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Abstract—We present a speaker diarization method based
on an audio-visual integration approach. We deal with poster
conversations which are more challenging than general meet-
ings, because participants are moving freely and the audience
utter infrequently. In this case, it is difficult to detect “who
spoke when” by only using acoustic information. Therefore we
incorporate visual information to improve diarization accuracy.
We propose two integration methods: rule-based and stochastic
method. Experiments in real poster conversations show that the
integration methods significantly outperform the baseline method
which uses acoustic information only.

I. INTRODUCTION

In recent years, analysis of multi-party conversations such
as meetings and discussions has been studied [1], [2], [3].
Speaker diarization, i.e. detecting who spoke when, plays an
important role in not only analysis of such conversations but
also speech enhancement and blind source separation. We are
conducting a project called “smart posterboard” [4] focusing
on poster sessions in which one participant (=presenter) makes
a presentation and the others (=audience) ask questions about
and comment on the presentation. Speaker diarization is useful
for reviewing the audience’s feedbacks and detecting their
interest level.

In poster conversations, utterances of the audience are in-
frequent and they move freely in contrast to general meetings.
This infrequency makes it difficult to generate a separation
filter like independent component analysis [6] and to realize
speaker diarization based on blind source separation. The
participant’s move makes it difficult to conduct sound source
localization and tracking by using acoustic information only.
Moreover, in poster conversations, ambient noise such as
diffuse noise degrades the performance of diarization.

In this paper, we investigate incorporation of visual informa-
tion for improvement of speaker diarization. Speaker tracking
based on visual information is reliable even when people
are moving and robust under ambient noise. Specifically,
we propose two diarization methods based on audio-visual
integration. One is a rule-based method and the other is a
stochastic method

The remainder of this paper is organized as follows. Section
II reviews the baseline MUSIC method for speaker diarization.
We describe two integration methods of audio and visual
information in Section III, and evaluation of these methods
in Section IV . Finally, conclusions are drawn in Section V.

II. SPEAKER DIARIZATION BASED ON ACOUSTIC
INFORMATION

Conventional speaker diarization methods are composed of
feature extraction, voice activity detection (VAD) and speaker
clustering steps. In addition, when a microphone array is
used, spatial information such as Time Difference Of Arrival
(TDOA) and Direction Of Arrival (DOA) of speech are also
utilized for diarization. The Generalized Cross Correlation
with Phase transform (GCC-Phat) method [5] is often used
to estimate DOA in previous works. This method can detect
only one direction in a time-frame and cannot be applied
to the case when multiple participants utter simultaneously.
This overlapping occurs when discussion is lively and thus is
important in analyzing conversations.

A. MUSIC Method

In this study, we adopt MUltiple SIgnal Classification (MU-
SIC) [7], which is a well-known DOA estimation method using
a microphone array and can detect simultaneous utterances.
The MUSIC method estimates DOA based on the orthogonal-
ity of the signal subspace. MUSIC spectrum PMU (θ) is given
by

PMU (θ) =
‖aH(θ)a(θ)‖
M∑

i=N+1

‖aH(θ)ei‖

, (1)

where aH denotes the conjugate transpose of vector a, N
and M are the number of sound sources and microphones
respectively, ei (i = 1, · · · , M) is an eigen vector of a spatial
correlation matrix Rx of an observed signal x, and eigen
values corresponding to these vectors satisfy the following
condition,

λ1 ≥ · · · ≥ λM . (2)

The spatial correlation matrix Rx ∈ CM×M at frame t is
estimated as

Rx =
1

2 4 +1

t+4∑
j=t−4

xjx
H
j , (3)

where xj ∈ CM is an observed signal vector at frame j, and
4 is the number of averaging frames.

The steering vector of direction θ is defined as

a(θ) = [exp(−jωτ1), · · · , exp(−jωτM )]T , (4)
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Fig. 1. Recording setting of poster conversations

where ω is a frequency index, and τi (i = 1, · · · ,M) is a
relative delay in the propagation of signals from direction θ
between the reference point and the i-th microphone. When
a DOA vector is represented as u = [− cos θ, sin θ, 0]T , τi is
calculated as

τi = uT di/vc, (5)

where di is a position coordinate of the i-th microphone, vc

is the propagation velocity of the speech signals.
The MUSIC spectra PMU (θ) has a peak at θ = θ′ when an

utterance occurs in direction θ′. In this paper, θ ∈ [−90, 90]
is defined as a discrete value by 1◦ in the horizontal angle.

