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ABSTRACT

Time-domain speech enhancement (SE) has recently been inten-
sively investigated. Among recent works, DEMUCS [1] introduces
multi-resolution STFT loss to enhance performance. However,
some resolutions used for STFT contain non-stationary signals, and
it is challenging to learn multi-resolution frequency losses simul-
taneously with only one output. For better use of multi-resolution
frequency information, we supplement multiple spectrograms in
different frame lengths into the time-domain encoders. They extract
stationary frequency information in both narrowband and wideband.
We also adopt multiple decoder outputs, each of which computes its
corresponding resolution frequency loss. Experimental results show
that (1) it is more effective to fuse stationary frequency features than
non-stationary features in the encoder, and (2) the multiple outputs
consistent with the frequency loss improve performance. Experi-
ments on the Voice-Bank dataset show that the proposed method
obtained a 0.14 PESQ improvement.

Index Terms— Speech enhancement, time domain, multi-
resolution spectrograms.

1. INTRODUCTION

Speech enhancement (SE) has been extensively studied because
noise often corrupts speech signals collected in real-world scenarios
[2, 3, 4], which significantly degrades the performance of speech
applications [5, 6, 7, 8, 9, 10, 11]. SE aims to recover speech com-
ponents from noisy signals [12]. Deep learning-based SE [13, 14]
methods have been shown to perform better than traditional meth-
ods [15, 16]. Supervised learning-based SE can be classified into
frequency-domain [13], and time-domain [17] methods. Frequency-
domain SE that uses only magnitude information has been mainly
studied because it presumes that the human ear is less sensitive
to phase information than magnitude information. This issue was
supplemented and corrected by subsequent studies [18].

Recently, SE systems that process magnitude and phase infor-
mation simultaneously achieves impressive performance [19, 20].
There are two approaches to handle phase information: enhance-
ment in complex-domain [19, 20] and time-domain [1]. Complex-
domain SE [20, 21] processes the Fourier transform’s real and imag-
inary parts. Time-domain SE [1, 22] directly inputs the time-domain
waveform and outputs enhanced features.

Among time-domain SE models, DEMUCS [1] has demon-
strated state-of-the-art performance. It is based on the standard

U-Net [23] structure and optimized by minimizing the L1 regres-
sion loss and supplemented by multi-resolution spectrogram domain
losses [24]. DEMUCS exploits frequency-domain information
through the spectrogram-domain loss, which significantly improves
the stability of the model training. Furthermore, different from other
time-domain models [25, 26, 17], DEMUCS introduces upsampling
[27], and downsampling [27] processing based on sinc interpolation
before the encoder and after the decoder, respectively, and the inter-
polation of the redundant information can alleviate information loss
or distortion [28] caused by SE.

DEMUCS still has two drawbacks: (1) Some of the supple-
mented frequency-domain information contains non-stationary sig-
nals. Speech signals can be regarded as short-term stationery with
an interval between 10ms and 30ms [29]. The Fourier transform pre-
supposes that the signal is stationary [30]. However, in addition to
32ms, DEMUCS also adopts STFT of 64ms and 128ms. (2) It needs
to learn the frequency loss of different resolutions simultaneously
with one output. Multiple learning targets with a single output make
training the neural network difficult.

In this study, we investigate the better use of multi-resolution
frequency information from the perspective of the encoder and de-
coder, respectively. First, instead of using non-stationary frequency
information in the output, we incorporate multi-resolution station-
ary frequency-domain information into the time-domain SE encoder
layer by layer. The multi-resolution spectrograms are supplemented
to provide frequency domain information. According to the length
of framing time, spectrograms can be divided into wideband and
narrowband [31]. These two kinds of spectrograms are much dif-
ferent and show a certain complementarity: Wideband (about 3ms
length of framing time) spectrogram can capture the rapid ampli-
tude changes [32] and clear speech formant information; Narrow-
band (about 20ms length of framing time) spectrogram has better
spectral resolutions and captures harmonics information. Further-
more, the SE system [24] trained with multi-resolution information
outputs significantly higher perceived quality in mean opinion score
(MOS). Considering these, we incorporate frequency information of
8ms, 16ms, and 32ms into the model. Second, we propose using
multiple time-domain decoders by downsampling, each correspond-
ing to only one resolution of frequency-domain loss.

