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Abstract—Deep learning brings effective optimization and sig-
nificant improvements to speech enhancement (SE). Mapping
and masking are currently major approaches in single-channel
frequency-domain SE with supervised learning. In this work,
we first show that these two approaches are complementary in
that mapping is more effective in low-frequency bands, while
masking is more suitable in high-frequency bands. This is
because the high-frequency bands typically have low energy, so
estimating the enhanced spectrogram directly does not make
sense. Moreover, learning on the low-energy parts is often
annihilated by learning on the high-energy parts during the entire
loss calculation. To exploit this complementarity, we propose
subband-based spectrogram fusion (SBSF), which combines the
spectrogram of low-frequency and high-frequency estimated by
different SE models. Experimental evaluations show that the
SBSF significantly improved the SE performance.
Index Terms: Speech enhancement, deep learning, spectro-
gram fusion, subband fusion

I. INTRODUCTION

Speech enhancement (SE) aims to extract clean speech
signals from noisy speech signals [1]. The rise in popularity of
speech applications has led to a wide variety of use scenarios.
Front-end speech signal processing has become more and more
important [2]. In particular, the quality of speech is degraded
sharply in far-field conditions [3] or when substantial noise
occurs. For example, the performance of automatic speech
recognition [4] or speaker identification [5] significantly dete-
riorates in the presence of noise. To solve the problem, many
systems now include an SE module at the front-end to perform
noise reduction [4], [6]. Moreover, the SE system is of great
help for human hearing aids [7].

Deep-learning-based SE has attracted attention because it
demonstrates good performance and does not require any
mathematical modeling assumptions. Researchers have put
significant effort into improving frequency-domain SE systems
[8] since 2013, and their performance has been greatly en-
hanced. The deep autoencoder [9] and deep neural network
(DNN) [10], convolutional neural network [11], and recurrent
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neural network [12] are examples of early network struc-
tures for SE. Moreover, the combination of different types
of networks [13] and some complex structures [14], [15]—
for example, the U-NET structure [16] and the generative
adversarial network [17]—have powerful performance.

Although frequency-domain SE systems can be improved
in many ways, two types of learning targets are widely used:
masking and mapping [18]. Masking targets [19], [20], [21]
describe the time—frequency relationships of clean speech to
background interference, whereas mapping targets [22], [9],
[10] correspond to the spectral representations of clean speech
[18]. The motivation for mapping targets is that the features
can be estimated directly by the strong nonlinear capability
of neural networks [10]. The masking targets are proposed in
accordance with computational auditory scene analysis [23].
The earliest ideal binary mask [19] was designed to classify T–
F bins of speech signals and non-speech signals, and the ideal
ratio mask [20] indicates which T-F bins are dominated by
speech. Researchers found that the two types of learning targets
have some complementarities [24], [12]. However, few relevant
studies analyzed their characteristics, and explored using their
complementarity to get better SE performance.

In this paper, we address the aforementioned issues. We use
direct mapping (DM) [10] and signal approximation (SA) [25],
[26] as mapping and masking targets, respectively. First, we
investigate the complementarity between these two learning
targets based on their performance at each frequency bins. We
find that the mapping-based and masking-based SE systems
tend to perform well in the low-frequency and high-frequency
parts, respectively. In addition, the recovery of the mapping-
based SE system at high and low frequencies is very different,
while the recovery of the masking-based SE system at each
frequency is more stable.

On the basis of their complementarity, we investigate meth-
ods that combine them. Specifically, we propose subband-
based spectrogram fusion (SBSF). First, we combine the spec-
trogram of low-frequency and high-frequency bands, which are
estimated by different methods. Next, we combine the full-
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band SE and subband SE models. The subband enhanced spec-
trogram is used to replace corresponding subset information
in the full-band enhanced spectrogram. The major difference
between the proposed method and previous works [27], [28],
[29] is that our method divides the full-band spectrogram into
subbands from the perspective of the complementarity between
the mapping-based and masking-based SE systems. In this
study, we divide the full-band spectrogram into low and high
subbands considering the loss and endeavor to apply different
SE models. The reason for the poor performance of mapping
at high frequencies is that the loss is mainly concentrated
in the low-frequency part during network training. Thus, the
subband optimization is used to optimize the poorly predicted
part of the full-band spectrogram. Furthermore, we investigate
the effective combination of different learning targets.

