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Abstract
We address character expression for spoken dialogue systems
(e.g. extrovert). While conventional studies focused on con-
trolling linguistic expressions, we focus on spoken dialogue be-
haviors. Specifically, the proposed model maps three charac-
ter traits: extroversion, emotional instability, and politeness to
four spoken dialogue behaviors: utterance amount, backchan-
nel, filler, and switching pause length. It is costly to collect
annotated data for training this kind of models. Therefore, we
propose a semi-supervised learning approach to utilize not only
a character impression data (labeled data) but also a corpus data
(unlabeled data). Experimental results show that the proposed
model expresses the target character traits through the behav-
iors more precisely than a baseline model that corresponds to
the case of supervised learning only. Besides, we also inves-
tigate how to model unlabeled behavior (e.g. speech rate) by
utilizing the advantage of semi-supervised learning.
Index Terms: Spoken dialogue system, character, personality,
dialogue behavior, backchannel, filler

1. Introduction
It is desired for spoken dialogue systems, in particular, social
robots and virtual agents, to express their characters (e.g. ex-
trovert) for human-like interaction [1, 2]. In practical spoken
dialogue systems, specific social roles are given such as a psy-
chological counselor [3], a museum guide [4], and an attentive
listener [5]. To make dialogue in these social scenarios more
natural, it is important to assign proper characters to the sys-
tems. For example, museum guide systems are expected to be
extrovert and intelligent, and counseling systems are expected
to be introvert and emotionally stable. Earlier user experiments
have revealed that the character expression of spoken dialogue
systems led to increasing user engagement and the naturalness
of the dialogue [6, 7, 8].

In our study, we focus on spoken dialogue behaviors that
have not yet been studied well in character expression. Previ-
ous studies have addressed character expression models control-
ling the linguistic pattern of system utterances [9, 10, 11, 12].
Therefore, data for character expression has been collected as
the form of text dialogue [13, 14, 15, 16]. However, in spo-
ken dialogue, besides the above-mentioned text style, spoken
dialogue behaviors should be considered. We propose a charac-
ter expression model that controls four spoken dialogue behav-
iors: utterance amount, backchannel, filler, and switching pause
length.

In our previous work [17, 18], character expression models
were trained by supervised learning with manually-annotated
labels obtained through impression evaluation. However, the
manual annotation can be both costly and time-consuming, and
therefore the variation of behavior patterns has to be limited. As
a result, supervised training with the limited training data may
fall in over-fitting and then lead to unnatural behavior control.
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Figure 1: Problem formulation of character expression

In this paper, we propose a character expression model
based on variational auto-encoder (VAE) [19] with semi-
supervised learning to utilize not only manually-annotated la-
bels (supervised) but also dialogue corpus data (unsupervised).
It is expected that the proposed model compensates the above-
mentioned data-sparseness by semi-supervised learning with
natural dialogue behavior data. Another advantage of semi-
supervised learning is to be able to train an expression of addi-
tional dialogue behavior (e.g. speech rate) that is not annotated
at all in the labeled data but can be measured in the labeled data.

The aim of this study is to realize the character expression
model, which maps target character traits to natural dialogue
behaviors, by introducing semi-supervised learning. Utiliza-
tion of dialogue corpus data as unlabeled data can be applied
to other expression tasks (e.g. emotion expression through dia-
logue behaviors), which are affected by data-sparseness due to
the limited training data.

In Section 2, we define character traits (input) and dialogue
behaviors (output) used in this study. Training data including
labeled and unlabeled ones are explained in Section 3. The pro-
posed semi-supervised learning is explained in Section 4 and
also evaluated in Section 5.

2. Character traits and spoken dialogue
behaviors

At first, we address the problem setting as shown in Figure 1.
The input of the character behavior model is the set of char-
acter traits. In our study, we use three character traits: extro-
version (extrovert vs. introvert), emotional instability (stable
vs. instable), and politeness (polite vs. casual). Extrover-
sion and emotional instability are selected from the Big Five
scale [20, 21, 22]. In previous studies, the Big Five traits have
been used to define the personality of dialogue systems [9, 23].
Since using all the five traits requires a larger amount of train-
ing data and also makes a model complicated, we use the two
traits: extroversion and emotional instability, in this study. Ex-
troversion is expected to be the major factor that determines the
impression on systems’ characters [24]. However, if we use
only extroversion in our character control model, the system
could unintentionally behave as emotional instable. To avoid
this, emotional instability is used in our model explicitly. In ad-
dition, politeness is also adopted in our model so that the system
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Control amount
0.0 1.0

Utterance amount speak not at all speak all time
Backchannel no backchannel at all user pauses
Filler no filler at all system pauses
Switching pause −0.5 sec. (overlap) 3.0 sec.