In the following sections, we will introduce related work in Sec-
tion 2. We will introduce the proposed method in Section 3. In
Section 4, the experimental settings and results will be introduced.
The conclusion will be introduced in Section 5.IC
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Fig. 1. Flowchart of the proposed method and DEMUCS. The proposed multi-resolution encoder and decoders are highlighted in the
flowchart.

2. DEMUCS

The time domain SE directly inputs a noisy speech waveform y and
outputs enhanced waveform x̂:

x̂ = N (y) (1)

The mean absolute error between x̂ and the original signal x is the
common loss function for training time-domain SE:

Lmae =
1

T
||x̂− x||1F , (2)

where T is the time points in the waveform.
DEMUCS is one of the time-domain SE shown in Fig.1. It

is based on the standard U-Net structure. It contains five encoder
layers, two Long Short-term Memory (LSTM) layers, and five de-
coder layers. During training, in addition to the time-domain loss
in Eq. (2), DEMUCS also introduces the following two frequency-
domain losses:

Lstft = Lsc + Lmag

Lsc =
|||STFT (x̂)| − |STFT (x)|||1F

|STFT (x)|

Lmag =
1

T
||log|STFT (x̂)| − log|STFT (x)|||1F

(3)

The final multi-resolution loss function of DEMUCS is:

Ldemucs = αLmae + (1− α)

R∑
r=1

(Lstft(r)) (4)

where R represents the multi-resolution number. In the conventional
standard DEMUCS, R = 3 and its STFT points are {32ms, 64ms,
128ms}, the hop size are {3.125ms, 7.5ms, 15ms}, and the window
(Hanning window) length are {15ms, 37.5ms, 75ms}.

3. PROPOSED METHOD

Although the STFT loss introduced in DEMUCS shows a signifi-
cant improvement, it still has two problems: framing lengths {64ms,
128ms} are non-stationary for speech signals, and single output for
multiple resolution STFT information may increase the learning bur-
den of the neural network due to the mismatch. Fig. 1 shows a
flowchart of the proposed method. We address the above two issues
from the following two aspects.

3.1. Fusing Frequency Information in Encoder

Instead of introducing STFT information in the loss calculation,
multi-resolution stationary frequency information is incorporated
into the encoder layer by layer. Time-domain branch is processed:

ĥ = GLU(Conv1d((ReLU(Conv1d(h))))) (5)

where h represents the time information from the output of the pre-
vious encoder layer or the original time-domain input feature. ĥ
is a hidden representation obtained by convolutional processing in
Eq. (5).

Three different window-size spectrograms are adopted to pro-
vide stationary multi-resolution frequency information. Spectro-
grams can be divided into wideband and narrowband spectrograms
according to the number of STFT points with certain information
complementarity. Taking into account the short-term stability of
the speech signal, we choose {8ms, 16ms, and 32ms} with {4ms,
8ms, 16ms} hop size and {8ms, 16ms, 32ms} window length as
frequency input features.

Frequency information in each encoder layer is processed as fol-
lows:

ĤB = ELU(BatchNorm2d(Conv2d(HB))), (6)

HB represents the B−th frequency information from the output of
the previous encoder layer or the original frequency feature, B is



among {32ms, 16ms or 8ms}. ĤB is a hidden representation ob-
tained by convolutional processing in Eq. (6). ĤB is adopted as
the B-th frequency input to the next encoder layer. Furthermore,
ĤB is used as auxiliary information to improve the time-domain SE
branch.

In order to extract a more suitable feature representation from
frequency information, the ĤB is processed by two more convolu-
tional processing:

HIE
B = ELU(BatchNorm2d(Conv2d(ĤB))),

ˆHIE
B = ELU(BatchNorm2d(Conv2d(HIE

B ))),
(7)

where ˆHIE
B is the extracted information from ĤB .

Finally, the frequency information is incorporated into the time-
domain branch as follows:

fB = Linear(Concat(ĥ, ˆHIE
B ))

f̂ = Linear(ReLU(Linear(ĥ+ f8 + f16 + f32))
(8)

f̂ and ĤB are the time and frequency domain outputs of the encoder
layer, respectively. f̂ is also adopted as skip connection information
and is input into the corresponding decoder layer. We refer to the
model with multi-resolution frequency encoder as DEMUCS-MRE.
The loss function is the same with Eq. (4).