The rest of the paper is organized as follows. In Section
II, we describe the mapping and masking SE systems. Section
III introduces the proposed approach. In Section IV and V,
we report the experimental settings and analysis. Finally, we
present the conclusion and future work in Section VI.

II. MAPPING AND MASKING APPROACHES FOR SPEECH
ENHANCEMENT

A. Mapping and Masking Approaches

Learning targets are vital for supervised SE. Common
learning targets can be divided into two categories: mapping
and masking. The DM approach [10] uses a neural network
to obtain the enhanced spectrogram directly. The loss function
for DM is as follows:

LDM (|X|, |X̂DM|) = 1

TF

T,F∑
t,f=1

|||X̂DM(t, f)| − |X(t, f)|||2F ,

(1)
where t and f represent time frame and frequency bin,
respectively. T represents the total number of frames in a
speech sample. F represents the total frequency bins. |X̂DM|
is the output speech magnitude spectrogram, and |X| is the
target clean magnitude spectrogram.

Masking-based SE uses deep neural networks to obtain a
mask between the speech and noisy speech. This mask is
applied to the observed noisy signal to extract speech signal.
SA [30], [26] utilizes a masking target. The loss function of
SA is as follows:

LSA(|X|, |X̂SA|) =
1

TF

T,F∑
t,f=1

|||X̂SA(t, f)| − |X(t, f)|||2F

=
1

TF

T,F∑
t,f=1

||M̂(t, f)⊙ |Y (t, f)| − |X(t, f)|||2F ,

(2)
where |M̂ | is the estimated mask, |Y | is the noisy input
speech magnitude spectrogram, |X̂SA| is the masking-based
speech magnitude spectrogram, and ⊙ denotes point-wise
matrix multiplication. Both DM and SA networks were based
on two-layer bidirectional long short-term memory [31] (Bi-
LSTM) neural networks.

B. Analysis on Complementarity

We investigate the complementarity of mapping and mask-
ing approaches by measuring the SE performance on dif-
ferent frequency bins. To measure the recovery performance
of different frequencies between the enhancement signal and
unprocessed noisy signal, we compare the loss at different
frequencies between the enhanced and unprocessed features.
We define the square loss ratio as follows:

RatioF =
Lsquare

Loriginal
=

T∑
t=1

|||X̂enh(t)| − |X(t)|||2F
T∑

t=1
|||Y (t)| − |X(t)|||2F

, (3)

where |X̂enh| and |Y | are the enhanced and noisy input speech
magnitude spectrogram, respectively. We only sum Lsquare

and Loriginal along the time axis, so a (1, F ) dimensional
vector can be obtained according to Eq. (3). The square loss
ratio shows the recovery of the enhanced spectrogram at dif-
ferent frequencies compared to the input (noisy) spectrogram.

We use all training set (Voice Bank of 10k utterances and
REVERB Challenge of 8k utterances) to compute the square
loss ratio. The DM system was trained with Eq. (1), and the SA
system was trained with Eq. (2). We used a 257-dimensional
spectrum as input and output.

Fig. 1 shows the square loss ratio compared to the input
noisy spectrogram. We can see different trends between the two
models. The curves of the “DM” and “SA” are clearly demar-
cated around 1,400 Hz. The mapping-based spectrogram had
better recovery in the low-frequency part but worse recovery
in the middle and high-frequency parts compared with those
of the masking-based spectrogram. The cut-off point of 1,400
Hz is consistent for the two datasets. With the masking-based
spectrogram, the recovery of each frequency was uniform and
stable.

