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Abstract—Recently, deep neural networks (DNNs) with multi-
ple bidirectional long short term memory (BLSTM) layers have
been successfully applied to supervised multi-channel speech
separation. When it is applied for industrial products, one
shortage is that the number of the BLSTM layers is not variable
according to the available computational resource once the DNN
is trained. Since available computational resource varies from
device to device, it is preferable that the number of the BLSTM
layers can be changed for optimal performance. In this paper,
we propose a DNN based speech separation, in which each
BLSTM layer is connected with a signal processing layer. It can
output a separated speech signal, which can also be fed into
the successive BLSTM layer. The proposed method trains two
types of BLSTM layers. The first one is utilized for initialization
of speech separation. The second one is utilized for enhancing
separation performance. The proposed method can increase the
number of the BLSTM layers by stacking the second type of the
BLSTM layer to improve separation performance. Experimental
results show that the proposed method is effective.

I. INTRODUCTION

Separation of multiple speech sources accurately is one of
the important issues in speech signal processing community.
Recently, many speech separation techniques have been pro-
posed [1], [2]. Generally speaking, there is a trade-off between
computational cost and speech separation performance, and its
acceptable computational cost heavily depends on the compu-
tational resource of a front-end device. Therefore, a speech
separation framework which can flexibly control the amount
of the computational cost is highly required in industrial
applications.

Speech separation techniques are categorized into 1) un-
supervised approaches which do not require any training
dataset and 2) supervised approaches which require a training
dataset. Unsupervised approaches are commonly called as
blind source separation (BSS). BSS which separates speech
sources with a generative model of a speech source has been
actively studied, e.g., independent component analysis (ICA)
[3], independent vector analysis (IVA) [4], [5], independent
low-rank matrix analysis (ILRMA) [6], [7], local Gaussian
modeling (LGM) [8], and multi-channel non-negative matrix
factorization (MNMF) [9]–[13]. BSS updates a spatial model

and a source model iteratively to increase separation perfor-
mance. However, a source model which is used in BSS is not
sufficient to capture complicated spectral characteristics of a
speech source.

Recently, deep neural network (DNN) based approaches
have been widely studied [14]–[23]. Supervised approaches
can learn the complicated spectral characteristics of a speech
source on the background of powerful expression capability
of DNN. Especially, bidirectional long short term memory
(BLSTM) based approaches have been actively studied e.g.,
permutation invariant training (PIT) [21], [22], deep clustering
(DC) [24], [25], and multi-channel Itakura-Saito Divergence
minimization (MISD-M) [23]. Current BLSTM based ap-
proaches assume that the number of the BLSTM layers is
fixed, which limits applications. To expand applications of
the BLSTM based approaches, it is valuable that the number
of the BLSTM layers can be changed depending on the
computational resource.

In this paper, we propose a BLSTM based speech separation
method which can change the number of the BLSTM layers
flexibly. Each BLSTM layer in the proposed method is con-
nected with a signal processing layer which outputs separated
speech signals. Each BLSTM layer is trained sequentially so as
to minimize distance between the output signal and the oracle
speech signal. Therefore, the proposed method can output a
separated signal from any BLSTM layer. The proposed method
trains two types of BLSTM layers. The first one is utilized
for only initialization, and it is trained so as to output a clean
signal from noisy microphone input signal. The second one
is trained so as to increase separation performance, and it
utilizes the output signal of the previous layer as the input
signal. Stacking of the first type is not preferable because the
first type assumes an input signal that is not well separated.
Instead of the first type, the proposed method increases the
number of the BLSTM layers by stacking the second type
of the BLSTM layer while increasing separation performance.
Stacking of variable number of DNNs are popular in the image
processing research field [26] and the phase reconstruction
research field [27]. To the best of authors’ knowledge, it is
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the first time to apply variable number of BLSTM layers for
supervised speech separation.

II. PROBLEM STATEMENT AND BASELINE

A. Input signal model

Let xl,k ∈ CNm be a multi-channel microphone input signal
which is defined in a time-frequency domain (l is the frame
index and k is the frequency index) as follows:

xl,k =

Ns∑
i=1

ci,l,k, (1)

where ci,l,k is the i-th speech source signal and Ns is the
number of sources. The objective of speech separation is to
separate ci,l,k from the observed microphone input signal xl,k.

