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Abstract
A Gaussian mixture optimization method is explored using
cross-validation likelihood as an objective function instead of
the conventional training set likelihood. The optimization is
based on reducing the number of mixture components by se-
lecting and merging a pair of Gaussians step by step base on
the objective function so as to remove redundant components
and improve the generality of the model. Cross-validation like-
lihood is more appropriate for avoiding over-fitting than the
conventional likelihood and can be efficiently computed using
sufficient statistics. It results in a better Gaussian pair selec-
tion and provides a termination criterion that does not rely on
empirical thresholds. Large-vocabulary speech recognition ex-
periments on oral presentations show that the cross-validation
method gives a smaller word error rate with an automatically
determined model size than a baseline training procedure that
does not perform the optimization.
Index Terms: speech recognition, HMM, Gaussian mixture,
cross-validation, sufficient statistics

1. Introduction
Optimizing model size and structure in Gaussian mixture model
and Gaussian mixture HMM are important to achieve higher
performance with a limited training set. While the model fit
to the training data monotonically increases for the number of
mixtures, models with too many parameters do not work for
new data because the overfitting problem become prominent.
In extreme cases, Gaussian mixtures become unstable and earn
exorbitantly large likelihood by assigning some of the compo-
nents to particular training samples with very small variances.
Given a model with large mixtures, a strategy to optimize the
mixture distribution is to select and merge a pair of components
based on an objective function step by step until a termination
criterion is satisfied. Since the optimization requires estimation
of the merging score for all the combinations of the compo-
nents, the score must be efficiently estimated for the algorithm
to be feasible.

The most popular choice of the objective function is like-
lihood. The likelihood criterion has advantages that it is con-
sistent with the overall objective of the standard HMM training
and that an efficient algorithm is known to estimate the likeli-
hood. However, a limitation is that it does not provide termina-
tion criterion to trade-off model fit vs. complexity. Because the
likelihood is estimated for the training data and optimistically
biased, it always decreases for the component merging. As a
result, it is difficult to determine when to stop the merging pro-
cess. A threshold may be used for the change in likelihood as a
termination criterion but an empirical tuning is required to de-
termine the threshold. In addition, because the instability prob-
lem of the Gaussian mixtures is originated from the same bias
effect, it is difficult to remove the outlier components with the

small variances by this criterion. Information theoretic criteria
have been applied to HMM training [1], but in practice, it often
requires an empirical tuning factor to compensate for errors in
the theoretical bias estimation.

Cross-validation (CV) is a data-driven method that can
largely reduce the bias in the likelihood. For K-fold cross vali-
dation, training data is partitioned into K subsets. A likelihood
of a subset is evaluated by a CV model that is estimated from
K − 1 subsets excluding that subset. The likelihood evaluation
is repeated for each subset and CV likelihood is obtained as
their sum. In this way, it effectively separates the data used for
the model parameter estimation and the likelihood evaluation
and a reliable likelihood is obtained without the bias. The out-
lier components can not earn large likelihood and become the
subjects of the merging. However, a difficulty of the CV method
is the computational cost. Because the efficient algorithm was
not known to estimate the CV likelihood, the application of CV
had been quite restricted in HMM training.

The efficient algorithm for the conventional training set
likelihood is based on the utilization of the sufficient statistics
which has been used in the context of model selection such
as decision tree state clustering [2] and successive state split-
ting [3], and in the context of selective training [4]. Recently,
we have shown that the CV likelihood of a Gaussian distribution
can also be efficiently evaluated using sufficient statistics and
successfully applied the technique to decision-tree state clus-
tering [5]. In this paper, we extend the algorithm to Gaussian
mixtures and explore Gaussian mixture optimization based on
the CV likelihood. The main difference from the typical ap-
plication of CV is that CV is integrated inside of the training
algorithm by utilizing the efficient evaluation algorithm rather
than comparing a few models outside of a model training.

