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Abstract—This paper describes a versatile tensor factorization
technique called independent low-rank tensor analysis (ILRTA)
and its application to single-channel audio source separation. In
general, audio source separation has been conducted in the short-
time Fourier transform (STFT) domain under an unrealistic but
conventional assumption of the independence of time-frequency
(TF) bins. Nonnegative matrix factorization (NMF) is a typical
technique of single-channel source separation based on the low-
rankness of source spectrograms. In a multichannel setting, inde-
pendent component analysis (ICA) and its multivariate extension
called independent vector analysis (IVA) have often been used
for blind source separation based on the independence of source
spectrograms. Integrating NMF and IVA, independent low-rank
matrix analysis (ILRMA) was recently proposed. To deal with
the covariance of TF bins, in this paper we propose ILRTA as
a new extension of NMF. Both ILRMA and ILRTA aim to find
independent and low-rank sources. A key difference is that while
ILRMA estimates demixing filters that decorrelate the channels
for multichannel source separation, ILRTA finds optimal trans-
forms that decorrelate the time frames and frequency bins of a
STFT representation for single-channel source separation in a
way that the bin-wise independence assumed by NMF holds true
as much as possible. We report evaluation results of ILRTA and
discuss extension of ILRTA to multichannel source separation.

I. INTRODUCTION

Audio source separation is a fundamental technique for au-
dio event detection and identification [1], automatic speech
recognition [2], and automatic music transcription [3]. Single-
channel or multichannel source separation has commonly been
performed in the short-time Fourier transform (STFT) domain.
Since single-channel source separation is an underdetermined
ill-posed problem, one needs to assume some time-frequency
(TF) statistics of source spectrograms for evaluating the opti-
mality of a solution. Multichannel source separation without
the aid of prior information about sources, a.k.a. blind source
separation (BSS), can yield reasonable results under a deter-
mined or overdetermined condition (the number of sources is
no more than that of microphones) by leveraging the spatial
statistics of source spectrograms.

Nonnegative matrix factorization (NMF) [4] is a well-known
technique of single-channel source separation based on the
low-rankness of source spectrograms. A given nonnegative ma-
trix (mixture spectrogram) is approximated as the product of
two nonnegative matrices (a set of basis spectra and a set of
temporal activations). If the TF bins of audio spectrograms
are independently complex Gaussian distributed, a variant of
NMF based on the Itakura-Saito (IS) divergence (IS-NMF) [5]
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Fig. 1. A new look of low-rank decomposition methods of single-channel or
multichannel audio source separation in terms of covariance modeling.

is theoretically justified. The mixture spectrogram is decom-
posed into the sum of source spectrograms via bin-wise Wiener
filtering, in which the phase information of each source re-
mains the same as that of the mixture. Note that estimation of
consistent phase information [6], [7] cannot always improve
the perceptual quality of the synthesized source signals.

A fundamental problem causing the phase inconsistency of
NMF lies in the unrealistic assumption of the independence of
TF bins. In theory, the independence of frequency bins holds
true in the Fourier transform of an infinite stationary signal. In
reality, the frequency bins are correlated with each other in the
short-time Fourier transform (STFT) of a finite non-stationary
signal. The time frames at which the same sounds occur are
also correlated with each other.

Correlated tensor factorization (CTF) [8] is an ultimate ap-
proach to dealing with the full covariance of TF bins. A given
positive semidefinite (PSD) matrix (the huge covariance matrix
over all the TF bins of a mixture spectrogram) is approximated
as the sum of the Kronecker products between multiple sets
of PSD matrices (a set of frequency covariance matrices and
at set of temporal covariance matrices). All the TF bins of
each source spectrogram can be estimated jointly in a corre-
lated manner via Wiener filtering. CTF includes as its special
cases NMF, positive semidefinite tensor factorization (PSDTF)
[9], [10] dealing with either frequency or temporal covariance
matrices, and nonnegative tensor factorization (NTF) [11]. The
major limitation of CTF, however, lies in the prohibitively huge
computational cost. For a mixture spectrogram of F bins and
T frames consisting of K sources, the computational cost of
CTF is O(KF 3T 3) while that of NMF is O(KFT ).

