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Abstract
We have previously proposed a cross-validation (CV) based
Gaussian mixture optimization method that efficiently opti-
mizes the model structure based on CV likelihood. In this study,
we propose aggregated cross-validation (AgCV) that introduces
a bagging-like approach in the CV framework to reinforce the
model selection ability. While a single model is used in CV to
evaluate a held-out subset, AgCV uses multiple models to re-
duce the variance in the score estimation. By integrating AgCV
instead of CV in the Gaussian mixture optimization algorithm,
an AgCV likelihood based Gaussian mixture optimization al-
gorithm is obtained. The algorithm works efficiently by using
sufficient statistics and can be applied to large models such as
Gaussian mixture HMM. The proposed algorithm is evaluated
by speech recognition experiments on oral presentations and it
is shown that lower word error rates are obtained by the AgCV
optimization method when compared to CV and MDL based
methods.

1. Introduction

Gaussian mixture distribution is used as Gaussian mixture
model (GMM) and Gaussian mixture HMM, and these models
have wide applications in speaker recognition, speech recog-
nition, etc. One of the general problems of Gaussian mixture
estimation is how to decide the number of mixtures for a given
training data so as to maximize the model performance by bal-
ancing the model preciseness and parameter estimation accu-
racy. Since a Gaussian mixture has hidden variables in the form
of mixture weights and has many local optima, not only opti-
mizing the mixture size, but also how to arrange the components
is important.

Given a large mixture model, a strategy to optimize the mix-
ture distribution is to reduce the components by iteratively se-
lecting and merging pairs of components based on an objective
function until a termination criterion is satisfied. Since the op-
timization requires estimation of the merging score for all the
combinations of the components, the score must be efficiently
estimated to make the algorithm feasible.

The most popular choice for the objective function is like-
lihood. However, a limitation is that it does not provide a ter-
mination criterion to balance model fit vs. parameter estimation
accuracy. Because the likelihood is estimated for the training
data and optimistically biased, it is monotonic to the number
of model parameters. A threshold may be used for the change
in likelihood as a termination criterion but an empirical tuning

is required. Information theoretic criteria provide a termination
criterion, but in practice, it often requires an empirical tuning
factor to compensate for errors in the theoretical bias estima-
tion [1].

Cross-validation (CV) is a data-driven method that can
largely reduce the bias by effectively separating the data used
for model parameter estimation and likelihood evaluation. As
it is less biased, the optimal model size is easily found as the
maximum point of the score. While the traditional use of CV
likelihood to structure optimization had been limited to compar-
ing a small number of models or semi-continuous HMMs due to
infeasible computational cost [2], we recently showed that the
CV likelihood of Gaussian distributions can be efficiently eval-
uated using sufficient statistics. The CV likelihood evaluation
algorithm is an extension of the self-test likelihood evaluation
method used in [3] and [1], and is similar to those used in suc-
cessive state splitting [4] and selective training [5] in that the
likelihood is evaluated for a data set that is different from the
one used for the model estimation. We have applied the CV
likelihood evaluation technique to Gaussian mixture structure
optimization, and have shown that it improves speech recogni-
tion performance [6].

However, a concern when using CV in the structure opti-
mization algorithm is that the number of models subject to the
comparison is much larger than that in the traditional use of
CV. While CV can mostly remove the bias, the CV score statis-
tically varies depending on data distribution, CV partitioning,
etc. Among the large number of models, there may be a model
that gives a higher CV score just by chance regardless of its true
performance on new data. This effect increases with the number
of models and degrades the model selection performance.

To reduce the variance, we propose aggregated cross-
validation (AgCV) that introduces a bagging-like [7] idea to
the cross-validation framework. We then apply AgCV to Gaus-
sian mixture structure optimization and evaluate the optimiza-
tion algorithm by speech recognition experiments on oral pre-
sentations. While the idea of using the bagging like approach in
AgCV is similar to our previously proposed AgEM [8, 9], they
are largely different in that AgCV is a model selection method
that extends CV whereas AgEM is a parameter estimation al-
gorithm that extends EM. In the following sections, we refer to
conventional training set likelihood as self-test likelihood to dis-
tinguish it from likelihood estimated by the proposed method.