This paper is organized as follows. The Gaussian mixture
optimization algorithm is described in Section 2. Experimental
conditions are shown in Section 3 and the results are presented
in Section 4. Finally, a summary and future works are given in
Section 5.

2. Gaussian mixture merging algorithm
In this section, a Gaussian mixture merging method using con-
ventional likelihood is first reviewed and then its extension to
CV is shown. In order to distinguish from the CV likelihood
presented, we call the conventional training set likelihood as
self-test likelihood. The merging method explored here is based
on bottom-up clustering, but the same technique to estimate CV
likelihood can be applied for top-down clustering.

2.1. Self-test likelihood based method

In this method, Gaussian mixture is optimized by repeatedly se-
lecting and merging a pair of component Gaussians based on
self-test likelihood. Let θ be parameters of an input M -mixture
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Gaussian distribution and θ̄ be parameters of M − 1 mixture
Gaussians obtained by merging one of the pairs of its compo-
nents. For a diagonal Gaussian distribution, the sufficient statis-
tics are the sum of the observation count, and the first and sec-
ond order sample averages. Similarly, the sufficient statistics
for m-th Gaussian component are expressed as follows:

A0 (m) =
X
t∈T

γm (t) , (1)

A1 (m) =
X
t∈T

xtγm (t) , (2)

A2 (m) =
X
t∈T

xt
2γm (t) , (3)

where T is a training set, t is a time, m is a mixture component
index, xt = (x1 (t) , x2 (t) , · · · , xd (t))T is a d-dimensional
feature vector at time t and x2 =

`
x2

1, x
2
2, · · · , x2

d

´T
, and

γm (t) = P (mt|T, θ0) is occupancy count of m-th mixture
at time t given a proper initial model θ0. The mean μ (m) and
variance v (m) of the m-th Gaussian component is obtained
from these sufficient statistics as follows:

μ (m) =
A1 (m)

A0 (m)
, (4)

v (m) =
A2 (m)

A0 (m)
− μ (m)2 . (5)

By assuming that the alignment does not change during the op-
timization, θ̄ is easily obtained from sufficient statistics of θ as
the sufficient statistics of the merged Gaussian are the sum of
the sufficient statistics of the original Gaussian pairs.

With proper assumptions such as fixed state alignments [2],
the self-test likelihood of a Gaussian mixture is expressed as
follows:

Lself (θ) ≈
MX

m=1

X
t∈T

{log P (xt|m, θ)} γm (t) (6)

= −1

2

X
m

n“
log

“
(2π)d |Σ (m) |

”
+ d

”

·A0 (m)
¯

, (7)

where Σ is a diagonal covariance matrix whose main diagonal
is v. Mixture weights do no affect the optimization when the
alignment is fixed and thus they are omitted. Equation (7) is
efficiently evaluated since the summation over t, which implies
to access all the training data, is pushed in the pre-computed
sufficient statistics.

For M -mixture Gaussian distribution θ, there are M(M−1)
2

possible pairs of its components. Let Θ be a set of M − 1
mixture Gaussians obtained by merging one of the pairs. Then,
the Gaussian pair merging using the self-test likelihood criterion
is formulated as a model selection as follow:

θ̂ = argmax
θ̄∈Θ

Lself

`
θ̄

´
. (8)

By repeating the same procedure, the number of Gaussians is
reduced one by one. For Gaussian mixture HMMs, the opti-
mization can be independently applied for each state.

The problems of the Gaussian merging using the self-test
likelihood are that the likelihood has “optimistic” bias and is
not accurate especially when the amount of training samples is
not large. Because of the bias, the likelihood monotonically
decreases for the mixture optimization and does not provide a
termination criterion.

2.2. CV likelihood based method

For K-fold CV based merging method, the training data is par-
titioned into K subsets,

T =
K[

k=1

Tk, Ti

\
Tj = φ (i �= j) . (9)

Let Ak =
˘
A0

k, A1
k, A2

k

¯
be sufficient statistics for the k-th

subset. The parameters of the general model θ that is to be
trained from all the training set are estimated from

PK
i=1 Ai.