The covariance of channels plays a central role in multi-
channel source separation based on the independence of source
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spectrograms. Assuming an instantaneous mixing process in the
frequency domain, independent component analysis (ICA) [12]
has often been used for estimating source components in a
frequency-wise manner. To avoid the permutation problem,
independent vector analysis (IVA) [13], [14] assumes source
spectra to follow multivariate probability distributions. To use
the low-rankness of source spectrograms, independent low-
rank matrix analysis (ILRMA) [15] was derived by integrating
IVA and NMF. These methods aim to estimate demixing ma-
trices that make the channels independent (i.e., transform the
channel domain into the source domain) under a determined
condition in a way that an assumption on source spectrograms
(e.g., super-Gaussianity and low-rankness) holds true as much
as possible. Another approach to demixing matrix estimation is
to perform approximate joint diagonalization (AJD) of spatial
covariance matrices at different frames [16]–[18].

Using the techniques of multichannel source separation, we
propose a constrained version of CTF called independent low-
rank tensor analysis (ILRTA) with a feasible complexity of
O(F 2T )+O(FT 2)+O(F 4)+O(T 4)+O(KFT ) for single-
channel source separation based on the independence and low-
rankness of source spectrograms. ILRTA aims to find optimal
transforms that make the time frames and frequency bins in-
dependent by constraining the temporal and frequency covari-
ance matrices of CTF to be jointly diagonalizable, respectively.
CTF in the STFT domain can thus be approximated by NMF
in a transformed domain. Such transforms can be estimated
by using an iterative projection (IP) algorithm proposed for
estimating demixing matrices of IVA [14]. In summary, ILRTA
iterates until convergence the optimization of decorrelation
transforms and NMF of a decorrelated spectrogram, in the
same way that ILRMA iterates the optimization of demixing
matrices and NMF of demixed spectrograms.

A major contribution of this study is to situate low-rank de-
composition methods in terms of multiway covariance model-
ing (Fig. 1). ILRTA is a special case of CTF with jointly diag-
onalizable temporal and frequency covariance matrices while
ILRMA is that of multichannel NMF (MNMF) [19] with rank-
1 spatial covariance matrices. ILRTA is a multiway extension
of transform-learning NMF (TL-NMF) [20] that estimates uni-
rary frequency covariance matrices.

II. CORRELATED TENSOR FACTORIZATION

We briefly review correlated tensor factorization (CTF) [8]
and its application to single-channel audio source separation.

A. General Formulation

Let X ∈ S
D1D2···DM
+ be a PSD matrix, where SD+ denotes a

D ×D PSD matrix [21] and the dimension of X is assumed
to be factorized as the product of M integers {Dm}Mm=1. CTF
aims to approximate X as a PSD matrix Y as follows:

X ≈ Y
def
=

K∑
k=1

M⊗
m=1

Vkm
def
=

K∑
k=1

Vk1 ⊗ · · · ⊗VkM , (1)

where {Vkm ∈ S
Dm
+ }Mm=1 is a set of PSD matrices related to

component k and ⊗ denotes the Kronecker product.
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Fig. 2. Comparison between IS-NMF, LD-PSDTF, and LD-CTF.

To evaluate the approximation error between X and Y, one
can use the Bregman matrix divergence [22] defined as

Dφ(X|Y) = φ(X)− φ(Y)− tr
(∇φ(Y)T(X−Y)

)
, (2)

where φ is a strictly convex function on S
D1D2···DM
+ and ∗T

denotes the matrix transpose (cf., ∗H denotes the Hermitian
conjugate). For audio source separation, it is theorerically rea-
sonable to use the log-det (LD) divergence [23] with φ(Z) =
− log |Z|, which is given by

DLD(X|Y) = − log
∣∣XY−1

∣∣+ tr
(
XY−1

)−D1 · · ·DM . (3)

To estimate Vkm that minimizes DLD(X|Y), we consider only
M = 2 because Eq. (1) can be written as X(m) ≈∑K

k=1Vkm⊗
(
⊗

m′ �=m Vkm′), where X(m) is a permutation of X.