This paper is organized as follows. In Section 2, the AgCV
algorithm is proposed that extends CV. In Section 3, AgCV
is applied to Gaussian mixture structure optimization and ef-
ficient evaluation algorithm is shown. Experimental conditions
are shown in Section 4 and the results are presented in Section 5.
Finally, a summary and future works are given in Section 6.
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Figure 1: K-fold cross-validation (K-fold CV).

2. Aggregated cross-validation (AgCV)
algorithm

Aggregated cross-validation (AgCV) is an extension of the K-
fold cross-validation (CV) method. K-fold CV works by first
dividing the training data into K subsets as shown in Figure 1.
Then, it holds out one of the subsets, estimates a model using
the rest of theK − 1 subsets, and evaluates a score of the held-
out subset using the estimated model. The CV score is obtained
by repeating this process K times changing the held-out subset
and accumulating the evaluation score. The fragmentation prob-
lem is minimum with large K, since K−1

K
of the training data

is used for the model estimation. Since the overlap is avoided
between the data used for the model estimation and the evalu-
ation, a fair evaluation score is obtained without the optimistic
bias in the self-test score. By using the CV score as the criterion
for model structure optimization, it is possible to select a model
that generalizes well to new data.

AgCV introduces a bagging-like idea into the K-fold CV to
reinforce the model selection performance by reducing the vari-
ance in the score evaluation. Bagging [7] is one of the ensemble
training methods to improve classification performance by inte-
grating outputs from multiple classifiers. The multiple classi-
fiers are trained on mutually overlapped subsets of the original
training data obtained by sampling with replacement.

In the proposed AgCV algorithm, a held-out subset is re-
peatedly processed by N models and their scores are averaged
as shown in Figure 2, while a single model is used in the con-
ventional CV method. The N models are trained from mutu-
ally overlapped subsets defined by sub-sampling of the original
training set as in bagging. However, unlike the original bagging,
a coarse sampling strategy is adopted using the CV subsets as
a unit for sampling. That is, K′ subsets out of K − 1 of the
CV partitioning excluding the held-out subset are randomly se-
lected without replacement for N times to obtain the subsets
for the model estimation. The coarse sampling approach is use-
ful to reduce the storage cost when applying the algorithm to
sufficient statistics based structure optimization.

The similarity between the N models is controlled by K′
K

which decides the amount of shared data between the models.
In this study, we experimentally fixedK′ to K

2
. IfK ′ = K− 1

and N = 1, AgCV reduces to conventional CV.

3. Gaussian mixture structure optimization
based on AgCV likelihood

The Gaussian mixture structure optimization is based on reduc-
ing extra components of an input Gaussian mixture distribution
with a large number of mixtures. During the optimization, a pair
of Gaussians is repeatedly selected and merged based on scores
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K’ < K-1 subsets
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Figure 2: Aggregated cross-validation (AgCV).

of an objective function. At each stage, there are M(M−1)
2

pos-
sible combinations of the components for M -mixture distribu-
tion and a pair of components that gives the largest score gain
for their merging is selected.

Since the number of combinations is large, the score needs
to be efficiently evaluated. The efficient evaluation algorithms
for the conventional self-test likelihood, previously proposed
CV likelihood, and proposed AgCV likelihood are all based on
sufficient statistics of Gaussian distributions, which is a set of
statistics shown in Equations (1), (2), and (3).

A0 (m) =
X
t∈T

γm (t) , (1)

A1 (m) =
X
t∈T

xtγm (t) , (2)

A2 (m) =
X
t∈T

xt
2γm (t) , (3)

where T is a training set, t is a time, m is a mixture com-
ponent index, xt = (x1 (t) , x2 (t) , · · · , xd (t))T is a d-
dimensional feature vector at time t, x2 =

`
x2

1, x
2
2, · · · , x2

d

´T ,
and γm (t) = P (mt|T, θ0) is occupancy count of m-th mix-
ture at time t given a proper initial model θ0.

