Y as follows:

X ≈ Y =

N∑
n=1

K∑
k=1

([h̃nk]⊗ [w̃nk]⊗ IM )� [Gn·], (15)

where [Gn·] denotes a block-diagonal matrix whose diagonal
blocks are given by {Gnf}Ff=1. Eq. (4) can be minimized
w.r.t. H, W, and G by using a convergence-guaranteed algo-
rithm [6], [12] with a complexity of O(TFM3).

2) FastMNMF: To reduce the model complexity of MNMF,
the spatial CMs G·f = {Gnf}Nn=1 at each frequency f are
assumed to be jointly diagonalizable as follows:

Gnf = Q−1
f [g̃n]Q

−H
f , (16)

where Qf = [qf1, · · · ,qfM ]H ∈ CM×M is a diagonalizer
and g̃n ∈ RM

+ is a nonnegative vector. Eq. (15) is rewritten as

X ≈ Y = Υ−1

(
N∑

n=1

K∑
k=1

([h̃nk]⊗ [w̃nk]⊗ [g̃n])

)
Υ−H, (17)

where Υ is given by

Υ = IT ⊗ [Q·] ∈ C
TFM×TFM . (18)

Using Eq. (17) and Eq. (18), Eq. (12) gives
Υs ∼ NC

(
Υs | 0, [h̃nk]⊗ [w̃nk]⊗ [g̃n]

)
. (19)

This means that all elements of Υs (transformed spectrogram
{Qfstf ∈ CM}T,F

t,f=1) are independent. Qf is thus considered
to serve as a demixing filter. Eq. (4) can be minimized w.r.t. H,
W, G, and Q by using a convergence-guaranteed algorithm
with a complexity of O(TFM2) [10] as in FastCTF.

IV. PROPOSED METHOD

This section explains the proposed method called fast mul-
tichannel correlated tensor factorization (FastMCTF).

A. Model Formulation

We unify FastCTF [13] based on the jointly-diagonalizable
temporal and frequency covariance models (Eq. (7)) and Fast-
MNMF [10] based on the jointly-diagonalizable spatial covari-
ance model (Eq. (16)), i.e., Eq. (17) is extended to

Υ = R⊗ ([Q·](P⊗ IM )) ∈ C
TFM×TFM . (20)

If N = M = 1, Eq. (20) reduces to Eq. (9) of FastCTF. If R =
IT and P = IF , Eq. (20) reduces to Eq. (18) of FastMNMF.
S can thus be transformed to S̃ consisting of independent and
low-rank elements by using Eq. (19), i.e., multiplying P, Q,

and R to the axes of S in this order. Using IS-NMF, the PSDs
of S̃, x̃tfm = |s̃tfm|2 are approximated by ỹtfm as follows:

x̃tfm = (rHt ⊗ pH
f ⊗ qH

fm)X(rt ⊗ pf ⊗ qfm)

= rHt (IT ⊗ pH
f ⊗ qH

fm)X(IT ⊗ pf ⊗ qfm)rt

= pH
f (r

H
t ⊗ IF ⊗ qH

fm)X(rt ⊗ IF ⊗ qfm)pf

= qH
fm(rHt ⊗ pH

f ⊗ IM )X(rt ⊗ pf ⊗ IM )qfm, (21)

ỹtfm =
N∑

n=1

K∑
k=1

h̃nktw̃nkf g̃nm. (22)

B. Parameter Estimation

Given X = ssH, we aim to estimate H, W, G, R, P, and
Q, such that DLD(X|Y) (Eqs. (17) and (20)) is minimized.

DLD(X|Y) = − log |XY−1|+ tr
(
XY−1

)− TFM

c
= −FM log |RRH| − TM log |PPH| − T

F∑
f=1

log |QfQ
H
f |

+
T∑

t=1

F∑
f=1

M∑
m=1

log ỹtfm +
T∑

t=1

F∑
f=1

M∑
m=1

x̃tfmỹ−1
tfm. (23)

Because Eq. (23) has the same form as FastCTF and Fast-
MNMF, we can derive a convergence-guaranteed optimization
algorithm. Specifically, H, W, G can be updated in a multi-
plicative manner as in IS-NMF as follows:

h̃nkt ← h̃nkt

√√√√∑F
f=1

∑M
m=1 w̃nkf g̃nmỹ−2

tfmx̃tfm∑F
f=1

∑M
m=1 w̃nkf g̃nmỹ−1

tfm

, (24)

w̃nkf ← w̃nkf

√√√√∑T
t=1

∑M
m=1 h̃nktg̃nmỹ−2

tfmx̃tfm∑T
t=1

∑M
m=1 h̃nktg̃nmỹ−1

tfm

, (25)

g̃nm ← g̃nm

√√√√∑T
t=1

∑F
f=1

∑K
k=1 h̃nktw̃nkf ỹ

−2
tfmx̃tfm∑T

t=1

∑F
f=1

∑K
k=1 h̃nktw̃nkf ỹ

−1
tfm

. (26)