C. Analysis on Dynamic Ranges of DM-based System

Fig. 2 shows the square loss of the mapping and masking
approaches: LDM and LSA. The loss of the low-frequency
part was significantly larger than that of the high-frequency
part. The 40th point (about 1,400 Hz) is marked with a red
dashed line in accordance with the analysis in the previous
section. When the frequency was lower than 1,400 Hz, the loss
increased significantly, while it was stable for the frequency
higher than 1,400 Hz. Thus, the dynamic range of loss differs
for low-frequency and high-frequency regions in the DM
system. This suggests that the main loss comes from the
low-frequency part of the spectrogram, which may affect the
recovery of the high-frequency part. Although the output of
the masking-based network is not strictly distributed between
0 and 1, it still limits the output of the network and makes
the difference between high and low frequencies smaller,
which can alleviate the aforementioned problems. In the linear
spectrogram, the energy difference between high and low
frequencies is 50–90dB. Though the energy distributed at high
and low frequencies is very different, there is some correlation
between the high and low frequencies of the spectrogram.
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(a) The results on Voice Bank training set

(b) The results on REVERB challenge training set
Fig. 1: The square loss ratio of mapping (Eq.(1)) and masking
(Eq.(2)) in different frequencies (0 – 8,000 Hz), which are
calculated with Eq. (3): the lower, the better.

Fig. 2: The square loss of DM & SA in different frequencies
(0 – 8,000 Hz) on Voice Bank training set.

Therefore, the mapping-based SE should use the full-band
information to help the recovery of the low-frequency signal,
while the high-frequency SE can be separately designed. This
is not the case in the masking-based SE.

III. SUBBAND-BASED SPECTROGRAM FUSION

In Section II, we observed that the mapping-based SE sys-
tem had better recovery in low frequencies, while the masking-
based SE system had better recovery in high frequencies.
Moreover, the mapping-based SE system can be divided into
two dynamic ranges according to the square loss. It suggests
the complementary between the mapping-based and masking-
based SE systems. Combining these two analyses, we divide
the whole spectrogram into two parts around 1,400 Hz and
investigate the effective combination of these two learning
targets. We call the high-frequency enhancement and low-
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Fig. 3: The flowchart of subband-based optimization: the
subband enhanced spectrogram will be used to replace the
corresponding information of full-band enhanced spectrogram.

frequency enhancement HEnh and LEnh, respectively. Both
HEnh and LEnh use the full-band spectrogram as input feature
to predict the sub-band output feature. We use the 257-
dimensional linear spectrogram as an input feature. LEnh
predicts 1-th to 40-th low-frequency bins of the spectrogram,
and HEnh predicts 41-th to 257-th high-frequency bins. We
investigate the following issues in the SBSF:

1) Is it effective to enhance different subbands with different
learning target?

- DM L + SA H: directly concatenates DM-based LEnh
and SA-based HEnh subband spectrograms. Consider-
ing the loss ratio, we select the mapping-based SE to
enhance the low frequencies of the spectrogram, and the
masking-based SE for the high-frequency spectrogram.

2) Is it effective to process different subbands by mapping
separately?

- DM L + DM H: directly concatenates DM-based LEnh
and DM-based HEnh subband spectrograms. In Section
II–C, we reason that the poor high-frequency recovery
of the mapping SE was because high energy in the
low frequencies prevents effective training in the high-
frequency regions due to the different dynamic ranges
of the mapping targets. Thus, we design a separate DM-
based method for the high-frequency region.

3) Is it more effective to combine the full-band and subband
SE than combing two subband-based SE?

For DM L + DM H, we use subband SE to deal with
different dynamic ranges of mapping. However, it ignores the
global information, and may cause incoherence in the spectro-
gram. Thus, we also design a full-band and subband hybrid
enhancement methods. Three steps are used: (1) full-band
SE, which computes a full-band enhanced spectrogram; (2)
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subband SE, which obtains a subband enhanced spectrogram;
and (3) information replacement, which uses the subband
enhanced information to replace the corresponding information
in the full-band spectrogram. Fig. 3 shows the flowchart of
the proposed method. Compared with DM L + DM H, we
propose the following method:

- DM F → DM H: DM-based full-band enhancement
with the DM-based HEnh replacement.

