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ABSTRACT

This paper describes a semi-blind speech enhancement
method using a semi-blind recurrent neural network (SB-
RNN) for human-robot speech interaction. When a robot
interacts with a human using speech signals, the robot in-
puts not only audio signals recorded by its own microphone
but also speech signals made by the robot itself, which can
be used for semi-blind speech enhancement. The SB-RNN
consists of cascaded two modules: a semi-blind source sep-
aration module and a blind dereverberation module. Each
module has a recurrent layer to capture the temporal correla-
tions of speech signals. The SB-RNN is trained in a manner
of multi-task learning, i.e., isolated echoic speech signals
are used as teacher signals for the output of the separation
module in addition to isolated unechoic signals for the output
of the dereverberation module. Experimental results showed
that the source to distortion ratio was improved by 2.30 dB
on average compared to a conventional method based on a
semi-blind independent component analysis. The results also
showed the effectiveness of modularization of the network,
multi-task learning, the recurrent structure, and semi-blind
source separation.

Index Terms— Semi-blind source separation, Blind dere-
verberation, Recurrent neural network

1. INTRODUCTION

Speech enhancement is indispensable for realizing smooth
speech interaction between a human and a robot. When a hu-
man and a robot interacts using speech, the observation sig-
nals recorded by the microphone of the robot is composed
of not only a direct sound of the human speech but also that
of the robot’s speech because the current robot often fails to
perform smooth turn-taking and it cannot stop speaking once
speech output is generated. The observation also contains re-
verberations of the human and robot’s speeches. It is neces-
sary to enhance the speech by separating human speech and
removing the reverberation.

The speech enhancement task we address consists of two
steps. The first step is semi-blind source separation: an obser-
vation sound which is a mixture of human and robot’s echoic
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Fig. 1. The overview of the proposed method

speech signals is separated to their isolated speech signals
while an anechoic signal of the robot’s speech as auxiliary in-
formation is known. Since one of the speech signal to be sep-
arated is unknown and the other is known, this source separa-
tion is semi-blind. We assume that the anechoic robot speech
signal can be obtained via a spoken dialogue system that con-
trols the robot. Due to the reverberation of the robot speech
signal, the separation cannot be achieved simply by subtract-
ing the anechoic signal from the mixed signal. Therefore,
we need the second step of blind dereverberation: the rever-
beration component of the separated human speech signal is
removed. This step outputs an anechoic signal of human’s
speeches. Since any prior information affecting the reverber-
ation, such as the size of the room and the position of the
human or the robot, is not given, this dereverberation is blind.

This paper describes a newly-designed neural network,
named semi-blind recurrent neural network (SB-RNN). The
SB-RNN has two modules: a semi-blind source separation



module and a blind dereverberation module. These mod-
ules are concatenated to form a single network to conduct a
source separation and a dereverberation. When the network
for source separation and that for the dereverberation are
trained independently, the overall performance is not opti-
mized and the network for dereverberation assumes inputs
of completely separated signals. Therefore, we introduce
joint training of the two module networks. Furthermore, we
employ multi-task learning [1] to clarify what each module
should learn. Thus, the two modules are tuned to separation
and dereverberation respectively.

The organization of this paper is as follows. In Section 2
we refer to related works and Section 3 describes the proposed
SB-RNN method. In Section 4 we describe the experimental
setting and the results and Section 5 concludes this study.

2. RELATED WORK

For the speech enhancement task addressed in this paper,
semi-blind independent component analysis (SB-ICA) was
proposed [2]. The SB-ICA uses the observation of the mi-
crophone and source signals of robot’s speech as inputs to
estimate source signals of human speech. The SB-ICA is an
extension of independent component analysis (ICA) [3, 4].
The methods using ICA, including the SB-ICA method, do
not require learning in advance. However, these methods
require the same number of channels of microphone array as
the number of the signals. The SB-ICA method can operate
in real time but it takes few seconds to converge the outputs.

Some other methods predict masks for the source separa-
tion. Masks have two types: a hard mask and a soft mask.
Methods with a hard mask (binary mask) [5] assume the only
one signal affects the observation at a certain time and fre-
quency. On the other hands, methods with a soft mask [6] as-
sume multiple signals affect the observation at any point. The
hard mask is a matrix whose values are just O or 1, while the
soft mask is a matrix with values between 0 and 1. The values
of each element of the estimated mask present how much the
target source signal affects the observation. The output is an
element-wise product of the microphone observation and the
estimated mask. Hard-mask based methods normally contain
errors that some time-frequency bins are attributed wrongly
when two speakers speak simultaneously.