The diagonalizers R, P, and Q can also be updated with
iterative projection as in IVA [3] as follows:{
Ct =

1
FM

∑F
f=1

∑M
m=1

(IT⊗pH
f ⊗qH

fm)X(IT⊗pf⊗qfm)

ỹtfm
,

rt ← (RCt)
−1et, rt ← (rHt Ctrt)

− 1
2 rt,{

Af = 1
TM

∑T
t=1

∑M
m=1

(rHt ⊗IF⊗qH
fm)X(rt⊗IF⊗qfm)

ỹtfm
,

pf ← (PAf )
−1ef , pf ← (pH

f Afpf )
− 1

2pf ,{
Bfm = 1

T

∑T
t=1

(rHt ⊗pH
f ⊗IM )X(rt⊗pf⊗IM )

ỹtfm
,

qfm ← (QfBfm)−1em, qfm ← (qH
fmBfmqfm)−

1
2qfm.

Finally, source images are obtained with Eq. (13). While the
naive decomposition of S using Eq. (13) costs O(T 3F 3M3),
it is equivalent to the efficient element-wise decomposition of
S̃ with a complexity of O(TFM(T + F +M)).

V. EVALUATION

This section reports our preliminary experiment conducted
for investigating the effectiveness of considering the tempo-
ral and frequency CMs in addition to the frequency CMs in
multichannel BSS.
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Fig. 3. The change of the SDR and cost function in the iterative optimization.

A. Experimental Conditions

We compared the behaviors of TF-independence-based Fast-
MNMF [10] (R = IT and P = IF ), frequency- and temporal-
covariance-based FastPSDTF-F (R = IT ) and FastPSDTF-T
(P = IF ), and TF-covariance-based FastMCTF. After ran-
domly initializing Θ = {H,W,G,Q} and setting R = IT ,
P = IF , and Q = IM , we updated only Θ (FastMNMF) for
the first 100 iterations and then iterates a process of updating
P or R 10 times and Θ 50 times.

For evaluation, an anechoic signal sampled at 16 kHz was
synthesized by mixing male and female short utterances taken
from the spatialized WSJ0-mix dataset [22] (N = 2,M = 4).
The STFT with a window size of 512 and a shifting interval
of 256 was used for computing S (T = 295, F = 257). The
performances of the compared methods were evaluated in term
of the cost function and the SDR [23].

B. Experimental Results and Discussions

As shown in Fig. 3, we confirmed that the cost function was
monotonically non-increasing in each method, where updating
P or R led to a large drop of the cost function. Interestingly,
we found that although FastMCTF always gave the lowest
value of the cost function, a lower cost did not always mean a
better SDR. After the first 100 iterations based on FastMNMF,
the SDR was slightly improved by updating P and Θ, but
then gradually degraded by updating R. This indicates that
the frequency covariance modeling helps to find an optimal
domain other than the frequency domain, but the temporal
covariance modeling may conflict with the starring spatial co-
variance modeling in multichannel BSS, while both techniques
were shown to be useful for single-channel BSS (PSDTF-F
and PSDTF-T) [13]. The main contribution of this paper lies in
the mathematically-solid derivation of FastMCTF and detailed
empirical evaluation should be included in future work.

To draw the potential of FastMCTF, we are revisiting the
order of frequency- and channel-axis-aligned transforms P and
Q used for making the elements of S independent. While
FastCTF [13] is invariant w.r.t. the order of axis-aligned trans-
forms, FastMCTF is not because of the frequency-wise spatial
modeling. Considering that in theory, the time-domain convo-
lution is equivalent to the frequency-domain product, it would
be better to use Q in the frequency domain before using P.

VI. CONCLUSION

This paper described a BSS method named fast multichan-
nel correlated tensor factorization (FastMCTF). It includes as

its special cases many conventional efficient BSS methods
based on the independence, low-rankness, and nonnegativity
(positive semidefiniteness) of sources such at NMF [4], Fast-
CTF [13], and FastPSDTF [15] proposed for single-channel
BSS and ILRMA [8] and FastMNMF [9], [10] proposed for
multichannel BSS. A given multichannel mixture spectrogram
can be efficiently decomposed into the sum of source images at
once with a Wiener filter considering the temporal, frequency,
and spatial CMs estimated by FastMCTF.
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