B. Supervised speech separation with multi-channel Itakura-
Saito divergence minimization

One of the authors proposed multi-channel Itakura-Saito
Divergence Minimization based supervised speech separation
(MISD-M) [23] which utilizes a deep neural network (DNN).
DNN based time-frequency mask estimation techniques typ-
ically train the DNN to minimize the mask estimation error
[28], [29], which does not always lead to increasing multi-
channel separation performance in the inference. Instead, the
MISD-M trains the DNN to minimize estimation error of
the separated signal, which directly leads to increasing multi-
channel separation performance in the inference. Additionally,
the time-frequency mask estimation techniques do not infer
multiple separation parameters that are needed for a time-
varying spatial filtering. On the other hand, the MISD-M
can infer these multiple separation parameters simultaneously.
Generally speaking, time-varying spatial filtering is more
preferable than time-invariant spatial filtering.

In the training stage, the MISD-M evaluates a loss function
based on speech quality of a multi-channel separated signal
after multi-channel Wiener filtering (MWF). The output signal
of the MISD-M suffers from the utterance-level permutation-
problem. Thus, the MISD-M utilizes the utterance-level
permutation-invariant-training (PIT) [21]. The loss function is
set to the negative-log posterior-probability-distribution with
the utterance-level PIT as follows:

LMISD = min
f∈Π

−
∑
i,l,k

log pθ(cf(i),l,k|xl,k), (2)

where {ci,l,k,xl,k} is a pairwise training data, Π is a set of
possible permutations, and θ is a neural network parameter.
The input of the MISD-M is set to a multi-channel observed
microphone signal xl,k and the training target is set to a multi-
channel oracle clean signal ci,l,k. The posterior probability
distribution is set to a time-varying Gaussian distribution as
follows:

pθ(cf(i),l,k|xl,k) ∼ N (cf(i),l,k;µi,l,k,Vi,l,k), (3)

where µi,l,k and Vi,l,k are the estimated mean vector and
the estimated multi-channel covariance matrix of the posterior

probability distribution of the i-th source, respectively. Thus,
the neural network that infers parameters of the MWF is
trained via backpropagation of the loss function defined as
follows:

(4)
LMISD = min

f∈Π

∑
i,l,k

(cf(i),l,k − µi,l,k)
HV −1

i,l,k(cf(i),l,k

− µi,l,k) + log|Vi,l,k|+const.,

where H is the Hermitian transpose of a matrix/vector. The
prior probability distribution of ci,l,k is modeled as a multi-
channel Gaussian distribution as follows:

pθ(ci,l,k) ∼ N (ci,l,k;0, vi,l,kRi,k), (5)

where vi,l,k is the time-varying activity of the i-th speech
source and Ri,k is the time-invariant multi-channel spatial
covariance matrix (SCM). Eq. (5) is known as local Gaussian
modeling (LGM) [8]. Under the LGM, µi,l,k and Vi,l,k are
calculated as follows:

µi,l,k = Wi,l,kxl,k, (6)

Vi,l,k = (INm×Nm
−Wi,l,k)vi,l,kRi,k, (7)

where I is an identity matrix and Wi,l,k is a time-varying
MWF which is defined as follows:

Wi,l,k = vi,l,kRi,k(
∑
i′

vi′,l,kRi′,k)
−1

. (8)

In the MISD-M, the SCM Ri,k is estimated with a time-
frequency mask Mi,l,k as follows:

Ri,k =
1∑

l Mi,l,k

∑
l

Mi,l,kxl,kx
H
l,k. (9)

In Fig. 1 (a), the block diagram of the MISD-M is shown.
The neural network in the MISD-M with the parameter θ
infers a time-frequency activity vi,l,k and a time-frequency
mask Mi,l,k as follows:

vi,l,k = vi,l,k(z; θ), (10)

Mi,l,k = Mi,l,k(z; θ), (11)

where z is set to the input feature. The input feature is defined
as a concatenation of the log spectral of the microphone input
signal log|xl,k| and {cos ηl,k, sin ηl,k}, where ηl,k is the phase
difference between microphones. The neural network of the
MISD-M consists of multiple bidirectional long short term
memory (BLSTM) layers and multiple dense layers. Let hn

be the output variable of the n-th BLSTM layer. Only the
output variable hL (L is the final layer index) of the final
BLSTM layer is connected with the dense layers that infer
vi,l,k and Mi,l,k. vi,l,k and Mi,l,k cannot be inferred from
the output variable hn of any intermediate BLSTM layer.
Thus, the number of the BLSTM layers cannot be changed
depending on available computational resource of a device.
In this way, direct connection of two BLSTM layers loses
interpretability of the output variables of intermediate BLSTM
layers.