Methods dividing observations into many components are
also proposed for source separation. Non-negative matrix fac-
torization (NMF) or probabilistic latent component analysis
(PLCA) [7,8] are investigated since the spectrum of the voice
is low rank matrix. However, these methods require assigning
each component to proper sources. Therefore, these methods
need learning components of the signals in advance.

Many methods for dereverberation has also been investi-
gated. One method assumes exponentially decay of the rever-
beration and subtracts reverberation components in the spec-
tra [9]. Another method estimates a filter to reconstruct enve-

lope modulations of anechoic signals [10]. A method using
features that anechoic signals have high kurtosis and maxi-
mize kurtosis of an input is also proposed [11]. These meth-
ods assume how the impulse responses are and how the ane-
choic signals are.

Recently, neural networks are also used as the solution
for the source separation and dereverberation the [12,13]. Es-
pecially, many methods have been proposed along with the
growth of the deep neural network. A basic multi-layer per-
ceptron shows performances equivalent or superior to other
methods [14]. Recently advanced networks such as recurrent
neural network (RNN) performs well in the speech separa-
tion tasks and the dereverberation tasks [15—17]. Deep neural
networks can learn any model of the mixture and the reverber-
ation. Preparing huge amount of data for learning networks
enables the networks to conduct the task robustly.

3. PROPOSED METHOD

This section describes a semi-blind speech enhancement
method using a newly-designed semi-blind recurrent neural
network (SB-RNN). The overview of the proposed method is
shown in Fig. 1.

e Input: a spectrum of the audio signal recorded by the
monaural microphone. The audio signal is a mixture of
human and robot’s echoic speech signals.

e Output: a spectrum of the enhanced (separated and ane-
choic) human speech signal.

Let 1 = (Z41,...,2:r) be a spectrum of the input au-
dio signal at ¢-th time frame where F' is the number of the
frequency bins and let = and = be spectra of the echoic
robot’s and user’s speech, respectively. s!* and sf are the
sources of human speech and robot’s speech, respectively.
The observation process is described as

wt:wf—&—:cf,
R

xf = hl o sk, (1)
H

x =h" o sH,

where b and h* represent the frequency transfer func-
tions to the microphone from the robot’s loudspeaker and the
user, respectively. The operator © represents the Hadamard
(element-wise) product of two vectors.

We assume that equation (1) holds for the amplitude spec-
tra, i.e., we assume the additivity for the amplitude spectra:

e = || + |z,

[zt = [h| o |s], )
H

x| = |h" o |s{].

The inputs and outputs of typical neural networks are real
numbers. We use the amplitude spectra as the inputs and out-
puts of the proposed SB-RNN. For the convenience, we omit
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Fig. 2. A structure of the proposed network

the notation of the absolute value, e.g., simply @; represents
the amplitude spectrum of the recorded signal and other sym-
bols are used in the same manner. When we reconstruct a
time domain signal from predicted amplitude spectrum s,
we use phases from the microphone observation i.e. arg(x:).

Fig. 2 illustrates the structure of the proposed SB-RNN.
The SB-RNN is composed of serially cascaded two modules:
a source separation module and a dereverberation module.
The following part of this section explains the architecture
of each module of the network.

3.1. Source separation module

The source separation module estimates a spectral mask
my = (my41,. .., mep) that separates an amplitude spectrum
x4, the mixture of an echoic spectrum of the user 7 and that
of the robot z*, into each isolated speech signal. The inputs
of the separation module are the observation signal x; and
the anechoic speech signal of the robot s{* and the output is
an estimated mask ;. By using the estimated mask my, a
separated spectra of the user :if and that of the robot 5:5‘ are
described as

&35[ = ’fht ® T,
i : 3)
Z; = (1 —1my) O

1 represents an F'-dimensional vector of all ones.