Assuming that alignments are fixed during the optimiza-
tion [3], the self-test likelihood of a Gaussian mixture θ is ex-
pressed as follows:

Lself (θ) ≈
MX

m=1

X
t∈T

log (P (xt|m, θ)) γm (t) (4)

= −1

2

X
m

n“
log

“
(2π)d |Σ (m) |

”
+ d

”

·A0 (m)
¯

, (5)

where Σ (m) is a diagonal covariance matrix of m-th Gaus-
sian component. Since the variance is obtained from the pre-
computed sufficient statistics as shown in Equations (6) and (7),
the score can be efficiently evaluated without directly accessing
the original training data.

μ (m) =
A1 (m)

A0 (m)
, (6)

diag (Σ (m)) = v (m) =
A2 (m)

A0 (m)
− μ (m)2 . (7)
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For the CV and AgCV based Gaussian mixture structure
optimization methods, the training set is partitioned intoK sub-
sets and the sufficient statistics are estimated for each subset.
Here, we denote the sufficient statistics estimated for k-th sub-
set asAk =

˘
A0

k,A1
k,A2

k

¯
.

Using the same assumptions as the self-test likelihood
method, the CV likelihood of θ is expressed as follows:

Lcv (θ) =
KX

k=1

MX
m=1

X
t∈Tk

log (P (xt|m, θk)) γm (t) , (8)

where θk is the k-th CV Gaussian mixture distribution that is
estimated excluding the k-th subset. The parameters of θk is
easily obtained by accumulating the sufficient statistics exclud-
ingAk as shown in Equations (9) and (10).

μk (m) =

P
k �=kA

1
k (m)P

k �=k A0
k (m)

, (9)

vk (m) =

P
k �=kA

2
k (m)P

k �=k A0
k (m)

− μk (m)2 . (10)

By re-writing Equation (8) with the means and variances ob-
tained by Equations (9) and (10), the CV likelihood can be
efficiently evaluated using the pre-computed sufficient statis-
tics [6].

Similar to the CV likelihood, the proposed AgCV likeli-
hood is defined by the following equations.

LAgCV (θ) =
1

N

KX
k=1

NX
n=1

MX
m=1

X
t∈Tk

{log (P (xt|m, θk,n)) · γm (t)} , (11)

μk,n (m) =

P
i∈Ωk,n

A1
i (m)P

i∈Ωk,n
A0

i (m)
, (12)

vk,n (m) =

P
i∈Ωk,n

A2
i (m)P

i∈Ωk,n
A0

i (m)
− μk,n (m)2 , (13)

where Ωk,n is a set of K′ integers randomly selected from
{1, 2, · · ·K} \ {k} without replacement. The maximum possi-
ble value forN is C (K − 1, K′) as we require Ωk,s �= Ωk,t if
s �= t. The Equation (11) is again able to be efficiently evalu-
ated using the pre-computed sufficient statistics without directly
accessing the original training data with the computational cost
linear in N . A Gaussian mixture HMM can be optimized by
applying the optimization method independently at each state.

Fig. 3 shows an example of the likelihood that is estimated
during the optimization for a certain HMM state. The initial
model had 200 Gaussians as components. The components
were merged step by step using the self-test and the AgCV like-
lihood criteria withK = 6, N = 10. The horizontal axis is the
number of mixtures that decreases by the optimization and the
vertical axis is the total likelihood of the mixture distribution
for the training set.

As can be seen, self-test likelihood takes a larger value than
the AgCV likelihood due to the optimistic bias and it monoton-
ically decreases during the optimization. On the other hand, the
AgCV likelihood is a good approximation of the model perfor-
mance to new data with smaller bias. The optimal model size is
easily found as the peak of the likelihood. The AgCV likelihood
indicates that around 100 mixtures is appropriate to balance the
model estimation accuracy and the model preciseness.
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Figure 3: An example of the objective scores estimated for train-
ing data by the Gaussian mixture structure optimization meth-
ods.

4. Training paradigm and experimental
setups

The proposed AgCV based Gaussian mixture structure opti-
mization algorithm was applied to HMM training and evaluated
by speech recognition experiments. In this study, it was inte-
grated in the HMM training process as follows.
1. Input 1-mixture tied-state HMM as an initial model.
2. Randomize and uniformly partition the training data.
Run five EM iterations to update model parameters.
Compute sufficient statistics for the AgCV method.