B. Relationships to Conventional Methods
Given a PSD matrix X ∈ S

FT
+ , we aim to estimate two sets

of PSD matrices {Wk ∈ SF+}Kk=1 and {Hk ∈ ST+}Kk=1 such that

X ≈ Y
def
=

K∑
k=1

Wk ⊗Hk, (4)

where F and T are positive integers (the number of frequency
bins and that of frames). Let Yk = Wk ⊗Hk such that Y =∑

k Yk. Let [z] be a diagonal matrix whose diagonal elements
form a nonnegative vector z. As shown in Fig. 2, if all the PSD
matrices are restricted to diagonal matrices such that X = [x],
Wk = [wk], and Hk = [hk], LD-CTF reduces to IS-NMF [5]:

xft ≈ yft
def
=

K∑
k=1

wkfhkt, (5)

where xft is a nonnegative element of x and yft is that of y.
If either {Wk ∈ SF+}Kk=1 or {Hk ∈ ST+}Kk=1 are restricted to
diagonal matrices, LD-CTF reduces to LD-PSDTF [9], [10]:

X̂f ≈
K∑

k=1

wkfHk or X̌t ≈
K∑

k=1

Wkhkt, (6)

where the PSD matrix X̂f ∈ ST+ is obtained by extracting the
rows and columns of X related to f , and X̌t ∈ S

F
+ is obtained

similarly. While LD-PSDTF can deal with the covariance of
a particular dimension (e.g., frequency or time axis), LD-CTF
can deal with both covariances. LD-PSDTF and LD-CTF can
thus achieve better phase-aware source separation.
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C. Parameter Estimation
A convergence-guaranteed iterative algorithm was proposed

for estimating {Wk ∈ SF+}Kk=1 and {Hk ∈ ST+}Kk=1 from X
in an unsupervised manner [8]. Let # denote the geometric
mean of two PSD matrices defined as follows [24]–[26]:

A#B = A
1
2

(
A− 1

2BA− 1
2

) 1
2

A
1
2 = A(A−1B)

1
2 . (7)

The updating formulas of Wk and Hk are given by

Wk ← A−1
k #(WkBkWk), (8)

Hk ← C−1
k #(HkDkHk), (9)

where Ak ∈ SF+, Bk ∈ SF+, Ck ∈ ST+, and Dk ∈ ST+ are
temporary PSD matrices given by

Ak = (IF ⊗ 1T
T )
(
(1F ⊗HT

k )�Y−1
)
(IF ⊗ 1T ),

Bk = (IF ⊗ 1T
T )
(
(1F ⊗HT

k )�Y−1XY−1
)
(IF ⊗ 1T ),

Ck = (1T
F ⊗ IT )

(
(WT

k ⊗ 1T )�Y−1
)
(1F ⊗ IT ),

Dk = (1T
F ⊗ IT )

(
(WT

k ⊗ 1T )�Y−1XY−1
)
(1F ⊗ IT ),

where ID and 1D indicate the identity matrix of size D and the
all-one vector of length D, respectively, and � indicates the
element-wise product (Hadamard product). The computational
complexity of this algorithm is O(KF 3T 3), which prohibits
the practical application of LD-CTF.

D. Audio Source Separation
We explain a probabilistic generative model underlying LD-

CTF in single-channel audio source separation. Let s ∈ CFT

be a complex vector obtained by listing in a row-major manner
all the TF bins of the complex spectrogram S ∈ CF×T of a
mixture signal over F bins and T frames. Let X def

= ssH be the
rank-1 covariance matrix over S. Similarly, let sk ∈ CFT be a
complex vector obtained by listing the complex spectrogram
Sk ∈ CF×T of source k. If the linear additivity of complex
spectrograms holds true, we can say s =

∑
k sk.