The separation module is constructed of a five-layer net-
work: an input layer, three hidden layers and an output layer.
The numbers of nodes in the input, each of the hidden, and
the output layers are 2F, 500, and F|, respectively. The in-
put of the module is a concatenated vector of the observation
spectrum x; and the anechoic robot speech spectrum s£*. The
output of the module is a spectral mask m;. The middle of
the hidden layers is designed as a recurrent layer because im-
provement of the enhancement performance is expected by
handling a strong correlation between adjacent frames of the
audio spectra. A rectified linear unit (ReLU) is used as an
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Fig. 3. A room where the experiment was conducted

activation function for the input and hidden layers. For the
output layer, a sigmoid function is used as an activation func-
tion because each element of the spectral mask is defined in
0 to 1. The structure of the separation module is designed by
reference to a conventional method of source separation [16].

In this paper, the separation module refers 32 past frames
during training and evaluation. If we consider more frames,
the network can model longer-term features of the signals, but
it would be difficult to train.

3.2. Dereverberation module

The dereverberation module estimates an anechoic amplitude
spectrum §f1 from the echoic spectrum ifl separated by the
separation module. The input of the dereverberation module
is :I:tH and the output is 's'f . Teacher signals for the derever-
beration module are anechoic signals s!.

The dereverberation module is also constructed of a five-
layer network: an input layer, three hidden layers, and an out-
put layer. The numbers of nodes in the input, each of the
hidden, and the output layers are ', 500, and F', respectively.
Because reverberation components have strong correlations
between adjacent frames, the second hidden layer is designed
as a recurrent layer as in the separation module. The differ-
ence from the separation module is in an activation function
in the output layer; the separation module employs a sigmoid
function but the dereverberation module employs the ReLLU
function for an output to be 0 < S{J{ < o0 in each frequency
bin f and time bin ¢.

3.3. Multi-task learning

The SB-RNN uses teacher signal for the separation module
x!’ and teacher signal for the dereverberation module s!’.
The teacher signal x/ is used against the output of the sep-
aration module 5:,{{ . On the other hand, teacher signal s
is used against the output of the separation module §f . The
training of the network is multi-task learning with these two
teacher signals so that the separation module is mainly tuned
to separate signals and the dereverberation module are mainly
tuned to dereverberate the separated signals. We use the mean
squared error as a cost function of the SB-RNN. Therefore,
the cost between the teacher signal and the estimated output



Table 1. Results of the experiments, SDR (dB)

SNR (dB) of the datasets
Method Figure 4 | -6.0 \ -3.0 \ 0.0 \ 3.0 \ 6.0 \ 9.0 | Avg.
No processing - -7.63 | -5.31 | -3.49 | -0.67 | 0.18 | 1.13 | -2.65
SB-ICA - 242 | -1.36 | -031 | 196 | 196 | 223 | 0.34
Blind RNN A -1.78 | 0.06 | 1.25| 1.68 | 2.16 | 252 | 0.99
Semi-blind MLP B -191 | -0.11 | 0.76 | 1.69 | 1.77 | 2.11 | 0.71
Single-task SB-RNN C 0.12 | 149 | 221 | 299 | 322 | 297 | 2.17
Semi-blind separated RNN's D 055 | 1.63 | 242 | 337 | 337 | 3.68 | 251
Proposed SB-RNN E 067 | 197 | 2.65| 345 | 346 | 3.68 | 2.64
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Fig. 4. Networks compared to the proposed SB-RNN.

of the SB-RNN is

J=Js+Jp,
Js = |lz{" — &3, 4)

Jp = |Isi’ = 5" [13-

Adam [18] is used as a method for optimization of the net-
work. We use the batch normalization [19] at all layers except
the output layers of the separation module and the dereverber-
ation module.

4. EXPERIMENTAL EVALUATION

We conducted an experiment to evaluate the proposed SB-
RNN. The source to distortion ratio (SDR) [20] is used for
the evaluation measure.

4.1. Experimental conditions

In this experiment, a Japanese large speech database ASJ-
JNAS [21] is used for training and evaluation. Speeches
of male speakers are used as “human speech” and those of
female speakers are used as “robot’s speech”. For each,
3012 speeches of 60 speakers are used for training and 200
speeches of 4 speakers are used for evaluation.

Signals observed by microphones are simulated by im-
pulse responses. Fig. 3 shows a room where the experiment
was conducted. Impulse responses are measured at 40 points

in the room. These 40 measured impulse responses are di-
vided into 36 impulse responses for training and 4 impulse re-
sponses for evaluation, which make the information of places
blind. The signal to noise ratio (SNR) is randomly set to one
of —6.0dB, —3.0dB, 0.0 dB, 3.0dB, 6.0dB and 9.0dB for each
speech.