Furthermore, we inverstigate other full-band and subband
hybrid combinations. Specifically, we design the following
methods:

- DM F → DM L: DM-based full-band enhancement
with the DM-based LEnh replacement.

- DM F → SA H: DM-based full-band enhancement
with the SA-based HEnh replacement.

- SA F → DM L: SA-based full-band enhancement with
the DM-based LEnh replacement.

- SA F → SA H: SA-based full-band enhancement with
the SA-based HEnh replacement.

- SA F → DM H: SA-based full-band enhancement with
the DM-based HEnh replacement.

IV. EXPERIMENTAL SETTINGS

All networks were implemented using TensorFlow. The
model parameters were randomly initialized. The implementa-
tion of all networks was based on two-layer bidirectional long
short-term memory neural networks (Bi-LSTM). The number
of nodes in each hidden layer was 1024. For SA and DM, the
input was a 257-dimensional spectrogram, and the enhanced
spectrogram output also had 257 dimensions. The activation of
hidden layers for SA and DM was ReLU. For the activation
function of the output layer, ReLU was chosen for SA and a
linear function was used for DM. In addition, we estimated
the 217-dimensional high-frequency and 40-dimensional low-
frequency spectrograms for the HEnh and LEnh, respectively.

A. Datasets

We adopted the Voice Bank and REVERB Challenge
datasets to evaluate SBSF under additive noise and reverbera-
tion conditions, respectively.

1) Voice Bank: For the training set, we selected 26 speakers
from the Voice Bank corpus [32]—13 male and 13 female—
from the same accent region (England). Approximately 400
sentences are available from each speaker. The training set
contains 10, 340 sentences. For validation set, we selected
another 2 speakers from the Voice Bank corpus [32]—1 male
and 1 female—from the same accent region (England). The
the validation set contains 1, 232 sentences. Two artificially
generated (speech-shaped noise and babble) and eight real
noise recordings from the Demand database [33] were used
to synthesize the training and validation sets. The signal-to-
noise ratio (SNR) values used for training were 15, 10, 5, and
0 dB. Two other speakers from England in the same corpus,
a male and a female, and five other noises from the Demand
database were used to create the test set. The SNR values

used for testing were 17.5, 12.5, 7.5, and 2.5 dB. All data
were sampled at 16 kHz.

2) REVERB Challenge [34]: The challenge uses utterances
spoken by a single stationary distant-talking speaker with 1-
channel (1ch), 2-channel (2ch) or 8-channel (8ch) microphone
arrays in reverberant meeting rooms. In this paper, we use only
single-channel data of channel-1 to train the model. The train-
ing set contains 7,861 utterances. We used the development
set for model selection.

B. Evaluation Metrics

We used several composite measures to evaluate different
SE systems. Composite objective measures are obtained by
linearly combining existing objective measures: Csig for a five-
point scale of signal distortion (SIG) [35]; Cbak for a five-
point scale of background intrusiveness (BAK) [35]; Covl for
the overall quality (OVRL, [1=bad, 2=poor, 3=fair, 4=good,
5=excellent]) [35]. The three composite measures obtained
from log likelihood ratio (LLR) [35], the perceptual evaluation
of speech quality (PESQ) [36], segmental SNR (segSNR) [35],
and weighted-slope spectral (WSS) [37] distance:

Csig = 3.093− 1.029 ∗ LLR+ 0.603 ∗ PESQ

−0.009 ∗WSS
(4)

Cbak = 1.634 + 0.478 ∗ PESQ− 0.007 ∗WSS

+0.063 ∗ segSNR
(5)

Covl = 1.594 + 0.805 ∗ PESQ− 0.512 ∗ LLR
−0.007 ∗WSS

(6)

We also adopted the Short-Time Objective Intelligibility
(STOI) [38] as evaluation metrics. For all metrics, higher
values indicate better performance.

TABLE I: Performance of Different SE Systems on Voice-bank
Test Set.