Proceedings, APSIPA Annual Summit and Conference 2020 7-10 December 2020, Auckland, New Zealand

789



III. PROPOSED METHOD

A. Overview of proposed method

We extend the MISD-M based supervised speech separation
so that the number of the BLSTM layers is variable accord-
ing to the amount of available computational resource. The
proposed method does not connect multiple BLSTM layers
directly. Instead, the proposed method inserts signal processing
layers between two BLSTM layers. Because of this insertion,
the output variable of each BLSTM layer can be converted
into separated speech signals.

The proposed method trains two types of BLSTM layers.
We define the word “block”. Each block contains one BLSTM
layer, dense layers, and signal processing layers. In Fig. 1 (b)
and (c), the block diagrams of the proposed blocks are shown.
The first block contains the first type of the BLSTM layer.
The first type is utilized for only initialization, and it outputs
a refined separation parameter v

(1)
i,l,k,R

(1)
i,k from a randomly

initialized parameter v
(0)
i,l,k,R

(0)
i,k . The second block and the

subsequent blocks share the second type of the BLSTM
layer. The second type is utilized for increasing separation
performance. The n ≥ 2-th block outputs more refined
separation parameter v

(n)
i,l,k,R

(n)
i,k from the refined parameter

in the previous block v
(n−1)
i,l,k ,R

(n−1)
i,k . The proposed method

can extract the output signal of the MWF from any block.
The proposed method does not stack blocks which contain the
first type of the BLSTM layer, because the first type assumes
an input signal that is not well separated and separation
performance degrades when the input parameter of the first
type is a refined parameter by the previous layer. Thus, the
proposed method stacks blocks which contain the second type
of the BLSTM layer. In this paper, separation performance
is also evaluated experimentally when the first type of the
BLSTM layer is stacked (MISD-M 2).

B. Proposed block architecture

1) Feature extraction: Each block extracts the input feature
of the BLSTM layer as the log power spectral and the phase
difference of the separated speech signal. The separated speech
signal is generated by the MWF with the output parameter by
the previous block.

2) Training blocks with neural network: The neural net-
work structure of each block is the same as the MISD-M [23].
The number of the BLSTM layers is set to 1. As the same way
to MISD-M, the output variable of the BLSTM is converted
into vi,l,k and Mi,l,k.

3) SCM estimation and MWF: The SCM of each speech
source Ri,k is estimated by Eq. 9 from Mi,l,k. The MWF
is adapted by using the estimated vi,l,k and Ri,k. In the
training phase, the estimated speech signal µi,l,k and Vi,l,k

are evaluated in the loss function.
4) SCM update: Additional SCM updates based on the

LGM is performed so as to increase separation performance. In
the SCM update, the multi-channel covariance matrix of each
source Ri,k is updated iteratively based on the expectation-
maximization (EM) algorithm [30] as follows:

E step: The posterior probability distribution of each source
pθ(ci,l,k|xl,k) is estimated with the current Ri,k and vi,l,k,
and µi,l,k and Vi,l,k are obtained by Eq. (6) and Eq. (7).
M step: Ri,k is updated as follows:

Ri,k =
1

LT

∑
l

µi,l,kµ
H
i,l,k + Vi,l,k, (12)

where LT is the number of the time-frames. Since Ri,k

estimated by Eq. (9) is an approximated SCM by time-
frequency masking, Eq. (12) updates Ri,k to decrease the
approximation error.

C. Training of deep neural network

Each type of the BLSTM layer is trained sequentially so
as to minimize distance between the output signal and the
oracle speech signal. For example, in the first P updates, only
the first type of the BLSTM layer is trained. In the next P
updates, the second type of the BLSTM layer is trained. In
each training phase, the loss function is set to LMISD defined
by Eq. (4) similarly to the MISD-M.

1) Training of first type: When the first type is trained, the
input parameter R

(0)
i,k and v

(0)
i,l,k are randomly initialized. The

training target is set to the oracle clean signal ci,l,k.
2) Training of second type: After training the first type, the

second type is trained under the condition that the parameter
of the first type is fixed. Since the input parameter R

(n)
i,k and

v
(n)
i,l,k (n ≥ 1) is a refined parameter which is the output of

the previous block in the inference stage, the input separation
parameter for training of the second type is also set to a refined
parameter. For training of the second type, the proposed
method utilizes R

(1)
i,k and v

(1)
i,l,k which is inferred via the first

block with the first type of the BLSTM layer as the refined
input separation parameter. The training target is also set to
the oracle clean signal ci,l,k. Because of the proposed training
strategy, we can avoid an input-mismatch problem between the
training stage and the inference stage.