In LD-CTF, each sk is assumed to follow a centered multi-
variate complex Gaussian distribution with a covariance matrix
Yk ∈ S

FT
+ as follows:

sk | Yk ∼ Nc(sk|0,Yk). (10)

The full covariance structure over all the TF bins can be taken
into account unlike IS-NMF and LD-PSDTF. The reproductive
property of the complex Gaussian distribution gives

s | Y ∼ Nc(s|0,Y). (11)

The log-likelihood for the observed data s is thus given by

log p(s|Y)
c
= − log |Y| − tr(XY−1)

c
= − DLD(X|Y). (12)

This shows that LD-CTF is equivalent to maximum likelihood
estimation of a probabilistic model given by Eq. (11).

Once Wk’s and Hk’s are estimated by LD-CTF, the latent
variable sk can be inferred by Wiener filtering as follows:

p(sk|s,W,H) = Nc

(
sk

∣∣∣YkY
−1s,Y −YkY

−1Yk

)
. (13)

The time-domain signal of source k is obtained by applying the
inverse STFT to the complex spectrogram E[sk] = YkY

−1s.
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Fig. 3. ILRTA based on iteration of multiway transform learning and NMF.

III. INDEPENDENT LOW-RANK TENSOR ANALYSIS

We explain independent low-rank tensor analysis (ILRTA),
a constrained version of LD-CTF with jointly diagonalizable
frequency and temporal covariance matrices (Fig. 3).

A. Mathematical Formulation

ILRTA is given by putting on LD-CTF (Eq. (4)) a con-
straint that {Wk ∈ SF+}Kk=1 and {Hk ∈ ST+}Kk=1 are jointly
diagonalizable, respectively, as follows:

∀k Wk = P−1[w̃k]P
−H, (14)

∀k Hk = Q−1[h̃k]Q
−H, (15)

where w̃k ∈ RF
+ and h̃k ∈ RT

+ are nonnegative vectors and
P = [p1, · · · ,pF ]

H ∈ CF×F and Q = [q1, · · · ,qT ]
H ∈

CT×T are non-singular matrices not limited to unitary matrices
unlike TL-NMF [20]. If P and Q are identity matrices, ILRTA
reduces to IS-NMF. If either of P and Q is an identity matrix,
ILRTA reduces to a constrained version of LD-PSDTF (Fig. 1).
The reconstruction matrix Y is given by

Y =
K∑

k=1

Wk ⊗Hk

= (P⊗Q)−1

(
K∑

k=1

[w̃k]⊗ [h̃k]

)
(P⊗Q)−H, (16)

For brevity, we define x̃ft and ỹft as follows:

x̃ft = (pH
f ⊗ qH

t )X(pf ⊗ qt)

= pH
f (IF ⊗ qH

t )X(IF ⊗ qt)pf

= qH
t (p

H
f ⊗ IT )X(pf ⊗ IT )qt, (17)

ỹft =
K∑

k=1

w̃kf h̃kt. (18)
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The cost function based on the LD divergence is given by

DLD(X|Y) = − log |XY−1|+ tr
(
XY−1

)− FT
c
= −T log |PPH| − F log |QQH|

+

F∑
f=1

T∑
t=1

log ỹft +

F∑
f=1

T∑
t=1

x̃ftỹ
−1
ft . (19)

B. Parameter Estimation
To estimate latent patterns {w̃k}Kk=1 and {h̃k}Kk=1 and trans-

form matrices P and Q from a PSD matrix X, we propose an
iterative optimization algorithm. The scale ambiguity between
these parameters is solved in each iteration as in NMF.