Table 1: Correspondence between control amount and actual
behavior features

would be able to control its intimacy towards a dialogue part-
ner [25]. For example, it is expected that the system behaves
politely in formal situations, on the other hand, the system be-
haves casually with intimate (familiar) users.

The output of the character behavior model is the set of
control amounts of spoken behaviors. We focus on spoken di-
alogue behaviors that are not observed in text-based dialogue
as listed in Table 1. They are utterance amount, backchannel
frequency, filler frequency, and switching pause length. Previ-
ous studies suggested that these behaviors affected the impres-
sion of dialogue partners [26, 23, 27, 28, 29, 30]. The utterance
amount means the ratio of utterance time between a system and
a user. Backchannels are reactive tokens by listeners such as
“Yeah” in English and “Un” in Japanese [31, 32]. In this study,
the behavior of backchannel corresponds to the frequency of ut-
tered backchannels. Fillers are short phrases filling the silence
to hold (or take) the conversational floor such as “Well” in En-
glish and “E-” in Japanese [33, 34]. The behavior of filler also
corresponds to the frequency of uttered fillers. Switching pause
length is defined as the time gap between the end of the pre-
ceding turn and the start of the following turn. Our character
behavior model controls these four spoken behaviors according
to the input of the three character traits.

Since the model output is the set of control amounts of be-
haviors which are normalized from 0 to 1, their values need to
be converted to the actual behavior features (e.g. how many
backchannels uttered). We define the correspondence between
them as reported in Table 1. In this study, we use this correspon-
dence when we make the dataset from an impression evaluation
data and a dialogue corpus that are described in the next section.
We convert these control amounts to actual behavior values by
linear interpolation based on this correspondence. For example,
if the control amount of backchannel is 1, the system would
generate backchannels at all user pauses.

3. Training data
We explain the labeled and unlabeled data used for semi-
supervised learning for the character behavior model, respec-
tively. The labeled data is obtained from a character impression
evaluation (manual annotation), and the unlabeled data is de-
rived from a human-robot dialogue corpus.

3.1. Labeled data: Character impression evaluation

To collect supervised training data, we conducted an experiment
of impression evaluation on the character traits. In this exper-
iment, each subject was asked to listen to speech samples and
then to evaluate his/her impression on the three character traits
of the speaker (7-point scale). For extroversion and emotional
instability, we used 8 adjectives (4 for each) from a short ver-
sion of Big Five scale [35]. We also used two adjectives, polite
and courteous, for the third trait politeness. The subjects were
46 university students (18 females and 28 males, from 18 to 23
years old). Note that this experiment was done in the Japanese

language.

The speech samples were generated as follows. In advance,
we selected two dialogue scenarios from our human-robot dia-
logue corpus described in Section 3.2. Based on each scenario,
we artificially generated several speech samples by controlling
dialogue behaviors observed in them. The robot utterances were
controlled by text-to-speech software. At first, we generated
a standard speech sample where backchannel and filler tokens
are kept as the original dialogue and the switching pause length
is set to 0.5 seconds. From the standard sample, we changed
each dialogue behavior one by one. We used these generated
speech samples to compare the perceived character traits be-
tween different conditions on each dialogue behavior (e.g. high
backchannel frequency vs. low backchannel frequency). The
detail of this sample generation (and also the analysis result)
are found in our previous work [17].

In this study, we use the character trait scores obtained
through this impression evaluation as labeled data. The num-
ber of available samples was 734, and they are divided into
662 samples for training and 74 samples for testing. Each sam-
ple corresponds to one where one of the subjects evaluated one
of the controlled speech samples. The evaluated character trait
scores are normalized from 0 to 1.

3.2. Unlabeled data: A human-robot dialogue corpus

Since the number of training labels from the above-mentioned
labeled data is limited, we also use a dialogue corpus as unla-
beled data. We have collected a human-robot dialogue corpus
where a subject talked with a humanoid robot that was con-
trolled by a human operator remotely [36]. The voice of the hu-
man operator was directly played through the robot’s speaker so
that their spoken behaviors can be natural. In this corpus, there
are three kinds of dialogue tasks: speed-dating, job interview,
and attentive listening. Each dialogue lasted about 10 minutes
and the numbers of dialogue sessions were 83, 30, 19 in speed-
dating, job interview, and attentive listening, respectively. The
robot operators were four females in total where one of them
attended each session. In this study, we use the spoken behav-
ior data of the robot operators to model the system’s behavior.
Since there were several robot operators and also several dia-
logue tasks in this corpus, it is expected that both the character
and the spoken behaviors varied widely and naturally. We made
manual annotation of the spoken behaviors.

We segmented each dialogue session by two minutes as one
sample. This segment length was empirically determined to
make enough amount of the spoken behaviors observed. For
each segment, the four spoken behaviors were measured and
also normalized to make the values from 0 to 1 in the same way
as we conducted on the labeled data.