B. Baseline Method by Using MUSIC Spectrum

We introduce speaker diarization based on acoustic infor-
mation for a baseline method which conducts DOA estimation
and clustering [3]. In this paper, we use peaks of the MUSIC
spectrum as DOA estimates and Gaussian Mixture Model
(GMM) for clustering. The baseline method tracks peaks of
the MUSIC spectrum which are above a threshold. Then,
GMM-based clustering whose mixture size is defined as the
number of participants in the angle domain is conducted. Each
cluster corresponds to each participant and the peak location
θl (l = 1, · · · , L(t)) which belongs to the n-th GMM cluster
represents the n-th participant’s voice activity, where L(t) is
the number of peaks in the MUSIC spectrum at time-frame t.

III. AUDIO-VISUAL INTEGRATION

In this section, we propose two integration methods of audio
and visual information: rule-based method and stochastic
method. Human’s lip motion is often used for voice activity
detection, especially in the field of human-robot dialogue [8],
[9]. However, it requires a front image in a good resolution.
The assumption does not always hold in poster conversations,
thus we cannot use it for our task.

In this study, we use participants’ head location estimated
with a computer vision technique. Audio-visual integration is
operated in the horizontal angle domain shown in Fig. 1, that
is, when a location coordinate of the n-th participant’s head
pn = [xn, yn, zn] is given, the angle location θn is defined as

θn = tan−1(
yn

xn
).

Fig. 2. Overview of the proposed method

In this paper, tracking head locations is conducted by model
fitting and particle filtering [10]. This method enables to
estimate head locations without a front image.

A. Rule-Based Integration

First, we propose a rule-based integration method. This
method conducts peak tracking and thresholding of the MU-
SIC spectrum just like the baseline method, but selects peaks
with a constraint

θn − ε < θl < θn + ε (l = 1, · · · , L(t)), (6)

where L(t) is the number of searched and thresholded peaks
at time-frame t, θn is the n-th participant’s location computed
via visual information, θl is the peak location of the MUSIC
spectrum, and ε is a tolerable error between θl and θn. The
integration replaces GMM-clustering of the baseline method.

B. Stochastic Integration

The second method is formulated in a stochastic manner.
The flow of the system is shown in Fig. 2. We assume that
a source existence probability P (Vθ|x) is proportional to the
MUSIC spectrum PMU (θ), given observed acoustic signals x,
where Vθ is a stochastic variable which represents existence
of a source. Thus, P (Vθ|x) is calculated as

P (Vθ|x) ≡ 1∑
φ

PMU (φ)
PMU (θ). (7)

In addition, a speaker existence probability P (Sθ|θn) at
direction θ, given the n-th participant’s location θn, is assumed
as

P (Sθ|θn) ≡ N(θn, σ(cn)), (8)
σ(cn) ≡ α{β1cn + β2}. (9)

where Sθ is a stochastic variable which represents existence of
a speaker, N(µ, σ) represents a normal distribution with mean
µCvariance σ, and cn ∈ [0, 1] is the confidence score of the
n-th participant’s head location [10]. Here σ(cn) is assumed
to be proportional to cn, and α, β1 and β2 are parameters.

By using (7) and (8), an utterance likelihood of the n-th
participant f(Un|x, θn) is defined as



Fig. 3. Smart Posterboard

f(Un|x, θn) ≡
θn+ϕ∑

θ=θn−ϕ

P (Vθ|x)P (Sθ|θn), (10)

where Un is a stochastic variable which represents the n-
th participant’s utterance. With this operation, the spatial
spectrum is masked by the human location information and
used for speaker diarization. After a thresholding process on
f(Un|x, θn), the diarization results are smoothed over adjacent
time-frames to make final detection.