Systems CSIG CBAK COVL PESQ
Noisy 3.35 2.44 2.63 1.97
DM 3.85 2.55 3.23 2.60
SA 3.65 2.49 3.07 2.51

DM → DM 3.89 2.55 3.25 2.60
SA → DM 3.89 2.54 3.23 2.56

DM L + SA H 3.76 3.04 3.18 2.61
DM L + DM H 4.06 3.11 3.38 2.70
DM F → DM H 4.09 3.12 3.42 2.74
DM F → DM L 4.02 2.59 3.35 2.69
DM F → SA H 3.94 3.05 3.27 2.63
SA F → DM H 3.76 3.05 3.18 2.60
SA F → DM L 3.87 2.50 3.21 2.58
SA F → SA H 3.71 3.00 3.11 2.52

C. Baseline Models

For the baseline methods, we tested the following methods:
- DM: SE system trained with Eq. (1).
- SA: SE system trained with Eq. (2).
- DM→DM: two-stage method, which first uses the DM-

based SE system trained with Eq. (1) and then uses
another DM-based SE system trained with Eq. (1) for
re-enhancement.
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TABLE II: Performance of Different SE Systems on Reverb Chanllenge 2014 test set.

Systems Far room 1 Far room 2 Far room 3 Near room 1 Near room 2 Near room 3
PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI

Noisy 2.59 84.69% 1.99 78.20% 1.87 71.31% 3.11 95.18% 2.39 92.32% 2.27 89.38%
SA 2.91 89.81% 2.33 84.74% 2.26 83.22% 3.40 95.95% 2.78 93.87% 2.59 90.99%
DM 2.74 88.74% 2.45 85.17% 2.36 84.21% 2.94 93.35% 2.78 92.50% 2.70 91.05%

DM F → DM H 2.91 89.73% 2.56 86.99% 2.48 86.10% 3.18 95.05% 2.95 94.19% 2.83 92.90%

(a) Spectrogram: Noisy (input)

(b) Spectrogram: Clean (target)

(c) Spectrogram: DM

(d) Spectrogram: SA

(e) Spectrogram: DM F → DM H

Fig. 4: One sample (from Voice-Bank test set) of spectrograms
and their corresponding minimum difference masks: (a) is the
spectrogram of noisy input; (b) is the spectrogram of the clean
signal; (c) is the spectrogram of DM; (d) is the spectrogram
of SA; ; (e) is the spectrogram of DM F → DM H.

- SA→DM: two-stage method, which first uses SA-based
SE system trained with Eq. (2) and then uses another
DM-based SE system trained with Eq. (1) for re-
enhancement.

V. EXPERIMENTAL RESULTS AND ANALYSIS

Table I shows the performance of the different SE systems.
Generally, “DM” performed better than “SA” in this study. The
simple two-stage methods (DM→DM and SA→DM) did not
get much improvement from the baseline DM.

We find that the mapping-based SE performed better below
1,400 Hz, while the masking-based SE system was better above
1,400 Hz. However, we find that a simple combination of the

two, “DM L + SA H,” did not improve so much. This is
because even in some high-frequency regions, mapping often
produced better performance. However, “DM L + DM H”
had a relatively large improvement. This shows that subband
enhancement considering dynamic ranges is more beneficial
for the mapping method.

Furthermore, the full-band and subband hybrid approaches
showed better performance than directly concatenating sub-
band spectrograms. Nevertheless, the experimental results also
show that the masking-based subband optimization was worse
than the mapping-based subband optimization. Table II shows
the results of different methods on the REVERB Challenge test
set. “DM F → DM H” further improved the performance of
the mapping-based system. Fig. 4 shows that SBSF has better
recovery both in the speech and silent segment part.

Fig. 5 shows the square loss ratio of “DM F → DM H,”
“DM L + DM H,” and “DM L + SA H.” We divided the
full-band frequency into three parts. Part 1 had no significant
differences among these methods for low-frequency recovery.
We call Part 2 middle-frequency and Part 3 high-frequency.
“DM L + SA H” had poor recovery in middle frequencies.
Although the recovery of “DM L + SA H” in other regions
was not much different from other methods, a large degradation
was observed in PESQ, which illustrates the importance of Part
2 recovery.