4. Character expression model

We propose a character behavior model trained by semi-
supervised learning to utilize both the impression evaluation
data and the dialogue corpus data simultaneously. Using the
impression evaluation data, the proposed model acquires the re-
lationship between the input character and the output spoken
behaviors (supervised learning). Besides, using the dialogue
corpus data that does not contain the character trait labels, the
proposed model makes itself represent natural patterns of the
behaviors (unsupervised learning).
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Figure 2: Network architecture of the proposed model

4.1. Network architecture

At first, we explain the architecture of the proposed model as
depicted in Figure 2. The model is based on a variational auto-
encoder (VAE) [19] consisting of an encoder and a decoder.
The encoder and the decoder correspond to character recogni-
tion (behavior to character) and character representation (char-
acter to behavior), respectively. The input for the encoder is a
4-dimensional vector of the spoken behaviors normalized be-
tween 0 and 1. The encoder outputs a 3-dimensional vector of
the character traits normalized between 0 and 1 and also param-
eters (means (µ) and variances (σ)) to generate latent variables
(z). The dimension of the latent variables is set to 8, which
was determined through our preliminary experiment. The latent
variables are expected to capture other factors, other than the
three character traits (e.g. dialogue task and context). In our
preliminary experiment, we also tested an auto-encoder which
does not have the latent variables and observed that the accuracy
of character expression was improved by adding the latent vari-
ables. The input for the decoder is the three-dimensional vector
of the character traits concatenated with the eight-dimensional
latent variables. The decoder outputs the 4-dimensional control
amount of the spoken behaviors. The number of hidden layers
is 3 for both the encoder and the decoder. The sigmoid function
is applied as the activation function of the output layer.

The main task of this study (character expression) corre-
sponds to the decoder. When we use the decoder part only, the
8-dimensional latent variables are randomly sampled from the
standard normal distribution. When we train this VAE-based
model, supervised and unsupervised learning (explained below)
are applied alternately in each training epoch, as depicted in
Figure 3.

4.2. Step 1: Supervised learning with character impression

In the supervised learning step, the encoder and decoder are
trained separately using the impression evaluation data ex-
plained in Section 3.1. In the training of the encoder, the be-
havior values of each speech sample are fed as input, and the
score of the character impression evaluation is predicted. The
mean square error is then propagated through the encoder. Next,
we train the decoder in the opposite way of the encoder. The
decoder is fed the score of the character impression evaluation
and then predicts the behavior values of each speech sample.
The mean square error is back-propagated through the decoder.

4.3. Step 2: Unsupervised learning with dialogue corpus

In the unsupervised learning step, we use only the spoken be-
havior data from the dialogue corpus that does not contain a
character trait data, as explained in Section 3.2. The behav-
ior data is fed to the encoder and the output of the encoder is
also fed to the decoder to predict the original input behavior
data. The mean square error is then back-propagated through
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Figure 3: Semi-supervised learning with character impression
data (step 1) and corpus data (step2) (Latent variables of VAE
are omitted.)

the whole network including the encoder and the decoder. The
KL divergence is also added to the loss function so that the 8-
dimensional latent variables follow the standard normal distri-
bution.

4.4. Model extension: Controlling unlabeled behavior

Another advantage of the proposed model is that it can handle
unlabeled behaviors owing to unsupervised learning. For exam-
ple, we can train the mapping from the character traits to a new
behavior, such as speech rate. The new behavior is not labeled
with the character impression at all, but it can be observed in
the dialogue corpus.

The behavior data (input of the encoder and output of the
decoder) is extended to a 5-dimensional vector: 4 dimensions
for the existing behaviors and the other is for the new behavior.
In the first step (supervised learning), the training data of the
fifth dimension is set to neutral (0.5), and errors are not defined.
In the second step (unsupervised learning), since we use only
the corpus data and consider the new behavior. The error of
all the behaviors is back-propagated. In this way, it is expected
that the model acquires natural parameters on the new behavior
considering the relationship between the existing four behaviors
and the fifth. In other words, the fifth behavior is controlled in
conjunction with the four behaviors.

5. Experiment at evaluations
We evaluate the effectiveness of semi-supervised learning with
a test dataset. Besides, we also investigate how much the model
can handle an additional unlabeled behavior (speech rate).

5.1. Effectiveness of semi-supervised learning

The proposed model is compared with a baseline model con-
sisting of only the decoder part of the VAE. The structure of
the baseline model is the same as the decoder of the proposed
model, except that the latent variables are not used. The base-
line model is designed via supervised learning so it is trained
with only the impression evaluation data. Therefore, this com-
parison reveals the effectiveness of semi-supervised learning in
the current character expression task.