1) Updating Patterns: To minimize Eq. (19) w.r.t. w̃k and
h̃k, we focus on the sum of the last two terms. This sum is
equal to

∑
ftDIS(x̃ft|ỹft) except for constant terms, where

DIS(x|y) = − log x/y+x/y−1 denotes the IS divergence be-
tween x and y. The updating formulas of w̃k and h̃k are given
in a multiplicative form in the same way as IS-NMF [27]:

w̃kf ← ã−1
kf #(w̃kf b̃kf w̃kf ) = ã

− 1
2

kf b̃
1
2

kf w̃kf , (20)

h̃kt ← c̃−1
kt #(h̃ktd̃kth̃kt) = c̃

− 1
2

kt d̃
1
2

kth̃kt, (21)

where ãkf , b̃kf , c̃kt, and d̃kt are temporary scalars given by

ãkf =
T∑

t=1

h̃ktỹ
−1
ft , b̃kf =

T∑
t=1

h̃ktx̃ftỹ
−2
ft , (22)

c̃kt =
F∑

f=1

w̃kf ỹ
−1
ft , d̃kt =

F∑
f=1

w̃kf x̃ftỹ
−2
ft . (23)

Note that LD-CTF calculates the geometric mean of two PSD
matrices (Eq. (8) and Eq. (9)) while IS-NMF calculates that
of two nonnegative scalars (Eq. (20) and Eq. (21)).

2) Updating Transforms: To minimize Eq. (19) w.r.t. P, we
focus on the sum of the first and last terms. Using Eq. (17),
this sum is found to have the same form of the cost function of
IVA based on the majorization-minimization (MM) principle
[14]. The updating formula of P is thus given by an iterative
projection (IP) algorithm as follows:

updating direction: pf ← (PUf )
−1ef , (24)

updating norm: pf ← (pH
f Ufpf )

− 1
2pf , (25)

where ef ∈ R
F is a unit vector that takes 1 in dimension f

and Uf ∈ SF+ is a temporary PSD matrix given by

Uf =
T∑

t=1

(IF ⊗ qH
t )X(IF ⊗ qt)ỹ

−1
ft . (26)

Similarly, the updating formula of Q is given by

updating direction: qt ← (QVt)
−1et, (27)

updating norm: qt ← (qH
t Vtqt)

− 1
2qt, (28)

where et ∈ R
T is a unit vector that takes 1 in dimension t

and Vt ∈ ST+ is a temporary PSD matrix given by

Vt =
F∑

f=1

(pH
f ⊗ IT )X(pf ⊗ IT )ỹ

−1
ft . (29)

C. Audio Source Separation
We investigate how ILRTA works for single-channel audio

source separation. Substituting Eq. (16) into Eq. (11), we ob-
tain the probabilistic model of ILRTA as follows:

s | Y

∼ Nc

(
s

∣∣∣∣∣0, (P⊗Q)−1

(
K∑

k=1

[w̃k]⊗[h̃k]

)
(P⊗Q)−H

)
. (30)

A linear transform of s ∈ CFT using P ⊗Q as a transform
matrix also follows a Gaussian distribution given by

(P⊗Q)s | Y ∼ Nc

(
(P⊗Q)s

∣∣∣∣∣0,
K∑

k=1

[w̃k]⊗ [h̃k]

)
, (31)

where (P ⊗ Q)s ∈ CFT is a complex vector obtained by
serializing a transformed spectrogram PSQT ∈ CF×T in a
row-major manner. Eq. (31) means that all the bins of PSQT

are independent (uncorrelated) because the covariance matrix
is diagonal while those of S are correlated in the STFT do-
main. Therefore, PSQT is more suitable to IS-NMF than S. P
and Q are optimized in a way that the bin-wise independence
and low-rankness of PSQT hold true as much as possible. In
ILRTA, decorrelation transforms and NMF in a transformed
domain are iterated until convergence. This drastically reduces
the computational cost of LD-CTF to a manageable level in
exchange for the joint diagonalizability constraint.

D. Open Problems

For future research, we discuss some technical difficulties of
ILRTA. Since ILRTA is based on an overparametrized model,
it is very sensitive to the initialization of iterative optimization.
The degree of freedom (DOF) of ILRTA (the number of free
parameters) is K(F +T )+F 2+T 2, which is only a fraction
of the DOF of LD-CTF, K(F 2+T 2), but still larger than the
number of observed TF bins, FT . It is effective to initialize
ILRTA by using wk and hk obtained by IS-NMF, i.e., w̃k ←
wk, h̃k ← hk, P← IF , and Q← IT .