IV. EXPERIMENTS AND EVALUATIONS

A. Experimental setup

Speech separation performance was evaluated. The dataset
was made by convolving measured impulse responses in
Multi-channel Impulse Response Database (MIRD) [31] with
the clean speech sources in TIMIT speech corpus [32]. In
the training phase, TIMIT train corpus was utilized. In the
evaluation phase, TIMIT test corpus was utilized. We evaluated
speech separation performance with an open set of speakers.
The reverberation time RT60 was set to 0.16 [sec] or 0.36
[sec]. The number of the microphones was set to 2. The
number of the speech sources was set to 2 in each utterance.
Two microphone indices were randomly selected for each
utterance both in the training phase and in the evaluation
phase. In the training phase, a 3-3-3-8-3-3-3 spacing (cm) mi-
crophone array and a 8-8-8-8-8-8-8 spacing (cm) microphone
array were utilized. In the evaluation phase, a 4-4-4-8-4-4-4
spacing (cm) microphone array was utilized. Thus, a different
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Fig. 1. Block diagrams

TABLE I
EVALUATION RESULTS OF SPEECH SEPARATION AT RT60=0.16 [SEC]: EACH RESULT IS SIR/SDR

Nsb
Unsupervised Supervised

LGM ILRMA LGM+DNN+KL LGM+DNN+MISD MISD-M 1 MISD-M 2 Proposed

1 10.66/8.90 9.71/8.50 1.39/1.13 6.85/4.55 11.72/10.08 12.41/10.47 11.90/10.08
2 - - 1.32/0.88 8.57/5.74 - 2.71/2.01 12.78/10.71
3 - - 1.29/0.69 9.30/6.37 - 11.90/10.17 13.10/10.77
4 - - 1.47/0.61 9.65/6.71 - 2.88/2.18 13.13/10.91
5 - - 1.61/0.49 9.80/6.88 - 11.88/10.14 13.19/10.79
6 - - 1.65/0.36 9.84/6.95 - 3.07/2.32 13.18/10.91

microphone array was utilized in the evaluation phase from
the training phase so as to evaluate separation performance
in a microphone-array open condition. Sampling rate was set
to 8000 Hz. Frame size was 256 sample. Frame shift was 64
sample. The number of the frequency bins K was 129. The
number of the units in each BLSTM layer was set to 600. The
distance between speech sources and microphones was set to
1 m. Azimuth of each talker is randomly selected for each
utterance. The number of total training utterances was 10000.
Mini-batch size was set to 128. Each utterance was split in
every 100-frames segment in the training stage. Evaluation
measures were set to SIR and SDR calculated by BSS EVAL
[33]. The DNN of each block was updated P = 3000 times.
In the training phase, we utilized the permutation invariant
training (PIT) [21]. Adam optimizer [34] (learning rate was
0.001) with gradient clipping was utilized.

B. Compared methods
We compared unsupervised speech separation methods and

supervised speech separation methods. As unsupervised meth-

ods, two methods were evaluated, i.e., 1) LGM: Blind speech
separation based on LGM [8] and an auxiliary function based
parameter optimization [9], [10]; 2) ILRMA [6], [7]: We uti-
lized an implementation in Pyroomacoustics [35]. The number
of the basis functions in ILRMA was set to 2. The number
of iterations for LGM and ILRMA was set to 20. As the
supervised methods, the following methods were evaluated:

• LGM+DNN with Kulback Leibler divergence (KLD)
minimization (LGM+DNN+KL) [14]: Although
LGM+DNN was not proposed for speech separation, we
evaluated LGM+DNN as a baseline method, because it
has a variable number of blocks. In each block, the SCM
is updated one-time based on the EM algorithm [8] and
the time-varying activity is also updated one-time with
the DNN similarly to the proposed method. The loss
function is defined as a KLD which achieved the best
performance in [14]. The DNN structure is the same as
the proposed method.