To conduct the evaluation of these models, we prepared
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Behavior Baseline Proposed (behavior diff.)
Utterance amount 0.221 0.126 * 9.67 sec.
Backchannel 0.243 0.283 1.96 times
Filler 0.326 0.137 ** 9.30 times
Switching pause 0.234 0.108 ** 0.44 sec.

Average 0.256 0.162 **
(*< .05, **< .01)

Table 2: Mean absolute errors between control amounts of be-
haviors output from models and the oracle data (behavior diff.
represents the difference on the level of actual behavior features
(in 2 min. segment) that are calculated based on Table 1.)
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Figure 4: Mean absolute errors (average among four behaviors)
when the amount of used labeled data is varied

a test data set using the corpus data. Specifically, we con-
ducted another impression evaluation experiment for a subset
of the natural dialogue corpus data. At first, we extracted 30 au-
dio samples from the dialogue corpus described in Section 3.2.
Note that these samples were not used in the model training. We
asked 5 subjects (2 females and 3 males) to listen to the audio
samples and then evaluate the character traits of the robot oper-
ator by the same items as the impression evaluation introduced
in Section 3.1. We then obtained the input character data by
averaging the evaluated scores among the subjects. The oracle
output data corresponds to dialogue behavior data measured in
each audio sample. The evaluation metric is the mean absolute
error between the output of each model and the oracle data.

Table 2 reports the absolute errors of the models on each
behavior and those average. We conducted a t-test between the
models and confirmed that the proposed model significantly im-
proved all the scores except for backchannel. We also confirmed
the difference on actual behavior features (in 2 min. segment)
that are calculated based on Table 1. The proposed model con-
trols more accurately than the baseline by 9.67 seconds (in 2
min.), 9.30 times (in 2 min.), and 0.44 seconds for utterance
amount, the number of filler, and switching pause length, re-
spectively. We also investigated the case where the amount of
used labeled data is varied, as reported in Figure 4. Whereas the
error of the baseline model increases as reducing the amount of
used labeled data, the proposed model relatively keeps the er-
ror until the ratio of the labeled data is about 20%. This result
suggests that the proposed model interpolates the sparse distri-
bution of the labeled data by utilizing the unlabeled data, which
are natural dialogue behavior data from the corpus.

5.2. Qualitative analysis on modeling of unlabeled behavior

We also evaluated the model extension by adding an unlabeled
behavior as explained in Section 4.4. In this experiment, we use
speech rate as an unlabeled behavior. Previous studies pointed
out that behaviors of speech rate affected the impression of ex-
troversion [37, 38]. Here, speech rate is calculated by dividing
the total number of characters of the operator utterances by the

Character traits (Input) Speech rate
Extroversion Politeness (char./sec)

0 (introvert) 0 (casual) 0.527 (7.16)
0 (introvert) 1 (polite) 0.239 (5.43)
1 (extrovert) 0 (casual) 0.773 (8.64)
1 (extrovert) 1 (polite) 0.467 (6.80)

0.5 (neutral) 0.5 (neutral) 0.480 (6.88)
Table 3: Example of control amounts by the proposed model
when an additional unlabeled behavior (speech rate) is added
(Emotional instability is fixed at stable.)

total duration of the utterances. The calculated speech rate was
then converted to the control amount (from 0.0 to 1.0) by linear
interpolation between 4.00 (min. in the corpus) and 10.94 (max.
in the corpus).

Since we cannot apply the current task to the baseline
model, we qualitatively analyzed the outputs of the proposed
model. Table 3 reports the model outputs with the representa-
tive patterns of the character traits. The character trait patterns
were combinations of extrovert/introvert and polite/casual. We
also tried the neutral pattern (the bottom line). Emotional in-
stability was fixed as stable. From the table, it is observed that
the more extrovert, the system speaks faster. The more polite,
the system speaks slowly. The result suggests that the proposed
model is capable of acquiring the intuitive mapping from the
unlabeled data.

6. Conclusion
We have proposed the character expression model that maps
from the three character traits to the control amounts of the
four spoken behaviors. The proposed model is based on varia-
tional auto-encoder with semi-supervised learning to utilize not
only the impression evaluation data but also the corpus data that
does not contain any character labels. This approach allows the
model to compensate for natural behavior patterns that are lack-
ing in the impression evaluation data. The experimental result
shows that the proposed model expresses the target character
traits through the behaviors more precisely than the baseline su-
pervised learning.

Moreover, we also investigated the modeling of the unla-
beled behavior (speech rate) realized by semi-supervised learn-
ing. We confirmed that the proposed model acquired an intuitive
mapping from the character traits to the speech rate. This means
that even if we do not have any character labels for additional
behaviors, the proposed model can learn the mapping based on
the relationship between the additional behaviors and existing
behaviors.

We are now implementing this character expression model
in the spoken dialogue system of the android ERICA. In future
work, we will conduct a user experiment to confirm the effec-
tiveness of the character expression through real dialogue.
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