The IP algorithm (Section III-B2) has non-trivial problems.
Since X = ssH is a rank-1 matrix in audio source separation,
Eq. (26) and Eq. (29) can be efficiently calculated as follows:

Uf =
(
SQT

)︸ ︷︷ ︸
F×T

[
[ỹf1, · · · , ỹfT ]T

]︸ ︷︷ ︸
T×T

(
SQT

)H︸ ︷︷ ︸
T×F

, (32)

Vt = (PS)
H︸ ︷︷ ︸

T×F

[
[ỹ1t, · · · , ỹFt]

T
]︸ ︷︷ ︸

F×F

(PS)︸ ︷︷ ︸
F×T

. (33)

When F < T as is often the case with audio source sepa-
ration, Vt is not invertible due to the rank deficiency. The
rank of Vt is F and the pseudo-inverse operation does not
work. Dimensionality reduction techniques such as principal
component analysis (PCA) would be a remedy to this problem.
Another possibility would be to perform AJD of the tempo-
ral covariance matrices {Hk}Kk=1 obtained by LD-PSDTF for
estimating Q. Since the IP algorithm is numerically unstable
because of the high dimensionality, we currently update only
P in a few iterations.
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TABLE I
SOURCE SEPARATION PERFORMANCE [dB]

Method SDR SIR SAR
IS-NMF 18.9 24.2 20.4
LD-PSDTF 22.8 28.5 24.2
ILRTA (Fast LD-PSDTF) 24.3 31.4 25.2

IV. EVALUATION

We report comparative evaluation of ILRTA with its special
cases such as IS-NMF and LD-PSDTF.

A. Experimental Conditions

We synthesized a mixture signal of 8.4 s sampled at 16 [kHz]
by concatenating three isolated piano tones (C4, E4, and G4)
and four chords (C4+E4, C4+G4, E4+G4, and C4+E4+G4) of
1.2 s (K = 3). The STFT with a Gaussian window of 512 pts
and a shifting interval of 160 pts was used for calculating the
complex spectrogram S ∈ CF×T with F = 256 and T = 840.
As discussed in Section III-D, we updated P, W, and H while
keeping Q = IT . This is equivalent to a fast approximation of
LD-PSDTF based on jointly-diagonalizable frequency covari-
ance matrices. Both ILRTA and LD-PSDTF were initialized
with the results of IS-NMF. BSS Eval Toolbox [28] was used
for measuring the source-to-distortion ratio (SDR), source-to-
interferences ratio (SIR), and sources-to-artifacts ratio (SAR)
of separated signals.

B. Experimental Results

Table I shows the experimental results. ILRTA outperformed
IS-NMF and LD-PSDTF in terms of all the evaluation mea-
sures. Interestingly, although ILRTA with fixed Q = IT is an
approximation of LD-PSDTF, it was better than LD-PSDTF.
The covariance constraint was found to be effective for regular-
izing an overparametrized model such as LD-PSDTF and LD-
CTF. We confirmed that the jointly-diagonalizable frequency
covariance matrices found by ILRTA looked similar to uncon-
strained ones found by LD-PSDTF (Fig. 2).

V. CONCLUSION

This paper described a new low-rank decomposition method
called ILRTA and its application to single-channel source sep-
aration. It iterates the decorrelation of the TF bins of a mixture
spectrogram and the low-rank decomposition of the decorre-
lated spectrogram in a way that a unified cost function is mini-
mized. We showed that ILRTA outperformed computationally-
intensive LD-PSDTF, a special case of LD-CTF. To draw the
full potential of ILRTA as fast approximate LD-CTF, we need
to develop a stable and rank-deficiency-free optimization algo-
rithm. Since ILRTA is a general framework based on multiway
(e.g., temporal, frequency, and channel) covariance modeling,
ILRTA could be straightforwardly extended for multichannel
source separation by integrating IVA in the same way that
NMF was extended to ILRMA (Fig. 1).
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