3.2. Multiple Decoders Consistent with the Learning Targets

In addition to the non-stationary loss issue, reducing the mismatch
between the multi-resolution frequency losses and single network
output is essential. We propose to use multiple outputs to alleviate
the problem that the multiple learning targets are set for the single
output.

In the proposed method, each output only calculates one resolu-
tion STFT loss. In this paper, the decoder depth is five. So there will
be three output layers in parallel after the fourth decoder layer. For
the decoder layer, we use the same structure as DEMUCS:

d̂ = ReLU(ConvTranspose1d(GLU(Conv1d(d)))), (9)

where d is the output of the previous decoder layer or the output of
the LSTM layers. d̂ is the processed output. The last layer of the
decoder does not use the ReLU activation function.

Different decoder outputs are expected to perform better on their
corresponding resolution frequency-domain information. Averaging
multiple waveforms, especially with complementary information,
can improve the enhancement performance [12]. Thus, the final en-
hanced waveform is an average of three different outputs. We refer
to the model that takes multiple time-domain outputs as DEMUCS-
MRD. The loss function is the same with Eq. (4).

4. EXPERIMENTAL SETTINGS AND ANALYSIS

All neural networks were implemented with PyTorch. We used the
causal DEMUCS, which can be used for streaming operations. The
detailed neural network settings can be found in this URL1.

We used a public dataset synthesized from the Voice Bank cor-
pus [33]. The dataset can be accessed from this URL2. All speech
data were sampled at 16 kHz.

1https://github.com/hshi-speech/icassp2023/tree/main
2https://datashare.ed.ac.uk/handle/10283/1942

4.1. Evaluation Metrics

We used several composite measures for evaluation. They are ob-
tained by linearly combining existing objective measures. In this pa-
per, we used multiple linear regression analysis to form the following
composite measures: Csig for a five-point scale of signal distortion
(SIG) [34]; Cbak for a five-point scale of background intrusiveness
(BAK) [34]; Covl for the overall quality (OVL, [1=bad, 2=poor,
3=fair, 4=good, 5=excellent]) [34]. The three composite measures
are obtained from log-likelihood ratio (LLR) [34], the perceptual
evaluation of speech quality (PESQ) [35], segmental SNR (segSNR)
[34], and weighted-slope spectral (WSS) [36] distance. We also
adopted the Short-Time Objective Intelligibility (STOI) [37]. For
all metrics, higher values indicate better performance.

Table 1. Comparison of different resolution loss in DEMUCS.

System STOI (%, ↑) PESQ (↑)

DEMUCS-8ms,16ms,32ms 94.2 2.79
DEMUCS-32ms 94.6 2.92
DEMUCS-32ms,64ms,128ms
(Conventional)

94.8 2.93

4.2. Effect of Different STFT losses in DEMUCS

First, we tested different STFT losses for DEMUCS. We re-
fer to standard “DEMUCS” as “DEMUCS-32ms,64ms,128ms”.
“DEMUCS-8ms,16ms,32ms” is compared to see the effect of
stationary STFT losses. Unexpectedly, Table 1 shows that its
performance degrades compared with the standard “DEMUCS-
32ms,64ms,128ms”. This may be because although 64ms and
128ms are non-stationary signals for speech processing, they may
benefit noise components. Therefore, we did not choose to change
the resolutions of STFT losses in the time domain enhancement
branch. Additionally, we compared models using multi-resolution
versus single-resolution “DEMUCS-32ms” in Table 1. Their per-
formances were almost the same, suggesting that improving the
performance with a single network output is difficult.

4.3. Effect of Fusing Frequency Information in Encoder

Table 2 shows the results of different SE systems and the proposed
method. With the proposed method of “DEMUCS-MRE”, there is
a 0.1 PESQ improvement when the redundant frequency-domain
information is added to the time-domain encoder. CSIG, CBAK,
and COVL improvements show that the proposed “DEMUCS-MRE”
could maintain more speech signals, suppress more noise, and im-
prove overall quality.

Furthermore, we also tried the same resolutions as the DE-
MUCS (32ms, 64ms, and 128ms STFT points) in DEMUCS-MRE.
The results in Table 3 show that the performance of this sys-
tem is slightly degraded compared to stationary “DEMUCS-MRE
(8ms,16ms,32ms)”. This shows that processing stationary signals
in the frequency domain is more effective. Nevertheless, fusing the
non-stationary frequency information in the encoder can also signif-
icantly improve the model performance. It is often pointed out that
the frequency-domain SE systems have more stable enhancement
performance than time-domain SE systems [45] because the insta-
bility of the phase information makes the time-domain waveform
less stable than the frequency-domain magnitude of the spectrogram.