Similarly, the parameters of the k-th CV model θk are obtained
from

PK
i�=k Ai by holding out k-th subset from the parameter

estimation.
With the same assumptions as the self-test likelihood

method, the CV likelihood of θ is expressed as follow:

Lcv (θ) =
KX

k=1

MX
m=1

X
t∈Tk

{log P (xt|m, θk)} γm (t) . (10)

In the equation, the k-th CV model θk is used to estimate the
likelihood of the k-th subset Tk. Because Tk is excluded from
the estimation of θk, this makes the data mutually independent
for the model estimation and the likelihood evaluation. By sub-
stituting Gaussian distribution for P (xt|m, θk) and by putting
the summation over t inside, Equation (10) is rewritten as (12)
that can be efficiently evaluated using the pre-computed suffi-
cient statistics. This is the main contribution of this paper that
makes it possible to apply CV to the mixture optimization with
feasible computational cost. By using Equation (12) as the ob-
jective function for the component selection, CV version of the
Gaussian merging algorithm is obtained. Equation (12) is a CV
counterpart of the likelihood evaluation function (7). In fact, if
the CV index k is omitted, Equation (12) is farther simplified
and become identical to (7).

While the CV method divides the training data for the
model estimation and the likelihood evaluation, the data frag-
mentation problem is minimum for large K since each CV
model is trained from K−1

K
of the training set. Because it sep-

arates data used for the parameter estimation and the likelihood
evaluation, the CV likelihood is less biased than the self-test
likelihood. As the result, the likelihood behaves as if it is esti-
mated for test data and is not monotonic for the number of mix-
tures. Therefore, the optimal termination point for the merging
process is easily determined as a maximum point of the likeli-
hood.

2.3. Preliminary likelihood results

Fig. 1 shows an example of the likelihood that is estimated dur-
ing the Gaussian merging optimization for a certain HMM state.
The initial model had 256 Gaussians as components. The com-
ponents were merged using the self-test and the CV likelihood
criteria with 40 subsets, respectively. The horizontal axis is the
number of mixtures that decreases for the optimization and the
vertical axis is the total likelihood of the mixture distribution
for the training set. As can be seen, due to the optimistic bias,
self-test likelihood takes a larger value than the CV likelihood.
Because the self-test likelihood is monotonic for the number of
mixtures, it is difficult to know when to stop the merging. On
the other hand, the CV likelihood has a peak. The increase in
likelihood indicates that the generality of the model is improved
by reducing excessive components. As the merging process
proceeds, the CV likelihood takes a maximum at some point,
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Figure 1: Gaussian component merging and GMM likelihood.

which is around 210 in this case, and then it begins to decrease.
The decrease in likelihood indicates that the model size is be-
coming too small and the Gaussian mixture is losing modeling
accuracy. Therefore, in this case, the CV likelihood indicates
that around 210 mixtures is appropriate to balance the model-
ing accuracy and the data sparseness problem.

3. Training paradigm and experimental
setups

There are several possibilities of how to apply the Gaussian
mixture optimization method in the HMM training. For exam-
ple, it can be applied only once using a HMM with large mix-
tures as an input model. A problem with this strategy is that it is
not obvious how to choose the number of mixtures for the ini-
tial model. The other strategy is to repeat the merging process
along with mixture splitting. In this way, the initial mixture size
problem is avoided. In addition, a positive effect is expected
in finding better local optima as it kneads the mixtures by re-
peatedly absorbing unnecessary components and increasing the
survived Gaussians. In this work, the latter training procedure
is adopted. The HMMs were trained with the following proce-
dure:

1. Input 1-mixture tied-state HMM as an initial model.

2. Randomize and uniformly partition the training data. It-
erate EM for five times. Compute sufficient statistics for
each data subset for the CV based mixture optimization
method.

3. Optimize Gaussian mixtures with the CV merging
method using the sufficient statistics. The number of
mixture is reduced until the CV likelihood is maximized.
Output HMM.
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Figure 2: Computational cost.