• LGM+DNN with multi-channel Itakura-Saito Divergence
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TABLE II
EVALUATION RESULTS OF SPEECH SEPARATION AT RT60=0.36 [SEC]: EACH RESULT IS SIR/SDR

Nsb
Unsupervised Supervised

LGM ILRMA LGM+DNN+KL LGM+DNN+MISD MISD-M 1 MISD-M 2 Proposed

1 6.58/4.79 6.30/4.59 1.40/1.07 6.43/4.05 8.13/6.61 8.62/6.84 8.24/6.56
2 - - 1.42/0.91 6.69/4.39 - 2.12/1.52 9.07/7.05
3 - - 1.28/0.64 6.98/4.68 - 8.24/6.65 9.67/7.33
4 - - 1.35/0.52 7.13/4.86 - 2.34/1.73 9.64/7.36
5 - - 1.33/0.26 7.19/4.95 - 8.14/6.58 9.80/7.34
6 - - 1.35/0.11 7.22/4.99 - 2.60/1.95 9.69/7.27

minimization (LGM+DNN+MISD): The loss function is
changed from the KLD to the MISD [23].

• MISD-M 1 [23]: The block diagram is shown in Fig. 1
(a). The number of the BLSTM layers was set to 2. The
input feature z is extracted from the microphone input
signal. The DNN is trained so as to minimize LMISD.

• MISD-M 2: The neural network structure is the same
as that of the MISD-M 1 except for the input feature.
The DNN is trained so as to minimize LMISD. The input
feature is the same as that of the 1st BLSTM layer in the
proposed method. Thus, the output signal of this method
can be converted into the input feature of this method.
We also evaluates this method by changing the number
of the stacked blocks.

• Proposed: The number of the BLSTM layers in each
block was 1. The loss function was MISD. The total
number of BLSTM layers is the same as MISD-M 1.
Two DNNs were trained in the proposed sequential way.

Importantly, the total number of the BLSTM layers are the
same in all supervised methods.

C. Experimental results

The number of the stacked blocks Nsb was changed from 1
to 6. The experimental results are shown in Table I and Table II
for RT60=0.16 [sec] and 0.36 [sec], respectively. Average of
200 results is shown. The proposed method outperformed the
other methods when Nsb ≥ 2. The MISD-M 2 outperformed
the MISD-M 1 because of difference of the input features. The
MISD-M 2 with Nsb = 1 also outperformed the proposed
method with Nsb = 1, because the number of the BLSTM
layers in the MISD-M 2 with Nsb = 1 is more than that in
the proposed method with Nsb = 1. When the number of
the BLSTM layers is the same, e.g., the proposed method
with Nsb = 2 and the MISD-M 2 with Nsb = 1, the
proposed method outperformed the MISD-M 2. This result
confirmed that insertion of signal processing layers between
two BLSTM layers is effective. The MISD-M 2 with Nsb = 2
underperformed the MISD-M 2 with Nsb = 1. The input
feature of the first block in the MISD-M 2 was extracted from
the separation result with a randomly initialized parameter.
On the other hand, the input feature of the second block
of the MISD-M 2 was extracted from the separation result
with the refined parameter by the first block. In the training
stage, the MISD-M 2 was also trained with the input feature

of the first block. Thus, there is the input-mismatch problem
between the training stage and the inference stage in the
second block of the MISD-M 2 with Nsb = 2, because
the MISD-M 2 was trained with the randomly initialized
parameter as the input parameter. When the input parameter
of the MISD-M 2 is an refined parameter, the input mismatch
results in poor separation performance. We guessed that this
is the reason why the separation performance of the MISD-
M 2 fluctuated depending on the number of blocks. On
contrary, the proposed method with Nsb = 2, 3, 4 increased
separation performance monotonically. Thus, it can be said
that the input-mismatch problem was reduced in the proposed
method. After Nsb = 5, 6, the separation result degraded. This
result indicates that the second BLSTM layer cannot increase
separation performance after Nsb = 5. However, when we can
utilize the third BLSTM layer, there is possibility to achieve
more separation performance after Nsb = 5. It is one of future
works.

V. CONCLUSIONS

In this paper, we proposed a supervised speech separation
technique which can flexibly change the number of BLSTM
layers depending on the available computational resource. The
proposed structure is useful for industrial applications, because
the upper bound of the computational resource is varying
from device to device in industrial applications. The proposed
method trains two types of the BLSTM layers sequentially,
i.e., a BLSTM layer for initialization of a separation parameter
and a BLSTM layer for increasing separation performance.
The number of the BLSTM layers is variable by stacking
the second BLSTM layer. Experimental results show that
speech separation performance of the proposed method can
be improved by increasing the number of the BLSTM layers.
The proposed architecture will be applied to the other kinds
of array signal processing techniques such as dereverberation
and speech enhancement.
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