IV. EXPERIMENTAL EVALUATION

We conducted experiments to evaluate the audio-visual inte-
gration methods compared with the baseline method. We used
12 poster sessions recorded with the smart posterboard, which
consists of a 19-channel microphone array, kinect sensors, and
HD cameras at the top or the side of a large LCD as shown in
Fig. 3. Participants of each session are one presenter and two
persons in the audience. The duration of each session is about
30 min. and the total duration of presenter’s and audience’s
utterances per session is 20-25 min. and 2-6 min. respectively
as shown in Table I.

A. Experimental Condition

To evaluate the performance of speaker diarization, we
employ a Recievwe Operating Characteristic (ROC) curve and
the Diarization Error Rate (DER) [11] .

The ROC curve plots False Acceptance Rate (FAR) and
False Rejection Rate (FRR). The closer the curve is to the
origin, the better the performance of the method is. FAR and
FRR are defined as

FAR =
# non-speech frames detected as speech frames

# non-speech frames
,

FRR =
# speech frames detected as non-speech frames

# speech frames
,

where the ground truth data i.e. the time stamp of the utter-
ances is annotated manually. The ROC curve is plotted for the
presenter and the audience separately because the performance
is much different between them.

TABLE I
TOTAL DURATION OF POSTER SESSIONS [SEC]

ID presenter audience total
121218-01 1,413 207 196 1,816
121218-02 1,268 122 126 1,516
121218-03 1,184 345 385 1,914
121218-04 1,299 400 328 2,027
140206-01 1,261 19 230 1,510
140206-02 1,417 285 166 1,868
140206-03 1,344 331 172 1,847
140206-04 1,507 131 104 1,742
140207-01 1,354 166 125 1,645
140207-02 1,239 135 119 1,493
140207-03 1,215 107 270 1,592
140207-04 1,218 218 137 1,573

total 15,719 4,824 20,543

TABLE II
DIARIZATION ERROR RATE (DER)

Method clean data SNR = 10 dB
baseline 19.86 % 21.52 %

rule-based integration 14.60 % 17.91 %
stochastic integration 7.43 % 15.69 %

DER includes both false acceptance and false rejection
errors and is defined as

DER =
# incorrectly labeled frames

# entire frame
.

In this paper, according to [11] the tolerance of 250 ms from
the ground truth is allowed.

In this experiment, the sampling rate of speech was 16 kHz,
the analysis frame size was 32 ms, and the frame shift was 16
ms. The parameter 4 in Eq. (3) is 2 and ε in Eq. (6) is 10.
The Parameters α, β1, β2 and ϕ in Eq. (9), (10) were 1/3, -5,
5, and 3σ(cn), respectively. The values of these parameters
were experimentally determined.

B. Results and Discussions

Figure 4 and 5 show the ROC curve for the presenter and
the audience respectively. As shown in these figures, FAR and
FRR are significantly improved by the two integration methods
compared with the baseline method. These results suggest
that visual information contributes improvement of diarization
accuracy. In Fig. 4, there is little difference between the three
methods, because the majority of utterances are made by the
presenter and it is easy to detect them. On the other hand,
in Fig. 5 the results of the proposed methods, especially the
stochastic method, is much superior to the baseline method. It
is because that GMM-clustering in the baseline method does
not work well when the participants move i.e. DOA estimation
scatters. The integration methods are effective in tracking the
audience.

The diarization results under diffuse noise (SNR = 10 dB)
are shown in Fig. 6 and 7. The accuracy of diarization is
degraded from the case of the clean data, especially for the
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Fig. 4. ROC curve for presenter (clean data)
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Fig. 5. ROC curve for audience (clean data)

audience. The degradation is caused by the change of the shape
in the MUSIC spectrum such that pseudo-peaks occur and the
shape becomes dull.

Table II shows DER in these two conditions. Under these
two conditions, the performance of the stochastic integration
method is the best in the three methods as observed in the
ROC curve.

V. CONCLUSION

We have proposed speaker diarization methods based on
the audio-visual integration approach. With 12 real poster
sessions, we showed that these methods are effective compared
with the baseline method. Especially, the stochastic integration
method achieved significant improvement of accuracy.
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