Table 2. Results of different SE systems and the proposed method. “Causal” indicates that the model can be used for streaming operations.

System segSNR (↑) CSIG (↑) CBAK (↑) COVL (↑) STOI (%, ↑) PESQ (↑) Causal

Noisy 1.68 3.35 2.44 2.63 91.5 1.97 ✘

SEGAN [38] 7.73 3.48 2.94 2.80 - 2.16 ✘

SEGAN-D [39] 8.72 3.46 3.11 3.50 93.3 2.39 ✘

Wave U-Net [40] 9.97 3.52 3.24 2.96 - 2.40 ✘

MMSE-GAN [41] - 3.80 3.12 3.14 93.0 2.53 ✘

MetricGAN [42] - 3.99 3.18 3.42 - 2.86 ✘

S-DCCRN [43] - 4.03 2.97 3.43 94.0 2.84 ✔

DeepMMSE [44] - 4.28 3.46 3.64 94.0 2.95 ✘

PHASEN [19] 10.18 4.21 3.55 3.62 - 2.99 ✘

DEMUCS [1] 8.74 4.22 3.25 3.52 94.8 2.93 ✔

DEMUCS-MRE (proposed) 8.95 4.38 3.52 3.73 95.1 3.03 ✔

DEMUCS-MRD (proposed) 9.07 4.33 3.49 3.68 94.6 2.98 ✔

DEMUCS-MRE-MRD (proposed) 8.73 4.40 3.52 3.77 95.1 3.07 ✔

Table 3. The enhancement performance of DEMUCS-MRE with
non-stationary frequency information (32ms, 64ms, 128ms STFT
points).

System STOI (%, ↑) PESQ (↑)

DEMUCS-MRE (8ms,16ms,32ms) 95.1 3.03
DEMUCS-MRE (32ms,64ms,128ms) 94.7 3.00

Table 4. Comparison different time-domain outputs in “DEMUCS-
MRD”.

System 32ms output 64ms output 128ms output

STOI (%, ↑) 94.6 94.6 94.6
PESQ (↑) 2.99 2.98 2.96

Incorporating frequency information into time-domain information
can improve the stability of time-domain information.

4.4. Effect of Multiple Decoders

Table 2 shows that the “DEMUCS-MRD” can provide 0.05 PESQ
improvement. We averaged multiple outputs to get the final en-
hanced waveform. Table 4 shows results of different time-domain
outputs in “DEMUCS-MRD”. The output of all different resolutions
shows some improvement, which suggests that adopting multiple
outputs can alleviate the problem of learning mismatch with a single
output. The results of the different outputs were almost the same,
especially for 32ms and 64ms. This may be because the model al-
ready has multi-resolution frequency domain information through
the shared 1-th to 4-th decoder layers. Furthermore, “DEMUCS-
MRD” achieved the best performance for segSNR, which means bet-
ter performance at the segment level.

4.5. Effect of Improving the Model with Both Encoder and De-
coder

The combination of the proposed MRE and MRD can provide
further improvement, which is shown in the last row of Table 2.
“DEMUCS-MRE-MRD” has stronger speech signal retention and

signal overall quality recovery ability. The PESQ improvement from
the baseline “DEMUCS” is 0.14.

5. CONCLUSIONS

In this paper, we proposed using multi-resolution encoders and de-
coders to solve the drawbacks of DEMUCS from both the encoder
and decoder perspectives. We first added multi-resolution station-
ary frequency information to the time-domain enhancement layer by
layer to solve the non-stationary STFT loss issue. The experimental
results show that the stationary frequency information can signifi-
cantly improve performance. Moreover, we adopted multiple time-
domain outputs to alleviate the problem of learning mismatch with
a single output. The results show that it can ensure the model has
multi-resolution frequency information while improving the perfor-
mance of all resolutions. Furthermore, the proposed MRE and MRD
can be used jointly to achieve further improvement. In the future,
we will fuse the multiple enhanced waveforms into one signal with
a neural network instead of averaging.
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