We investigated the performance of different models at
different frequencies according to the square loss ratio. The
curves of the “DM F → DM H” and “DM L + DM H”
are clearly demarcated around 3,200 Hz in the middle and
high frequencies. “DM F → DM H” worked well for middle
frequencies (Part 2) but not for high frequencies (Part 3). This
suggests that about 3,200 Hz would be another cut-off point
for dividing the frequencies into two dynamic ranges.

We synthesized another test set to evaluate the SE systems
on different signal-to-noise ratios (SNRs) and noise conditions.
We used all clean speech in the test set from the Voice
Bank dataset and chose four noisy conditions: crowd, machine,
alarm, siren, and wind. These noise samples were selected
from a dataset with 100 non-speech audio clips1. The SNRs
we chose were -5, 0, 5, 10, and 15 db. Table III shows the
performance of enhancement systems under multiple noisy
conditions. Except for the machine noise, the improvement
of our method was consistent. Fig. 6 shows the performance
of different SE systems for multiple SNRs. “SA” did not
perform well under low SNRs and was even lower than
noisy speech on SIG and OVRL. The performance of other

1http://web.cse.ohio-state.edu/pnl/corpus/HuNonspeech/HuCorpus.html
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Fig. 5: Square loss ratio (the lower, the better) of DM F → DM H, DM L + DM H, and DM L + SA H at different frequencies
(257-dimensional linear spectrogram) on Voice Bank training set, which were calculated with Eq. (3).

TABLE III: Performance of Different SE Systems on Different Noisy Conditions (Unseen, synthesized, clean speech from Voice
Bank dataset, noisy from non-speech 100).

Systems Crowd Noise Machine Noise Alarm and Siren Wind
Csig Cbak Covl PESQ Csig Cbak Covl PESQ Csig Cbak Covl PESQ Csig Cbak Covl PESQ

Noisy 1.45 1.74 1.27 1.18 1.85 1.87 1.47 1.19 1.31 1.50 1.15 1.13 2.65 1.77 1.90 1.35
DM 1.97 2.03 1.62 1.35 2.19 2.02 1.75 1.38 2.38 2.15 1.90 1.51 3.00 2.22 2.36 1.85
SA 1.66 2.14 1.42 1.30 1.85 2.14 1.53 1.33 1.63 2.17 1.44 1.39 2.53 2.27 2.10 1.77

DM F → DM H 2.12 2.12 1.74 1.44 2.15 2.02 1.72 1.37 2.62 2.24 2.08 1.64 3.21 2.29 2.51 1.91

Fig. 6: Performance of evaluation measures (PESQ, SIG, OVRL, BAK) of different enhancement systems in SNRs (-5, 0, 5,
10, and 15 db) conditions: -5 db was an unseen condition, and the noisy conditions were unseen. The horizontal axis represents
SNRs, and the vertical axis represents the value of the evaluation metric.

enhancement methods at low SNRs was very similar. All
methods showed better performance with the increase in SNR.
Compared with other methods, the performance of “DM H →
DM F” increased significantly as the SNR improved.

VI. CONCLUSION AND FUTURE WORK

In this paper, we first explored the complementarity between
mapping-based and masking-based speech enhancement (SE)
systems, which perform well in low and high frequencies,
respectively, in accordance with the square loss ratio. The cut-
off point was about 1,400 Hz. Meanwhile, the mapping-based
method had obvious differences between low and high fre-
quencies, while the performance of the masking-based method
was uniform and stable. Therefore, we designed subband-
based spectrogram fusion (SBSF), considering the dynamic

ranges of the mapping-based SE system. We find that the
mapping is more suitable for subband processing. In addition
to the low-frequency information below 1,400 Hz, the middle-
frequency between 1,400 and 3,200 Hz also has a larger
impact on speech quality. Furthermore, we find that using
the subband to process the worse part of the full-band can
bring greater improvement compared with the simple multi-
stage enhancement. The combination of full-band and subband
processing was even better. In the future, we will endeavor
to design the subband more elaborately and to add propelled
phase information for the SE system.
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