4. Split and double the number of the mixtures by duplicat-
ing the parameters with small deviation. Go to step 2.

In the following, we count step 2 through step 4 as one train-
ing iteration. The random partitioning was performed for each
training iteration. If the Gaussian merging in step 3 is not per-
formed, then the number of Gaussians in the HMM is simply
doubled for each training iteration. We refer this procedure as a
baseline.

The acoustic models were tied-state Gaussian mixture
HMM with 1000 states. They were trained from 30 hours of
a subset of the Corpus of Spontaneous Japanese (CSJ) [6]. The
utterances were from academic presentations. Feature vectors
had 39 elements comprising of 12 MFCC and log energy, their
delta, and delta delta. The HTK toolkit [7] was used for the
EM training. The language model was a trigram model trained
from 6.8M words of academic and extemporaneous presenta-
tions from the CSJ. Test set was the CSJ evaluation set that
consisted of 10 academic presentations given by male speakers.
Speech recognition was performed using the Julius decoder [8].

4. Results
Fig. 2 shows the computational cost of the EM iterations and
the mixture merging with 40-fold CV. In the figure, an training
iteration consists of the five EM steps and the mixture merging
optimization. The ratio of the computational cost of the merg-
ing optimization for the total training procedure was about 7%.
This result shows that the proposed CV merging algorithm is
efficient and well practical.

Fig. 3 plots the averaged number of mixtures per state for
the training iteration. The CV based optimization methods was
performed with 40 and 80 CV subsets. The baseline is the result
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Figure 3: Number of iterations and average number of mixtures
per state.
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Figure 4: Number of training iterations and test set word error
rate.

when no merging optimization was performed and the number
of mixtures increased exponentially. The two CV settings gave
the mostly same results. In these cases, the number of mixtures
first increased exponentially as most of the components were
not merged. As the number of mixtures increased to over 100,
the merging process effectively started to work. After sufficient
iterations, the number of merged components became equal to
the number of splits and a balance in the total number of mix-
tures was reached.

Fig.4 shows word error rates for the training iterations. For
the baseline training, the lowest word error rate of 27.4% was
obtained at seventh iteration and then the performance began to
decrease for the training iteration. This is because the sparse-
ness problem arose as the model size got large. The word error
rates with the CV optimization were more stable for the training
iteration because it controls the number of mixtures. Both the
40-fold and the 80-fold CV gave similar results with lower word
error rate than the baseline. After 15 iterations, the word error
rates were 26.7% in both cases. Compared to the best result of
the baseline training, the relative word error rate reduction was
2.5% and the difference was statistically significant. This im-
provement was obtained by optimally merging Gaussian com-
ponents and determining the number of mixtures for each HMM
state using the CV likelihood.

5. Summary and future works
Gaussian mixture optimization method using cross-validation
(CV) likelihood was proposed. The CV likelihood is efficiently
estimated by using sufficient statistics. The CV likelihood
is more reliable than the conventional self-test likelihood and
gives a clear termination criterion. Large-vocabulary speech
recognition experiments on oral presentations showed that the
CV method gave lower word error rate than the baseline.

Future work includes the comparison with information-
theoretic criteria, and the combinations with the cross-
validation decision-tree state clustering (CV-DTC) method and
the cross-validation EM (CV-EM) algorithm [9]. The CV-EM
algorithm is another application of CV for the HMM training
that we had proposed. The CV-EM training is somewhat dif-
ferent from CV-DTC and the CV mixture optimization in that it
does not use CV for model selection but for reducing the bias
of the sufficient statistics. By combining these algorithms, all
the likelihoods used in the basic HMM training procedures can
be substituted by the CV likelihood and more robust parameter
estimation is expected. While we have evaluated the proposed
method on speech recognition experiments, the optimization al-
gorithm itself is general and can be widely applicable for model
estimation problem with Gaussian mixtures.
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