3. Optimize Gaussian mixtures with the AgCV structure
optimization method. The number of mixtures is re-
duced until the AgCV likelihood is maximized. Output
the HMM or continue to step 4.

4. Split and double the number of the mixture components
by duplicating the parameters with small deviation. Go
to step 2.

The random partitioning was performed for each training itera-
tion, consisting of step 2 through step 4, to avoid unnecessary
dependencies between the consecutive CV-based structure opti-
mizations. If the Gaussian merging in step 3 is not performed,
the number of Gaussians in the HMM is simply doubled for
each training iteration. We refer this procedure as a baseline.
For the purpose of comparison, MDL information theoretic cri-
terion and previously proposed CV based structure optimiza-
tions were also performed. The tuning factor for the MDL based
method was set to 1.0 based on preliminary experiments so as
to maximize the test set word error rate. The CV optimization
method was performed with K = 30 and the AgCV optimiza-
tion used K = 6, N = 10.

The HMMs were tied-state Gaussian mixture HMM with
1000 states. They were trained from 30 hours of academic pre-
sentations which was a subset of the Corpus of Spontaneous
Japanese (CSJ) [10]. Feature vectors had 39 elements compris-
ing of 12 MFCCs and log energy, and their delta, and delta delta
values. The HTK toolkit [11] was used for the EM training.
The language model was a trigram model trained from 6.8M
words of academic and extemporaneous presentations from the
CSJ. Test set was the CSJ evaluation set that consisted of 10
academic presentations given by male speakers. The length of
each presentation is about 10 to 20 minutes and the total dura-
tion is 2.3 hour. Speech recognition was performed using the
Julius decoder [12].

2384



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7
x 105

Training iteration

C
P

U
 ti

m
e 

(s
ec

)
EM iter1
EM iter2
EM iter3
EM iter4
EM iter5
AgCV Mix Opt

Figure 4: Computational cost.
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Figure 5: Number of training iterations and test set word error
rates.

5. Experimental results
Fig. 4 shows the CPU time spent for the 5 EM iterations and
the AgCV mixture structure optimization at each training iter-
ation. While AgCV structure optimization is heavier than the
CV method, the computational cost is still affordable as can be
seen in the figure.

Fig.5 shows word error rates for the training iterations. In
the figure, “EM” is the baseline result without the Gaussian
mixture structure optimization. “EM+MDL”, “EM+CVMIX”,
“EM+AgCVMIX” are the results with the Gaussian mixture
structure optimization by the MDL, CV, and AgCV meth-
ods, respectively. “AgEM+AgCVMIX” is the result when
AgEM [8, 9] was used instead of EM in combination with the
AgCV structure optimization method. The AgEM setting was
K = 12, K′ = 6, N = 12. For the baseline training, the
lowest word error rate of 27.4% was obtained at seventh itera-
tion and then the performance began to decrease for each addi-
tional training iteration. This is because the sparseness problem
arose as the model size got large. When the structure optimiza-
tion methods are used, the model sizes are automatically con-
trolled and the error rates gradually settle with the increase of
the training iterations. Among the structure optimization meth-
ods, the proposed AgCV gave the lowest error rate demon-
strating the superiority as the structure optimization method.
Further improvement was obtained by combining AgCV with
AgEM. The lowest error rates by the EM+AgCVMIX and
AgEM+AgCVMIX training was 26.4% and 26.2%, respec-
tively. Compared to the lowest word error rate of the base-
line training, the relative word error rate reduction was 3.5%
for EM+AgCVMIX and 4.4% for AgEM+AgCVMIX.

6. Conclusions
We have proposed Aggregated CV method that extends con-
ventional CV and successfully applied the algorithm to Gaus-
sian mixture structure optimization. The proposed Gaussian
mixture structure optimization method works efficiently using
sufficient statistics. In the experiments, it has been shown that
lower word error rates than conventional methods are obtained
by the proposed AgCV optimization method with automatically
determined model sizes. Further improvement was obtained by
combining the AgCV Gaussian mixture structure optimization
method with the AgEM parameter estimation algorithm. Future
works include evaluating the proposed algorithm with larger
training data and applying AgCV to other structure optimiza-
tion methods.
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