We also evaluated the performances of other meth-
ods: ‘No processing’, ‘Semi-blind ICA’, ‘Semi-blind sep-
arated RNNs’, ‘Single-task SB-RNN’, ‘Semi-blind MLP’
and ‘Blind RNN’. The ‘No processing” method does not ex-
ecute any process, so &y is used as an output of this method.
The ‘Semi-blind ICA’ method is taken from Robot Audition
System HARK.

Remaining four methods are based on neural network.
Fig. 4 shows structure of the networks used in these methods.
The ‘Blind RNN’ method uses the same network to the pro-
posed SB-RNN, but does not employ source signals of robot’s
speeches s!t as an input of the network. The ‘Semi-blind
MLP’ method uses almost the same network as the proposed
SB-RNN without recurrent structures. The ‘Single-task SB-
RNN’ method uses the same networks as the proposed SB-
RNN, but only s is used as a teacher signal of the network.
Therefore, all layers of the network are to conduct source sep-
aration and dereverberation. The cost function of this method
is JST = ||s# — 57 |)3. The ‘Semi-blind separated RNNs’
method uses the same modules to the proposed network, but
these modules are trained individually. The separation mod-
ule of this method is learned with the input a; and the output
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x!!, and the dereverberation module of this method is learned
with the input £ and the output s/.

4.2. Experimental results

Table 1 shows the results of the experiment. The SDRs with
the proposed SB-RNN is improved by 2.3dB on average
compared to the SB-ICA. The SB-RNN succeeded in gaining
robustness against the different impulse responses through
training of the network, since the locations of the source
signals are different between training and evaluation.

Other methods based on neural networks perform better
than the SB-ICA but not as well as the proposed SB-RNN.
Blind RNN (A) resulted in poor performance in SDR, con-
firming the effectiveness of the semi-blind scheme. Semi-
blind MLP (B) also did not perform well, confirming that the
recurrent structure is essential in capturing temporal informa-
tion. Compared with Single-task SB-RNN (C), the proposed
SB-RNN (E) adopts multi-task learning and shows better per-
formance in all SNR conditions. The result demonstrates that
the multi-task learning is effective for the complex task of
separation and dereverberation.

Now we discuss the difference between the proposed
SB-RNN and the semi-blind separated RNNs qualitatively.
Fig. 5-c and Fig. 5-d show examples of the spectrogram of
the enhanced speech signals obtained by the SB-RNN and
the separated RNNSs, respectively. In the segment where the
human keeps silent and the robot speaks, the SB-RNN cor-
rectly outputs silent but the semi-blind separated RNNs often
output some kind of noises. In the multi-task learning of the
SB-RNN, the spectrum including noise and distortion caused
by source separation is given to the input of the dereverber-
ation module. The dereverberation module could acquire a
noise-reduction capability in addition to the dereverberation
capability. As a result, even if the input spectrum is noisy

and/or distorted, the dereverberation module can suppress
them. On the other hand, in the learning of the semi-blind
separated RNNs, only the speech spectrum without noise and
distortion is used as the input of the dereverberation module.
The module acquired the very dereverberation capability and
thus the module cannot suppress them.

5. CONCLUSION

This paper has presented a speech enhancement method using
a semi-blind recurrent neural network (SB-RNN) for human-
robot interaction. The experimental results show that the pro-
posed method achieved better SDR by 2.3dB compared to the
SB-ICA. We also compared with other networks to confirm
the effectiveness of the proposed method.

Future works include the extension of the proposed net-
work. The proposed SB-RNN does not consider noises from
neither a robot nor a human. Therefore, the SB-RNN should
be extended to deal with these noises. We also need to
evaluate the proposed method in automatic speech recog-
nition. Without reconstructing phase information, artificial
distortions arise in the reconstructed time-domain signals of
human speech [22]. Thus, the improvement of the SDRs is
limited. One solution is employing complex valued neural
networks [23]. Complex valued neural networks can treat
phase information of the signals recorded by a single-channel
microphone. Other solution is using multi-channel micro-
phone to learn the arrival delay of the signal.
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